
1 Classes and Data Abstraction II, Lab Ex-

ercise 2 - Complex Numbers Again

Create a class called Complex for performing arithmetic with complex num-
bers. Write a driver program to test your class. Complex numbers have the
form

realpart + imaginarypart ∗ i

where i is √
−1

Use floating–point variables to represent the private data of the class. Pro-
vide a constructor function that enables an object of this class to be initialized
when it is declared. The constructor should contain default values in case no
initializers are provided. Provide public member functions for each of the
following:

• Addition of two Complex numbers: The real parts are added together
and the imaginary parts are added together

• Substraction of two Complex numbers: The real part of the right
operand is subtracted from the real part of the left operand and the
imaginary part of the right operand is subtracted from the imaginary
part of the left operand.

• Printing Complex numbers in the form (a,b) where a is the real part
and b is the imaginary part.

The output should appear as follows:
(1,7) + (9,2) = (10,9)
(10,1) - (11,5) = (-1,-4)

// complex.h

#ifndef COMPLEX_H

#define COMPLEX_H

/* Write class definition for Complex */

#endif

// complexM.cpp

// member function definitions for class Complex

#include <iostream>

using std::cout;

#include "complex.h"

Complex::Complex(double real, double imaginary)

{ setComplexNumber(real, imaginary); }

1

void Complex::addition(const Complex &a)

{

/* Write statement to add the realPart of a to the class

realPart */

/* Write statement to add the imaginaryPart of a to the

class imaginaryPart */

}

void Complex::subtraction(const Complex &s)

{

/* Write a statement to subtract the realPart of s from the

class realPart */

/* Write a statement to subtract the imaginaryPart of s from

the class imaginaryPart */

}

void Complex::printComplex(void)

{ cout << ’(’ << realPart << ", " << imaginaryPart << ’)’; }

void Complex::setComplexNumber(double real, double imaginary)

{

realPart = real;

imaginaryPart = imaginary;

}

// complex.cpp

#include <iostream>

using std::cout; using std::endl;

#include "complex.h"

int main()

{

Complex b(1, 7), c(9, 2);

b.printComplex();

cout << " + ";

c.printComplex();

cout << " = ";

b.addition(c);

b.printComplex();

cout << ’\n’;

b.setComplexNumber(10, 1);

c.setComplexNumber(11, 5);

b.printComplex();

cout << " - ";

c.printComplex();

cout << " = ";

b.subtraction(c);

2

b.printComplex();

cout << endl;

return 0;

}

Tips:

• You must write the definition for class Complex. Use the details
provided in the member function definitions (complexM.cpp) to assist
you.

• Remember to use member–access specifiers public and private to
specify the access level of data members and functions. Carefully con-
sider which access specifier to use for each class member. In general,
data members should be private and member functions should be pub-
lic.

Questions

1. Why do you think const was used in the parameter list of addition
and subtraction?

2. Can addition and subtraction’s parameters be passed call–by–value
instead of call–by–reference? How might this affect the design of class
Complex? Write a new class definition.

3. Declare a Complex number as follows, without passing any arguments
to the constructor. What happens? Does the default constructor han-
dle this declaration?
Complex a;

3

