
Dinkum C++ Library
Reference

A C++ program can call on a large number of functions from the Standard C++ library.
These functions perform essential services such as input and output. They also provide
efficient implementations of frequently used operations. Numerous function and class
definitions accompany these functions to help you to make better use of the library. Most of the
information about the Standard C++ library can be found in the descriptions of the Standard C++
headers that declare or define library entities for the program.

Table of Contents
<algorithm> · <bitset> · <complex> · <deque> · <exception> · <fstream>
· <functional> · <iomanip> · <ios> · <iosfwd> · <iostream> · <istream>
· <iterator> · <limits> · <list> · <locale> · <map> · <memory> · <new>
· <numeric> · <ostream> · <queue> · <set> · <sstream> · <stack> ·
<stdexcept> · <streambuf> · <string> · <strstream> · <typeinfo> ·
<utility> · <valarray> · <vector>

<cassert> · <cctype> · <cerrno> · <cfloat> · <ciso646> · <climits> ·
<clocale> · <cmath> · <csetjmp> · <csignal> · <cstdarg> · <cstddef> ·
<cstdio> · <cstdlib> · <cstring> · <ctime> · <cwchar> · <cwctype>

<assert.h> · <ctype.h> · <errno.h> · <float.h> · <iso646.h> ·
<limits.h> · <locale.h> · <math.h> · <setjmp.h> · <signal.h> ·
<stdarg.h> · <stddef.h> · <stdio.h> · <stdlib.h> · <string.h> ·
<time.h> · <wchar.h> · <wctype.h>

<fstream.h> · <iomanip.h> · <iostream.h> · <new.h> · <stl.h>

C++ Library Overview · C Library Overview · Characters · Files and
Streams · Formatted Output · Formatted Input · STL Conventions ·
Containers

Of the 51 Standard C++ library headers, 13 constitute the Standard Template Library, or STL. These
are indicated below with the notation (STL):

http://www.dinkumware.com/
https://secure.dinkumware.com/asp/orderform.asp

<algorithm> -- (STL) for defining numerous templates that implement useful algorithms
<bitset> -- for defining a template class that administers sets of bits
<cassert> -- for enforcing assertions when functions execute
<cctype> -- for classifying characters
<cerrno> -- for testing error codes reported by library functions
<cfloat> -- for testing floating-point type properties
<ciso646> -- for programming in ISO 646 variant character sets
<climits> -- for testing integer type properties
<clocale> -- for adapting to different cultural conventions
<cmath> -- for computing common mathematical functions
<complex> -- for defining a template class that supports complex arithmetic
<csetjmp> -- for executing nonlocal goto statements
<csignal> -- for controlling various exceptional conditions
<cstdarg> -- for accessing a varying number of arguments
<cstddef> -- for defining several useful types and macros
<cstdio> -- for performing input and output
<cstdlib> -- for performing a variety of operations
<cstring> -- for manipulating several kinds of strings
<ctime> -- for converting between various time and date formats
<cwchar> -- for manipulating wide streams and several kinds of strings
<cwctype> -- for classifying wide characters
<deque> -- (STL) for defining a template class that implements a deque container
<exception> -- for defining several functions that control exception handling
<fstream> -- for defining several iostreams template classes that manipulate exteral files
<functional> -- (STL) for defining several templates that help construct predicates for the templates
defined in <algorithm> and <numeric>
<iomanip> -- for declaring several iostreams manipulators that take an argument
<ios> -- for defining the template class that serves as the base for many iostreams classes
<iosfwd> -- for declaring several iostreams template classes before they are necessarily defined
<iostream> -- for declaring the iostreams objects that manipulate the standard streams
<istream> -- for defining the template class that performs extractions
<iterator> -- (STL) for defining several templates that help define and manipulate iterators
<limits> -- for testing numeric type properties
<list> -- (STL) for defining a template class that implements a list container
<locale> -- for defining several classes and templates that control locale-specific behavior, as in the
iostreams classes
<map> -- (STL) for defining template classes that implement associative containers
<memory> -- (STL) for defining several templates that allocate and free storage for various container
classes
<new> -- for declaring several functions that allocate and free storage
<numeric> -- (STL) for defining several templates that implement useful numeric functions

<ostream> -- for defining the template class that performs insertions
<queue> -- (STL) for defining a template class that implements a queue container
<set> -- (STL) for defining template classes that implement associative containers with unique
elements
<sstream> -- for defining several iostreams template classes that manipulate string containers
<stack> -- (STL) for defining a template class that implements a stack container
<stdexcept> -- for defining several classes useful for reporting exceptions
<streambuf> -- for defining template classes that buffer iostreams operations
<string> -- for defining a template class that implements a string container
<strstream> -- for defining several iostreams classes that manipulate in-memory character sequences
<typeinfo> -- for defining class type_info, the result of the typeid operator
<utility> -- (STL) for defining several templates of general utility
<valarray> -- for defining several classes and template classes that support value-oriented arrays
<vector> -- (STL) for defining a template class that implements a vector container

The Standard C++ library also includes the 18 headers from the Standard C library, sometimes with
small alterations:

<assert.h> -- for enforcing assertions when functions execute
<ctype.h> -- for classifying characters
<errno.h> -- for testing error codes reported by library functions
<float.h> -- for testing floating-point type properties
<iso646.h> -- for programming in ISO 646 variant character sets
<limits.h> -- for testing integer type properties
<locale.h> -- for adapting to different cultural conventions
<math.h> -- for computing common mathematical functions
<setjmp.h> -- for executing nonlocal goto statements
<signal.h> -- for controlling various exceptional conditions
<stdarg.h> -- for accessing a varying number of arguments
<stddef.h> -- for defining several useful types and macros
<stdio.h> -- for performing input and output
<stdlib.h> -- for performing a variety of operations
<string.h> -- for manipulating several kinds of strings
<time.h> -- for converting between various time and date formats
<wchar.h> -- for manipulating wide streams and several kinds of strings
<wctype.h> -- for classifying wide characters

Finally, in this implementation, the Standard C++ library also includes four headers for compatibility
with traditional C++ libraries:

<fstream.h> -- for defining several iostreams template classes that manipulate exteral files
<iomanip.h> -- for declaring several iostreams manipulators that take an argument
<iostream.h> -- for declaring the iostreams objects that manipulate the standard streams

<new.h> -- for declaring several functions that allocate and free storage
<stl.h> -- for declaring several template classes that aid migration from older versions of the Standard
Template Library

Other information on the Standard C++ library includes:

C++ Library Overview -- how to use the Standard C++ library
C Library Overview -- how to use the Standard C library, including what happens at program startup
and at program termination
Characters -- how to write character constants and string literals, and how to convert between multibyte
characters and wide characters
Files and Streams -- how to read and write data between the program and files
Formatted Output -- how to generate text under control of a format string
Formatted Input -- how to scan and parse text under control of a format string
STL Conventions -- how to read the descriptions of STL template classes and functions
Containers -- how to use an arbitrary STL container template class

A few special conventions are introduced into this document specifically for this particular
implementation of the Standard C++ library. Because the draft C++ Standard is still changing, not all
implementations support all the features described here. Hence, this implementation introduces macros,
or alternative declarations, where necessary to provide reasonable substitutes for the capabilities required
by the current draft C++ Standard.

See also the Index.

Copyright © 1992-1996 by P.J. Plauger. All rights reserved.

C++ Library Overview

Using Standard C++ Headers
C++ Library Conventions
Iostreams Conventions
Program Startup and Termination

All Standard C++ library entities are declared or defined in one or more standard headers. To make use
of a library entity in a program, write an include directive that names the relevant standard header. The
full set of 51 Standard C++ headers (along with the 18 additional Standard C headers) constitutes a
hosted implementation of Standard C++: <algorithm>, <bitset>, <cassert>, <cctype>,
<cerrno>, <cfloat>, <ciso646>, <climits>, <clocale>, <cmath>, <complex>,
<csetjmp>, <csignal>, <cstdarg>, <cstddef>, <cstdio>, <cstdlib>, <cstring>,
<ctime>, <cwchar>, <cwctype>, <deque>, <exception>, <fstream>, <functional>,
<iomanip>, <ios>, <iosfwd>, <iostream>, <istream>, <iterator>, <limits>,
<list>, <locale>, <map>, <memory>, <new>, <numeric>, <ostream>, <queue>, <set>,
<sstream>, <stack>, <stdexcept>, <streambuf>, <string>, <strstream>,
<typeinfo>, <utility>, <valarray>, and <vector>.

A freestanding implementation of Standard C++ provides only a subset of these headers: <cstddef>,
<cstdlib> (declaring at least the functions abort, atexit, and exit), <exception>,
<limits>, <new>, <typeinfo>, and <cstdarg>.

The Standard C++ headers have two broader subdivisions, iostreams headers and STL headers.

Using Standard C++ Headers
You include the contents of a standard header by naming it in an include directive, as in:

#include <iostream> /* include I/O facilities */

You can include the standard headers in any order, a standard header more than once, or two or more
standard headers that define the same macro or the same type. Do not include a standard header within a
declaration. Do not define macros that have the same names as keywords before you include a standard
header.

A Standard C++ header includes any other Standard C++ headers it needs to define needed types.
(Always include explicitly any Standard C++ headers needed in a translation unit, however, lest you
guess wrong about its actual dependencies.) A Standard C header never includes another standard header.

http://www.dinkumware.com/

A standard header declares or defines only the entities described for it in this document.

Every function in the library is declared in a standard header. Unlike in Standard C, the standard header
never provides a masking macro, with the same name as the function, that masks the function declaration
and achieves the same effect.

If an implementation supports namespaces, all names in the Standard C++ headers are defined in the
std namespace. You refer to the name cin, for example, as std::cin. Alternatively, you can write
the declaration:

using namespace std;

which promotes all library names into the current namespace. If you include one of the C standard
headers, such as <stdio.h>, the individual names declared or defined in that header are promoted for
you. Note that macro names are not subject to the rules for nesting namespaces.

C++ Library Conventions
The Standard C++ library obeys much the same conventions as the Standard C library, plus a few more
outlined here.

Except for macro names, which obey no scoping rules, all names in the Standard C++ library are
declared in the std namespace. Including a Standard C++ header does not introduce any library names
into the current namespace. You must, for example, refer to the standard input stream cin as
std::cin, even after including the header <iostream> that declares it. Alternatively, you can
incorporate all members of the std namespace into the current namespace by writing:

using namespace std;

immediately after all include directives that name the standard headers. Note that the Standard C headers
behave mostly as if they include no namespace declarations. If you include, for example, <cstdlib>,
you call std::abort() to cause abnormal termination, but if you include <stdlib.h>, you call
abort().

An implementation has certain latitude in how it declares types and functions in the Standard C++
library:

Names of functions in the Standard C library may have either extern "C++" or extern "C"
linkage. Include the appropriate Standard C header rather than declare a library entity inline.

●

A member function name in a library class may have additional function signatures over those
listed in this document. You can be sure that a function call described here behaves as expected,
but you cannot reliably take the address of a library member function. (The type may not be what
you expect.)

●

A library class may have undocumented (non-virtual) base classes. A class documented as derived
from another class may, in fact, be derived from that class through other undocumented classes.

●

A type defined as a synonym for some integer type may be the same as one of several different●

integer types.

A library function that has no exception specification can throw an arbitrary exception, unless its
definition clearly restricts such a possibility.

●

On the other hand, there are some restrictions you can count on:

The Standard C library uses no masking macros. Only specific function signatures are reserved,
not the names of the functions themselves.

●

A library function name outside a class will not have additional, undocumented, function
signatures. You can reliably take its address.

●

Base classes and member functions described as virtual are assuredly virtual, while those described
as non-virtual are assuredly non-virtual.

●

Two types defined by the Standard C++ library are always different unless this document
explicitly suggests otherwise.

●

Functions supplied by the library, including the default versions of replaceable functions, can
throw at most those exceptions listed in any exception specification. (Functions in the Standard C
library may propagate an exception, as when qsort calls a comparison function that throws an
exception, but they do not otherwise throw exceptions.)

●

Iostreams Conventions
The iostreams headers support conversions between text and encoded forms, and input and output to
external files: <fstream>, <iomanip>, <ios>, <iosfwd>, <iostream>, <istream>,
<ostream>, <sstream>, <streambuf>, and <strstream>.

The simplest use of iostreams requires only that you include the header <iostream>. You can then
extract values from cin, to read the standard input. The rules for doing so are outlined in the description
of the class basic_istream. You can also insert values to cout, to write the standard output. The
rules for doing so are outlined in the description of the class basic_ostream. Format control common
to both extractors and insertors is managed by the class basic_ios. Manipulating this format
information in the guise of extracting and inserting objects is the province of several manipulators.

You can perform the same iostreams operations on files that you open by name, using the classes
declared in <fstream>. To convert between iostreams and objects of class basic_string, use the
classes declared in <sstream>. And to do the same with C strings, use the classes declared in
<strstream>.

The remaining headers provide support services, typically of direct interest to only the most advanced
users of the iostreams classes.

C++ Program Startup and Termination
A C++ program performs the same operations as does a C program program startup and at program
termination, plus a few more outlined here.

Before the target environment calls the function main, and after it stores any constant initial values you
specify in all objects that have static duration, the program executes any remaining constructors for such
static objects. The order of execution is not specified between translation units, but you can nevertheless
assume that four iostreams objects are properly initialized for use by these static constructors. These
control several text streams:

cin -- for standard input●

cout -- for standard output●

cerr -- for unbuffered standard error output●

clog -- for buffered standard error output●

You can also use these objects within the destructors called for static objects, during program
termination.

As with C, returning from from main or calling exit calls all functions registered with atexit in
reverse order of registry. An exception thrown from such a registered function calls terminate().

See also the Table of Contents and the Index.

Copyright © 1992-1996 by P.J. Plauger. All rights reserved.

C Library Overview

Using Standard C Headers · C Library Conventions · · Program Startup and Termination

All Standard C library entities are declared or defined in one or more standard headers. To make use of
a library entity in a program, write an include directive that names the relevant standard header. The
full set of 18 Standard C headers constitutes a hosted implementation: <assert.h>, <ctype.h>,
<errno.h>, <float.h>, <iso646.h>, <limits.h>, <locale.h>, <math.h>,
<setjmp.h>, <signal.h>, <stdarg.h>, <stddef.h>, <stdio.h>, <stdlib.h>,
<string.h>, <time.h>, <wchar.h>, and <wctype.h>.

(The headers <iso646.h>, <wchar.h>, and <wctype.h> are added with Amendment 1, an
addition to the C Standard published in 1995.)

A freestanding implementation of Standard C provides only a subset of these standard headers:
<float.h>, <limits.h>, <stdarg.h>, and <stddef.h>. Each freestanding implementation
defines:

how it starts the program●

what happens when the program terminates●

what library functions (if any) it provides●

Using Standard C Headers
You include the contents of a standard header by naming it in an include directive, as in:

#include <stdio.h> /* include I/O facilities */

You can include the standard headers in any order, a standard header more than once, or two or more
standard headers that define the same macro or the same type. Do not include a standard header within a
declaration. Do not define macros that have the same names as keywords before you include a standard
header.

A standard header never includes another standard header. A standard header declares or defines only the
entities described for it in this document.

Every function in the library is declared in a standard header. The standard header can also provide a
masking macro, with the same name as the function, that masks the function declaration and achieves
the same effect. The macro typically expands to an expression that executes faster than a call to the
function of the same name. The macro can, however, cause confusion when you are tracing or debugging

http://www.dinkumware.com/

the program. So you can use a standard header in two ways to declare or define a library function. To
take advantage of any macro version, include the standard header so that each apparent call to the
function can be replaced by a macro expansion.

For example:

#include <ctype.h>
char *skip_space(char *p)
 {
 while (isspace(*p)) can be a macro
 ++p;
 return (p);
 }

To ensure that the program calls the actual library function, include the standard header and remove any
macro definition with an undef directive.

For example:

#include <ctype.h>
#undef isspace remove any macro definition
int f(char *p) {
 while (isspace(*p)) must be a function
 ++p;

You can use many functions in the library without including a standard header (although this practice is
not recommended). If you do not need defined macros or types to declare and call the function, you can
simply declare the function as it appears in this chapter. Again, you have two choices. You can declare
the function explicitly.

For example:

 double sin(double x); declared in <math.h>
 y = rho * sin(theta);

Or you can declare the function implicitly if it is a function returning int with a fixed number of
arguments, as in:

 n = atoi(str); declared in <stdlib.h>

If the function has a varying number of arguments, such as printf, you must declare it explicitly:
Either include the standard header that declares it or write an explicit declaration.

Note also that you cannot define a macro or type definition without including its standard header because
each of these varies among implementations.

C Library Conventions
A library macro that masks a function declaration expands to an expression that evaluates each of its
arguments once (and only once). Arguments that have side effects evaluate the same way whether the
expression executes the macro expansion or calls the function. Macros for the functions getc and putc
are explicit exceptions to this rule. Their stream arguments can be evaluated more than once. Avoid
argument expressions that have side effects with these macros.

A library function that alters a value stored in memory assumes that the function accesses no other
objects that overlap the object whose stored value it alters. You cannot depend on consistent behavior
from a library function that accesses and alters the same storage via different arguments. The function
memmove is an explicit exception to this rule. Its arguments can point at objects that overlap.

An implementation has a set of reserved names that it can use for its own purposes. All the library
names described in this document are, of course, reserved for the library. Don't define macros with the
same names. Don't try to supply your own definition of a library function, unless this document explicitly
says you can (only in C++). An unauthorized replacement may be successful on some implementations
and not on others. Names that begin with two underscores, such as __STDIO, and names that begin with
an underscore followed by an upper case letter, such as _Entry, can be used as macro names, whether
or not a translation unit explicitly includes any standard headers. Names that begin with an underscore
can be defined with external linkage. Avoid writing such names in a program that you wish to keep
maximally portable.

Some library functions operate on C strings, or pointers to null-terminated strings. You designate a C
string that can be altered by an argument expression that has type pointer to char (or type array of char,
which converts to pointer to char in an argument expression). You designate a C string that cannot be
altered by an argument expression that has type pointer to const char (or type const array of char). In
any case, the value of the expression is the address of the first byte in an array object. The first successive
element of the array that has a null character stored in it marks the end of the C string.

A filename is a string whose contents meet the requirements of the target environment for naming
files.

●

A multibyte string is composed of zero or more multibyte characters, followed by a null
character.

●

A wide-character string is composed of zero or more wide characters (stored in an array of
wchar_t), followed by a null wide character.

●

If an argument to a library function has a pointer type, then the value of the argument expression must be
a valid address for an object of its type. This is true even if the library function has no need to access an
object by using the pointer argument. An explicit exception is when the description of the library
function spells out what happens when you use a null pointer.

Some examples are:

 strcpy(s1, 0) is INVALID

 memcpy(s1, 0, 0) is UNSAFE
 realloc(0, 50) is the same as malloc(50)

Program Startup and Termination
The target environment controls the execution of the program (in contrast to the translator part of the
implementation, which prepares the parts of the program for execution). The target environment passes
control to the program at program startup by calling the function main that you define as part of the
program. Program arguments are C strings that the target environment provides, such as text from the
command line that you type to invoke the program. If the program does not need to access program
arguments, you can define main as:

extern int main(void)
 { <body of main> }

If the program uses program arguments, you define main as:

extern int main(int argc, char **argv)
 { <body of main> }

You can omit either or both of extern int, since these are the default storage class and type for a
function definition. For program arguments:

argc is a value (always greater than zero) that specifies the number of program arguments.●

argv[0] designates the first element of an array of C strings. argv[argc] designates the last
element of the array, whose stored value is a null pointer.

●

For example, if you invoke a program by typing:

echo hello

a target environment can call main with:

The value 2 for argc.●

The address of an array object containing "echo" stored in argv[0].●

The address of an array object containing "hello" stored in argv[1].●

A null pointer stored in argv[2].●

argv[0] is the name used to invoke the program. The target environment can replace this name with a
null string (""). The program can alter the values stored in argc, in argv, and in the array objects
whose addresses are stored in argv.

Before the target environment calls main, it stores the initial values you specify in all objects that have
static duration. It also opens three standard streams, controlled by the text-stream objects designated by
the macros:

stdin -- for standard input●

stdout -- for standard output●

stderr -- for standard error output●

If main returns to its caller, the target environment calls exit with the value returned from main as the
status argument to exit. If the return statement that the program executes has no expression, the status
argument is undefined. This is the case if the program executes the implied return statement at the end of
the function definition.

You can also call exit directly from any expression within the program. In both cases, exit calls all
functions registered with atexit in reverse order of registry and then begins program termination. At
program termination, the target environment closes all open files, removes any temporary files that you
created by calling tmpfile, and then returns control to the invoker, using the status argument value to
determine the termination status to report for the program.

The program can terminate abnormally by calling abort, for example. Each implementation defines
whether it closes files, whether it removes temporary files, and what termination status it reports when a
program terminates abnormally.

See also the Table of Contents and the Index.

Copyright © 1989-1996 by P.J. Plauger and Jim Brodie. All rights reserved.

Preprocessing

The translator processes each source file in a series of phases. Preprocessing constitutes the earliest
phases, which produce a translation unit. Preprocessing treats a source file as a sequence of text lines.
You can specify directives and macros that insert, delete, and alter source text.

This document describes briefly just those aspect of preprocessing most relevant to the use of the
Standard C library:

The macro __FILE__ expands to a string literal that gives the remembered filename of the current
source file. You can alter the value of this macro by writing a line directive.

The macro __LINE__ expands to a decimal integer constant that gives the remembered line number
within the current source file. You can alter the value of this macro by writing a line directive.

A define directive defines a name as a macro. Following the directive name define, you write one of
two forms:

a name not immediately followed by a left parenthesis, followed by any sequence of preprocessing
tokens -- to define a macro without parameters

●

a name immediately followed by a left parenthesis with no intervening white space, followed by
zero or more distinct parameter names separated by commas, followed by a right parenthesis,
followed by any sequence of preprocessing tokens -- to define a macro with as many parameters as
names that you write inside the parentheses

●

You can selectively skip groups of lines within source files by writing an if directive, or one of the other
conditional directives, ifdef or ifndef. You follow the conditional directive by the first group of lines that
you want to selectively skip. Zero or more elif directives follow this first group of lines, each followed by
a group of lines that you want to selectively skip. An optional else directive follows all groups of lines
controlled by elif directives, followed by the last group of lines you want to selectively skip. The last
group of lines ends with an endif directive.

At most one group of lines is retained in the translation unit -- the one immediately preceded by a
directive whose if expression has a nonzero value. For the directive:

#ifdef X

this expression is defined (X), and for the directive:

#ifndef X

this expression is !defined (X).

An if expression is a conditional expression that the preprocessor evaluates. You can write only integer

http://www.dinkumware.com/

constant expressions, with the following additional considerations:

The expression defined X, or defined (X), is replaced by 1 if X is defined as a macro,
otherwise 0.

●

You cannot write the sizeof or type cast operators. (The translator expands all macro names, then
replaces each remaining name with 0, before it recognizes keywords.)

●

The translator may be able to represent a broader range of integers than the target environment.●

The translator represents type int the same as long, and unsigned int the same as unsigned long.●

The translator can translate character constants to a set of code values different from the set for the
target environment.

●

An include directive includes the contents of a standard header or another source file in a translation
unit. The contents of the specified standard header or source file replace the include directive. Following
the directive name include, write one of the following:

a standard header name between angle brackets●

a filename between double quotes●

any other form that expands to one of the two previous forms after macro replacement●

A line directive alters the source line number and filename used by the predefined macros __FILE__
and __FILE__. Following the directive name line, write one of the following:

a decimal integer (giving the new line number of the line following)●

a decimal integer as before, followed by a string literal (giving the new line number and the new
source filename)

●

any other form that expands to one of the two previous forms after macro replacement●

Preprocessing translates each source file in a series of distinct phases. The first few phases of translation:
terminate each line with a newline character (NL), convert trigraphs to their single-character equivalents,
and concatenate each line ending in a backslash (\) with the line following. Later phases process include
directives, expand macros, and so on to produce a translation unit. The translator combines separate
translation units, with contributions as needed from the Standard C library, at link time, to form the
executable program.

An undef directive removes a macro definition. You might want to remove a macro definition so that
you can define it differently with a define directive or to unmask any other meaning given to the name.
The name whose definition you want to remove follows the directive name undef. If the name is not
currently defined as a macro, the undef directive has no effect.

See also the Table of Contents and the Index.

Copyright © 1989-1996 by P.J. Plauger and Jim Brodie. All rights reserved.

Files and Streams

Text and Binary Streams · Byte and Wide Streams · Controlling Streams · Stream States

A program communicates with the target environment by reading and writing files (ordered sequences of
bytes). A file can be, for example, a data set that you can read and write repeatedly (such as a disk file), a
stream of bytes generated by a program (such as a pipeline), or a stream of bytes received from or sent to
a peripheral device (such as the keyboard or display). The latter two are interactive files. Files are
typically the principal means by which to interact with a program.

You manipulate all these kinds of files in much the same way -- by calling library functions. You include
the standard header <stdio.h> to declare most of these functions.

Before you can perform many of the operations on a file, the file must be opened. Opening a file
associates it with a stream, a data structure within the Standard C library that glosses over many
differences among files of various kinds. The library maintains the state of each stream in an object of
type FILE.

The target environment opens three files prior to program startup. You can open a file by calling the
library function fopen with two arguments. The first argument is a filename, a multibyte string that the
target environment uses to identify which file you want to read or write. The second argument is a C
string that specifies:

whether you intend to read data from the file or write data to it or both●

whether you intend to generate new contents for the file (or create a file if it did not previously
exist) or leave the existing contents in place

●

whether writes to a file can alter existing contents or should only append bytes at the end of the file●

whether you want to manipulate a text stream or a binary stream●

Once the file is successfully opened, you can then determine whether the stream is byte oriented (a byte
stream) or wide oriented (a wide stream). Wide-oriented streams are supported only with Amendment
1. A stream is initially unbound. Calling certain functions to operate on the stream makes it byte
oriented, while certain other functions make it wide oriented. Once established, a stream maintains its
orientation until it is closed by a call to fclose or freopen.

http://www.dinkumware.com/

Text and Binary Streams
A text stream consists of one or more lines of text that can be written to a text-oriented display so that
they can be read. When reading from a text stream, the program reads an NL (newline) at the end of each
line. When writing to a text stream, the program writes an NL to signal the end of a line. To match
differing conventions among target environments for representing text in files, the library functions can
alter the number and representations of characters transmitted between the program and a text stream.

Thus, positioning within a text stream is limited. You can obtain the current file-position indicator by
calling fgetpos or ftell. You can position a text stream at a position obtained this way, or at the
beginning or end of the stream, by calling fsetpos or fseek. Any other change of position might well
be not supported.

For maximum portability, the program should not write:

empty files●

space characters at the end of a line●

partial lines (by omitting the NL at the end of a file)●

characters other than the printable characters, NL, and HT (horizontal tab)●

If you follow these rules, the sequence of characters you read from a text stream (either as byte or
multibyte characters) will match the sequence of characters you wrote to the text stream when you
created the file. Otherwise, the library functions can remove a file you create if the file is empty when
you close it. Or they can alter or delete characters you write to the file.

A binary stream consists of one or more bytes of arbitrary information. You can write the value stored
in an arbitrary object to a (byte-oriented) binary stream and read exactly what was stored in the object
when you wrote it. The library functions do not alter the bytes you transmit between the program and a
binary stream. They can, however, append an arbitrary number of null bytes to the file that you write
with a binary stream. The program must deal with these additional null bytes at the end of any binary
stream.

Thus, positioning within a binary stream is well defined, except for positioning relative to the end of the
stream. You can obtain and alter the current file-position indicator the same as for a text stream.
Moreover, the offsets used by ftell and fseek count bytes from the beginning of the stream (which is
byte zero), so integer arithmetic on these offsets yields predictable results.

Byte and Wide Streams
A byte stream treats a file as a sequence of bytes. Within the program, the stream looks like the same
sequence of bytes, except for the possible alterations described above.

By contrast, a wide stream treats a file as a sequence of generalized multibyte characters, which can
have a broad range of encoding rules. (Text and binary files are still read and written as described above.)
Within the program, the stream looks like the corresponding sequence of wide characters. Conversions
between the two representations occur within the Standard C library. The conversion rules can, in

principle, be altered by a call to setlocale that alters the category LC_CTYPE. Each wide stream
determines its conversion rules at the time it becomes wide oriented, and retains these rules even if the
category LC_CTYPE subsequently changes.

Positioning within a wide stream suffers the same limitations as for text streams. Moreover, the
file-position indicator may well have to deal with a state-dependent encoding. Typically, it includes both
a byte offset within the stream and an object of type mbstate_t. Thus, the only reliable way to obtain
a file position within a wide stream is by calling fgetpos, and the only reliable way to restore a
position obtained this way is by calling fsetpos.

Controlling Streams
fopen returns the address of an object of type FILE. You use this address as the stream argument to
several library functions to perform various operations on an open file. For a byte stream, all input takes
place as if each character is read by calling fgetc, and all output takes place as if each character is
written by calling fputc. For a wide stream (with Amendment 1), all input takes place as if each
character is read by calling fgetwc, and all output takes place as if each character is written by calling
fputwc.

You can close a file by calling fclose, after which the address of the FILE object is invalid.

A FILE object stores the state of a stream, including:

an error indicator -- set nonzero by a function that encounters a read or write error●

an end-of-file indicator -- set nonzero by a function that encounters the end of the file while
reading

●

a file-position indicator -- specifies the next byte in the stream to read or write, if the file can
support positioning requests

●

a stream state -- specifies whether the stream will accept reads and/or writes and, with
Amendment 1, whether the stream is unbound, byte oriented, or wide oriented

●

a conversion state -- remembers the state of any partly assembled or generated generalized
multibyte character, as well as any shift state for the sequence of bytes in the file)

●

a file buffer -- specifies the address and size of an array object that library functions can use to
improve the performance of read and write operations to the stream

●

Do not alter any value stored in a FILE object or in a file buffer that you specify for use with that object.
You cannot copy a FILE object and portably use the address of the copy as a stream argument to a
library function.

Stream States
The valid states, and state transitions, for a stream are:

Each of the circles denotes a stable state. Each of the lines denotes a transition that can occur as the result
of a function call that operates on the stream. Five groups of functions can cause state transitions.

Functions in the first three groups are declared in <stdio.h>:

the byte read functions -- fgetc, fgets, fread, fscanf, getc, getchar, gets, scanf,
and ungetc

●

the byte write functions -- fprintf, fputc, fputs, fwrite, printf, putc, putchar,
puts, vfprintf, and vprintf

●

the position functions -- fflush, fseek, fsetpos, and rewind●

Functions in the remaining two groups are declared in <wchar.h>:

the wide read functions -- fgetwc, fgetws, fwscanf, getwc, getwchar, ungetwc, and
wscanf,

●

the wide write functions -- fwprintf, fputwc, fputws, putwc, putwchar, vfwprintf,
vwprintf, and wprintf,

●

For the stream s, the call fwide(s, 0) is always valid and never causes a change of state. Any other
call to fwide, or to any of the five groups of functions described above, causes the state transition

shown in the state diagram. If no such transition is shown, the function call is invalid.

The state diagram shows how to establish the orientation of a stream:

The call fwide(s, -1), or to a byte read or byte write function, establishes the stream as byte
oriented.

●

The call fwide(s, 1), or to a wide read or wide write function, establishes the stream as wide
oriented.

●

The state diagram also shows that you must call one of the position functions between most write and
read operations:

You cannot call a read function if the last operation on the stream was a write.●

You cannot call a write function if the last operation on the stream was a read, unless that read
operation set the end-of-file indicator.

●

Finally, the state diagram shows that a position operation never decreases the number of valid function
calls that can follow.

See also the Table of Contents and the Index.

Copyright © 1989-1996 by P.J. Plauger and Jim Brodie. All rights reserved.

<stdio.h>

_IOFBF · _IOLBF · _IONBF · BUFSIZ · EOF · FILE · FILENAME_MAX ·
FOPEN_MAX · L_tmpnam · NULL · SEEK_CUR · SEEK_END · SEEK_SET · TMP_MAX
· clearerr · fclose · feof · ferror · fflush · fgetc · fgetpos · fgets
· fopen · fpos_t · fprintf · fputc · fputs · fread · freopen · fscanf
· fseek · fsetpos · ftell · fwrite · getc · getchar · gets · perror ·
printf · putc · putchar · puts · remove · rename · rewind · scanf ·
setbuf · setvbuf · size_t · sprintf · sscanf · stderr · stdin · stdout
· tmpfile · tmpnam · ungetc · vfprintf · vprintf · vsprintf

#define _IOFBF <integer constant expression>
#define _IOLBF <integer constant expression>
#define _IONBF <integer constant expression>
#define BUFSIZ <integer constant expression >= 256>
#define EOF <integer constant expression < 0>
typedef o-type FILE;
#define FILENAME_MAX <integer constant expression > 0>
#define FOPEN_MAX <integer constant expression >= 8>
#define L_tmpnam <integer constant expression > 0>
#define NULL <either 0, 0L, or (void *)0> [0 in C++]
#define SEEK_CUR <integer constant expression>
#define SEEK_END <integer constant expression>
#define SEEK_SET <integer constant expression>
#define TMP_MAX <integer constant expression >= 25>
void clearerr(FILE *stream);
int fclose(FILE *stream);
int feof(FILE *stream);
int ferror(FILE *stream);
int fflush(FILE *stream);
int fgetc(FILE *stream);
int fgetpos(FILE *stream, fpos_t *pos);
char *fgets(char *s, int n, FILE *stream);
FILE *fopen(const char *filename, const char *mode);
typedef o-type fpos_t;
int fprintf(FILE *stream, const char *format, ...);

http://www.dinkumware.com/

int fputc(int c, FILE *stream);
int fputs(const char *s, FILE *stream);
size_t fread(void *ptr, size_t size, size_t nelem, FILE *stream);
FILE *freopen(const char *filename, const char *mode, FILE *stream);
int fscanf(FILE *stream, const char *format, ...);
int fseek(FILE *stream, long offset, int mode);
int fsetpos(FILE *stream, const fpos_t *pos);
long ftell(FILE *stream);
size_t fwrite(const void *ptr, size_t size, size_t nelem, FILE
*stream);
int getc(FILE *stream);
int getchar(void);
char *gets(char *s);
void perror(const char *s);
int printf(const char *format, ...);
int putc(int c, FILE *stream);
int putchar(int c);
int puts(const char *s);
int remove(const char *filename);
int rename(const char *old, const char *new);
void rewind(FILE *stream);
int scanf(const char *format, ...);
void setbuf(FILE *stream, char *buf);
int setvbuf(FILE *stream, char *buf, int mode, size_t size);
typedef ui-type size_t;
int sprintf(char *s, const char *format, ...);
int sscanf(const char *s, const char *format, ...);
#define stderr <pointer to FILE rvalue>
#define stdin <pointer to FILE rvalue>
#define stdout <pointer to FILE rvalue>
FILE *tmpfile(void)
char *tmpnam(char *s);
int ungetc(int c, FILE *stream);
int vfprintf(FILE *stream, const char *format, va_list ap);
int vprintf(const char *format, va_list ap);
int vsprintf(char *s, const char *format, va_list ap);

Include the standard header <stdio.h> so that you can perform input and output operations on streams
and files.

_IOFBF

#define _IOFBF <integer constant expression>

The macro yields the value of the mode argument to setvbuf to indicate full buffering. (Flush the
stream buffer only when it fills.)

_IOLBF

#define _IOLBF <integer constant expression>

The macro yields the value of the mode argument to setvbuf to indicate line buffering. (Flush the
stream buffer at the end of a text line.)

_IONBF

#define _IONBF <integer constant expression>

The macro yields the value of the mode argument to setvbuf to indicate no buffering. (Flush the
stream buffer at the end of each write operation.)

BUFSIZ

#define BUFSIZ <integer constant expression >= 256>

The macro yields the size of the stream buffer used by setbuf.

EOF

#define EOF <integer constant expression < 0>

The macro yields the return value used to signal the end of a stream or to report an error condition.

FILE

typedef o-type FILE;

The type is an object type o-type that stores all control information for a stream. The functions fopen
and freopen allocate all FILE objects used by the read and write functions.

FILENAME_MAX

#define FILENAME_MAX <integer constant expression > 0>

The macro yields the maximum size array of characters that you must provide to hold a filename.

FOPEN_MAX

#define FOPEN_MAX <integer constant expression >= 8>

The macro yields the maximum number of files that the target environment permits to be simultaneously
open (including stderr, stdin, and stdout).

L_tmpnam

#define L_tmpnam <integer constant expression > 0>

The macro yields the number of characters that the target environment requires for representing
temporary filenames created by tmpnam.

NULL

#define NULL <either 0, 0L, or (void *)0> [0 in C++]

The macro yields a null pointer constant that is usable as an address constant expression.

SEEK_CUR

#define SEEK_CUR <integer constant expression>

The macro yields the value of the mode argument to fseek to indicate seeking relative to the current
file-position indicator.

SEEK_END

#define SEEK_END <integer constant expression>

The macro yields the value of the mode argument to fseek to indicate seeking relative to the end of the
file.

SEEK_SET

#define SEEK_SET <integer constant expression>

The macro yields the value of the mode argument to fseek to indicate seeking relative to the beginning
of the file.

TMP_MAX

#define TMP_MAX <integer constant expression >= 25>

The macro yields the minimum number of distinct filenames created by the function tmpnam.

clearerr

void clearerr(FILE *stream);

The function clears the end-of-file and error indicators for the stream stream.

fclose

int fclose(FILE *stream);

The function closes the file associated with the stream stream. It returns zero if successful; otherwise,
it returns EOF. fclose writes any buffered output to the file, deallocates the stream buffer if it was
automatically allocated, and removes the association between the stream and the file. Do not use the
value of stream in subsequent expressions.

feof

int feof(FILE *stream);

The function returns a nonzero value if the end-of-file indicator is set for the stream stream.

ferror

int ferror(FILE *stream);

The function returns a nonzero value if the error indicator is set for the stream stream.

fflush

int fflush(FILE *stream);

The function writes any buffered output to the file associated with the stream stream and returns zero if
successful; otherwise, it returns EOF. If stream is a null pointer, fflush writes any buffered output to
all files opened for output.

fgetc

int fgetc(FILE *stream);

The function reads the next character c (if present) from the input stream stream, advances the
file-position indicator (if defined), and returns (int)(unsigned char)c. If the function sets either
the end-of-file indicator or the error indicator, it returns EOF.

fgetpos

int fgetpos(FILE *stream, fpos_t *pos);

The function stores the file-position indicator for the stream stream in *pos and returns zero if
successful; otherwise, the function stores a positive value in errno and returns a nonzero value.

fgets

char *fgets(char *s, int n, FILE *stream);

The function reads characters from the input stream stream and stores them in successive elements of
the array beginning at s and continuing until it stores n-1 characters, stores an NL character, or sets the
end-of-file or error indicators. If fgets stores any characters, it concludes by storing a null character in
the next element of the array. It returns s if it stores any characters and it has not set the error indicator
for the stream; otherwise, it returns a null pointer. If it sets the error indicator, the array contents are
indeterminate.

fopen

FILE *fopen(const char *filename, const char *mode);

The function opens the file with the filename filename, associates it with a stream, and returns a
pointer to the object controlling the stream. If the open fails, it returns a null pointer. The initial
characters of mode determine how the program manipulates the stream and whether it interprets the
stream as text or binary. The initial characters must be one of the following sequences:

"r" -- to open an existing text file for reading●

"w" -- to create a text file or to open and truncate an existing text file, for writing●

"a" -- to create a text file or to open an existing text file, for writing. The file-position indicator is
positioned at the end of the file before each write

●

"rb" -- to open an existing binary file for reading●

"wb" -- to create a binary file or to open and truncate an existing binary file, for writing●

"ab" -- to create a binary file or to open an existing binary file, for writing. The file-position
indicator is positioned at the end of the file (possibly after arbitrary null byte padding) before each
write

●

"r+" -- to open an existing text file for reading and writing●

"w+" -- to create a text file or to open and truncate an existing text file, for reading and writing●

"a+" -- to create a text file or to open an existing text file, for reading and writing. The
file-position indicator is positioned at the end of the file before each write

●

"r+b" or "rb+" -- to open an existing binary file for reading and writing●

"w+b" or "wb+" -- to create a binary file or to open and truncate an existing binary file, for
reading and writing

●

"a+b" or "ab+" -- to create a binary file or to open an existing binary file, for reading and
writing. The file-position indicator is positioned at the end of the file (possibly after arbitrary null
byte padding) before each write

●

If you open a file for both reading and writing, the target environment can open a binary file instead of a
text file. If the file is not interactive, the stream is fully buffered.

fpos_t

typedef o-type fpos_t;

The type is an object type o-type of an object that you declare to hold the value of a file-position
indicator stored by fsetpos and accessed by fgetpos.

fprintf

int fprintf(FILE *stream, const char *format, ...);

The function generates formatted text, under the control of the format format and any additional
arguments, and writes each generated character to the stream stream. It returns the number of
characters generated, or it returns a negative value if the function sets the error indicator for the stream.

fputc

int fputc(int c, FILE *stream);

The function writes the character (unsigned char)c to the output stream stream, advances the

file-position indicator (if defined), and returns (int)(unsigned char)c. If the function sets the
error indicator for the stream, it returns EOF.

fputs

int fputs(const char *s, FILE *stream);

The function accesses characters from the C string s and writes them to the output stream stream. The
function does not write the terminating null character. It returns a nonnegative value if it has not set the
error indicator; otherwise, it returns EOF.

fread

size_t fread(void *ptr, size_t size, size_t nelem, FILE *stream);

The function reads characters from the input stream stream and stores them in successive elements of
the array whose first element has the address (char *)ptr until the function stores size*nelem
characters or sets the end-of-file or error indicator. It returns n/size, where n is the number of
characters it read. If n is not a multiple of size, the value stored in the last element is indeterminate. If
the function sets the error indicator, the file-position indicator is indeterminate.

freopen

FILE *freopen(const char *filename, const char *mode, FILE *stream);

The function closes the file associated with the stream stream (as if by calling fclose); then it opens
the file with the filename filename and associates the file with the stream stream (as if by calling
fopen(filename, mode)). It returns stream if the open is successful; otherwise, it returns a null
pointer.

fscanf

int fscanf(FILE *stream, const char *format, ...);

The function scans formatted text, under the control of the format format and any additional
arguments. It obtains each scanned character from the stream stream. It returns the number of input
items matched and assigned, or it returns EOF if the function does not store values before it sets the
end-of-file or error indicator for the stream.

fseek

int fseek(FILE *stream, long offset, int mode);

The function sets the file-position indicator for the stream stream (as specified by offset and mode),
clears the end-of-file indicator for the stream, and returns zero if successful.

For a binary stream, offset is a signed offset in bytes:

If mode has the value SEEK_SET, fseek adds offset to the file-position indicator for the
beginning of the file.

●

If mode has the value SEEK_CUR, fseek adds offset to the current file-position indicator.●

If mode has the value SEEK_END, fseek adds offset to the file-position indicator for the end
of the file (possibly after arbitrary null character padding).

●

fseek sets the file-position indicator to the result of this addition.

For a text stream:

If mode has the value SEEK_SET, fseek sets the file-position indicator to the value encoded in
offset, which is either a value returned by an earlier successful call to ftell or zero to
indicate the beginning of the file.

●

If mode has the value SEEK_CUR and offset is zero, fseek leaves the file-position indicator
at its current value.

●

If mode has the value SEEK_END and offset is zero, fseek sets the file-position indicator to
indicate the end of the file.

●

The function defines no other combination of argument values.

fsetpos

int fsetpos(FILE *stream, const fpos_t *pos);

The function sets the file-position indicator for the stream stream to the value stored in *pos, clears
the end-of-file indicator for the stream, and returns zero if successful. Otherwise, the function stores a
positive value in errno and returns a nonzero value.

ftell

long ftell(FILE *stream);

The function returns an encoded form of the file-position indicator for the stream stream or stores a
positive value in errno and returns the value -1. For a binary file, a successful return value gives the
number of bytes from the beginning of the file. For a text file, target environments can vary on the
representation and range of encoded file-position indicator values.

fwrite

size_t fwrite(const void *ptr, size_t size, size_t nelem, FILE
*stream);

The function writes characters to the output stream stream, accessing values from successive elements
of the array whose first element has the address (char *)ptr until the function writes size*nelem
characters or sets the error indicator. It returns n/size, where n is the number of characters it wrote. If
the function sets the error indicator, the file-position indicator is indeterminate.

getc

int getc(FILE *stream);

The function has the same effect as fgetc(stream) except that a macro version of getc can
evaluate stream more than once.

getchar

int getchar(void);

The function has the same effect as fgetc(stdin), reading a character from the stream stdin

gets

char *gets(char *s);

The function reads characters from the stream stdin and stores them in successive elements of the
array whose first element has the address s until the function reads an NL character (which is not stored)
or sets the end-of-file or error indicator. If gets reads any characters, it concludes by storing a null
character in the next element of the array. It returns s if it reads any characters and has not set the error
indicator for the stream; otherwise, it returns a null pointer. If it sets the error indicator, the array contents
are indeterminate. The number of characters that gets reads and stores cannot be limited. Use fgets
instead.

perror

void perror(const char *s);

The function writes a line of text to the stream stderr. If s is not a null pointer, the function first writes
the C string s (as if by calling fputs(s, stderr)), followed by a colon (:) and a space. It then
writes the same message C string that is returned by strerror(errno), converting the value stored
in errno, followed by an NL.

printf

int printf(const char *format, ...);

The function generates formatted text, under the control of the format format and any additional
arguments, and writes each generated character to the stream stdout. It returns the number of
characters generated, or it returns a negative value if the function sets the error indicator for the stream.

putc

int putc(int c, FILE *stream);

The function has the same effect as fputc(c, stream) except that a macro version of putc can
evaluate stream more than once.

putchar

int putchar(int c);

The function has the same effect as fputc(c, stdout), writing a character to the stream stdout.

puts

int puts(const char *s);

The function accesses characters from the C string s and writes them to the stream stdout. The
function writes an NL character to the stream in place of the terminating null character. It returns a
nonnegative value if it has not set the error indicator; otherwise, it returns EOF.

remove

int remove(const char *filename);

The function removes the file with the filename filename and returns zero if successful. If the file is
open when you remove it, the result is implementation defined. After you remove it, you cannot open it
as an existing file.

rename

int rename(const char *old, const char *new);

The function renames the file with the filename old to have the filename new and returns zero if
successful. If a file with the filename new already exists, the result is implementation defined. After you

rename it, you cannot open the file with the filename old.

rewind

void rewind(FILE *stream);

The function calls fseek(stream, 0L, SEEK_SET) and then clears the error indicator for the
stream stream.

scanf

int scanf(const char *format, ...);

The function scans formatted text, under the control of the format format and any additional
arguments. It obtains each scanned character from the stream stdin. It returns the number of input
items matched and assigned, or it returns EOF if the function does not store values before it sets the
end-of-file or error indicators for the stream.

setbuf

void setbuf(FILE *stream, char *buf);

If buf is not a null pointer, the function calls setvbuf(stream, buf, __IOFBF, BUFSIZ),
specifying full buffering with _IOFBF and a buffer size of BUFSIZ characters. Otherwise, the function
calls setvbuf(stream, 0, _IONBF, BUFSIZ), specifying no buffering with _IONBF.

setvbuf

int setvbuf(FILE *stream, char *buf, int mode, size_t size);

The function sets the buffering mode for the stream stream according to buf, mode, and size. It
returns zero if successful. If buf is not a null pointer, then buf is the address of the first element of an
array of char of size size that can be used as the stream buffer. Otherwise, setvbuf can allocate a
stream buffer that is freed when the file is closed. For mode you must supply one of the following
values:

_IOFBF -- to indicate full buffering●

_IOLBF -- to indicate line buffering●

_IONBF -- to indicate no buffering●

You must call setvbuf after you call fopen to associate a file with that stream and before you call a
library function that performs any other operation on the stream.

size_t

typedef ui-type size_t;

The type is the unsigned integer type ui-type of an object that you declare to store the result of the
sizeof operator.

sprintf

int sprintf(char *s, const char *format, ...);

The function generates formatted text, under the control of the format format and any additional
arguments, and stores each generated character in successive locations of the array object whose first
element has the address s. The function concludes by storing a null character in the next location of the
array. It returns the number of characters generated -- not including the null character.

sscanf

int sscanf(const char *s, const char *format, ...);

The function scans formatted text, under the control of the format format and any additional
arguments. It accesses each scanned character from successive locations of the array object whose first
element has the address s. It returns the number of items matched and assigned, or it returns EOF if the
function does not store values before it accesses a null character from the array.

stderr

#define stderr <pointer to FILE rvalue>

The macro yields a pointer to the object that controls the standard error output stream.

stdin

#define stdin <pointer to FILE rvalue>

The macro yields a pointer to the object that controls the standard input stream.

stdout

#define stdout <pointer to FILE rvalue>

The macro yields a pointer to the object that controls the standard output stream.

tmpfile

FILE *tmpfile(void)

The function creates a temporary binary file with the filename temp-name and then has the same effect
as calling fopen(temp-name, "wb+"). The file temp-name is removed when the program closes
it, either by calling fclose explicitly or at normal program termination. The filename temp-name
does not conflict with any filenames that you create. If the open is successful, the function returns a
pointer to the object controlling the stream; otherwise, it returns a null pointer.

tmpnam

char *tmpnam(char *s);

The function creates a unique filename temp-name and returns a pointer to the filename. If s is not a
null pointer, then s must be the address of the first element of an array at least of size L_tmpnam. The
function stores temp-name in the array and returns s. Otherwise, if s is a null pointer, the function
stores temp-name in a static-duration array and returns the address of its first element. Subsequent calls
to tmpnam can alter the values stored in this array.

The function returns unique filenames for each of the first TMP_MAX times it is called, after which its
behavior is implementation defined. The filename temp-name does not conflict with any filenames that
you create.

ungetc

int ungetc(int c, FILE *stream);

If c is not equal to EOF, the function stores (unsigned char)c in the object whose address is
stream and clears the end-of-file indicator. If c equals EOF or the store cannot occur, the function
returns EOF; otherwise, it returns (unsigned char)c. A subsequent library function call that reads a
character from the stream stream obtains this stored value, which is then forgotten.

Thus, you can effectively push back a character to a stream after reading a character. (You need not
push back the same character that you read.) An implementation can let you push back additional
characters before you read the first one. You read the characters in reverse order of pushing them back to
the stream. You cannot portably:

push back more than one character●

push back a character if the file-position indicator is at the beginning of the file●

Call ftell for a text file that has a character currently pushed back●

A call to the functions fseek, fsetpos, or rewind for the stream causes the stream to forget any
pushed-back characters. For a binary stream, the file-position indicator is decremented for each character
that is pushed back.

vfprintf

int vfprintf(FILE *stream, const char *format, va_list ap);

The function generates formatted text, under the control of the format format and any additional
arguments, and writes each generated character to the stream stream. It returns the number of
characters generated, or it returns a negative value if the function sets the error indicator for the stream.

The function accesses additional arguments by using the context information designated by ap. The
program must execute the macro va_start before it calls the function, and then execute the macro
va_end after the function returns.

vprintf

int vprintf(const char *format, va_list ap);

The function generates formatted text, under the control of the format format and any additional
arguments, and writes each generated character to the stream stdout. It returns the number of
characters generated, or a negative value if the function sets the error indicator for the stream.

The function accesses additional arguments by using the context information designated by ap. The
program must execute the macro va_start before it calls the function, and then execute the macro
va_end after the function returns.

vsprintf

int vsprintf(char *s, const char *format, va_list ap);

The function generates formatted text, under the control of the format format and any additional
arguments, and stores each generated character in successive locations of the array object whose first
element has the address s. The function concludes by storing a null character in the next location of the
array. It returns the number of characters generated -- not including the null character.

The function accesses additional arguments by using the context information designated by ap. The
program must execute the macro va_start before it calls the function, and then execute the macro
va_end after the function returns.

See also the Table of Contents and the Index.

Copyright © 1989-1996 by P.J. Plauger and Jim Brodie. All rights reserved.

Expressions

You write expressions to determine values, to alter values stored in objects, and to call functions that
perform input and output. In fact, you express all computations in the program by writing expressions.
The translator must evaluate some of the expressions you write to determine properties of the program.
The translator or the target environment must evaluate other expressions prior to program startup to
determine the initial values stored in objects with static duration. The program evaluates the remaining
expressions when it executes.

This document describes briefly just those aspect of expressions most relevant to the use of the Standard
C library:

An address constant expression specifies a value that has a pointer type and that the translator or target
environment can determine prior to program startup.

A constant expression specifies a value that the translator or target environment can determine prior to
program startup.

An integer constant expression specifies a value that has an integer type and that the translator can
determine at the point in the program where you write the expression. (You cannot write a function call,
assigning operator, or comma operator except as part of the operand of a sizeof operator.) In addition, you
must write only subexpressions that have integer type. You can, however, write a floating-point constant
as the operand of an integer type cast operator.

An lvalue expression An lvalue expression designates an object that has an object type other than an
array type. Hence, you can access the value stored in the object. A modifiable lvalue expression
designates an object that has an object type other than an array type or a const type. Hence, you can alter
the value stored in the object. You can also designate objects with an lvalue expression that has an array
type or an incomplete type, but you can only take the address of such an expression.

Promoting occurs for an expression whose integer type is not one of the ``computational'' types. Except
when it is the operand of the sizeof operator, an integer rvalue expression has one of four types: int,
unsigned int, long, or unsigned long. When you write an expression in an rvalue context and the
expression has an integer type that is not one of these types, the translator promotes its type to one of
these. If all of the values representable in the original type are also representable as type int, then the
promoted type is int. Otherwise, the promoted type is unsigned int. Thus, for signed char, short, and any
signed bitfield type, the promoted type is int. For each of the remaining integer types (char, unsigned
char, unsigned short, any plain bitfield type, or any unsigned bitfield type), the effect of these rules is to
favor promoting to int wherever possible, but to promote to unsigned int if necessary to preserve the
original value in all possible cases.

An rvalue expression is an expression whose value can be determined only when the program executes.
The term also applies to expressions which need not be determined until program execution.

http://www.dinkumware.com/

You use the sizeof operator, as in the expression sizeof X to determine the size in bytes of an object
whose type is the type of X. The translator uses the expression you write for X only to determine a type; it
is not evaluated.

A void expression has type void.

See also the Table of Contents and the Index.

Copyright © 1989-1996 by P.J. Plauger and Jim Brodie. All rights reserved.

<algorithm>

adjacent_find · binary_search · copy · copy_backward · count · count_if
· equal · equal_range · fill · fill_n · find · find_end · find_first_of
· find_if · for_each · generate · generate_n · includes · inplace_merge
· iter_swap · lexicographical_compare · lower_bound · make_heap · max ·
max_element · merge · min · min_element · mismatch · next_permutation ·
nth_element · partial_sort · partial_sort_copy · partition · pop_heap ·
prev_permutation · push_heap · random_shuffle · remove · remove_copy ·
remove_copy_if · remove_if · replace · replace_copy · replace_copy_if ·
replace_if · reverse · reverse_copy · rotate · rotate_copy · search ·
search_n · set_difference · set_intersection · set_symmetric_difference
· set_union · sort · sort_heap · stable_partition · stable_sort · swap ·
swap_ranges · transform · unique · unique_copy · upper_bound

namespace std {
template<class InIt, class Fun>
 Fun for_each(InIt first, InIt last, Fun f);
template<class InIt, class T>
 InIt find(InIt first, InIt last, const T& val);
template<class InIt, class Pred>
 InIt find_if(InIt first, InIt last, Pred pr);
template<class FwdIt1, class FwdIt2>
 FwdIt1 find_end(FwdIt1 first1, FwdIt1 last1,
 FwdIt2 first2, FwdIt2 last2);
template<class FwdIt1, class FwdIt2, class Pred>
 FwdIt1 find_end(FwdIt1 first1, FwdIt1 last1,
 FwdIt2 first2, FwdIt2 last2, Pred pr);
template<class FwdIt1, class FwdIt2>
 FwdIt1 find_first_of(FwdIt1 first1, FwdIt1 last1,
 FwdIt2 first2, FwdIt2 last2);
template<class FwdIt1, class FwdIt2, class Pred>
 FwdIt1 find_first_of(FwdIt1 first1, FwdIt1 last1,
 FwdIt2 first2, FwdIt2 last2, Pred pr);
template<class FwdIt>
 FwdIt adjacent_find(FwdIt first, FwdIt last);
template<class FwdIt, class Pred>
 FwdIt adjacent_find(FwdIt first, FwdIt last, Pred pr);

http://www.dinkumware.com/

template<class InIt, class T, class Dist>
 iterator_traits<InIt>::distance_type count(InIt first, InIt last,
 const T& val, Dist& n);
template<class InIt, class Pred, class Dist>
 iterator_traits<InIt>::distance_type count_if(InIt first, InIt last,
 Pred pr, Dist& n);
template<class InIt1, class InIt2>
 pair<InIt1, InIt2> mismatch(InIt1 first, InIt1 last, InIt2 x);
template<class InIt1, class InIt2, class Pred>
 pair<InIt1, InIt2> mismatch(InIt1 first, InIt1 last,
 InIt2 x, Pred pr);
template<class InIt1, class InIt2>
 bool equal(InIt1 first, InIt1 last, InIt2 x);
template<class InIt1, class InIt2, class Pred>
 bool equal(InIt1 first, InIt1 last, InIt2 x, Pred pr);
template<class FwdIt1, class FwdIt2>
 FwdIt1 search(FwdIt1 first1, FwdIt1 last1,
 FwdIt2 first2, FwdIt2 last2);
template<class FwdIt1, class FwdIt2, class Pred>
 FwdIt1 search(FwdIt1 first1, FwdIt1 last1,
 FwdIt2 first2, FwdIt2 last2, Pred pr);
template<class FwdIt, class Dist, class T>
 FwdIt search_n(FwdIt first, FwdIt last,
 Dist n, const T& val);
template<class FwdIt, class Dist, class T, class Pred>
 FwdIt search_n(FwdIt first, FwdIt last,
 Dist n, const T& val, Pred pr);
template<class InIt, class OutIt>
 OutIt copy(InIt first, InIt last, OutIt x);
template<class BidIt1, class BidIt2>
 BidIt2 copy_backward(BidIt1 first, BidIt1 last, BidIt2 x);
template<class T>
 void swap(T& x, T& y);
template<class FwdIt1, class FwdIt2>
 FwdIt2 swap_ranges(FwdIt1 first, FwdIt1 last, FwdIt2 x);
template<class FwdIt1, class FwdIt2>
 void iter_swap(FwdIt1 x, FwdIt2 y);
template<class InIt, class OutIt, class Unop>
 OutIt transform(InIt first, InIt last, OutIt x, Unop uop);
template<class InIt1, class InIt2, class OutIt, class Binop>
 OutIt transform(InIt1 first1, InIt1 last1, InIt2 first2,
 OutIt x, Binop bop);
template<class FwdIt, class T>
 void replace(FwdIt first, FwdIt last,

 const T& vold, const T& vnew);
template<class FwdIt, class Pred, class T>
 void replace_if(FwdIt first, FwdIt last,
 Pred pr, const T& val);
template<class InIt, class OutIt, class T>
 OutIt replace_copy(InIt first, InIt last, OutIt x,
 const T& vold, const T& vnew);
template<class InIt, class OutIt, class Pred, class T>
 OutIt replace_copy_if(InIt first, InIt last, OutIt x,
 Pred pr, const T& val);
template<class FwdIt, class T>
 void fill(FwdIt first, FwdIt last, const T& x);
template<class OutIt, class Size, class T>
 void fill_n(OutIt first, Size n, const T& x);
template<class FwdIt, class Gen>
 void generate(FwdIt first, FwdIt last, Gen g);
template<class OutIt, class Pred, class Gen>
 void generate_n(OutIt first, Dist n, Gen g);
template<class FwdIt, class T>
 FwdIt remove(FwdIt first, FwdIt last, const T& val);
template<class FwdIt, class Pred>
 FwdIt remove_if(FwdIt first, FwdIt last, Pred pr);
template<class InIt, class OutIt, class T>
 OutIt remove_copy(InIt first, InIt last, OutIt x, const T& val);
template<class InIt, class OutIt, class Pred>
 OutIt remove_copy_if(InIt first, InIt last, OutIt x, Pred pr);
template<class FwdIt>
 FwdIt unique(FwdIt first, FwdIt last);
template<class FwdIt, class Pred>
 FwdIt unique(FwdIt first, FwdIt last, Pred pr);
template<class InIt, class OutIt>
 OutIt unique_copy(InIt first, InIt last, OutIt x);
template<class InIt, class OutIt, class Pred>
 OutIt unique_copy(InIt first, InIt last, OutIt x, Pred pr);
template<class BidIt>
 void reverse(BidIt first, BidIt last);
template<class BidIt, class OutIt>
 OutIt reverse_copy(BidIt first, BidIt last, OutIt x);
template<class FwdIt>
 void rotate(FwdIt first, FwdIt middle, FwdIt last);
template<class FwdIt, class OutIt>
 OutIt rotate_copy(FwdIt first, FwdIt middle, FwdIt last, OutIt x);
template<class RanIt>
 void random_shuffle(RanIt first, RanIt last);

template<class RanIt, class Fun>
 void random_shuffle(RanIt first, RanIt last, Fun& f);
template<class BidIt, class Pred>
 BidIt partition(BidIt first, BidIt last, Pred pr);
template<class FwdIt, class Pred>
 FwdIt stable_partition(FwdIt first, FwdIt last, Pred pr);
template<class RanIt>
 void sort(RanIt first, RanIt last);
template<class RanIt, class Pred>
 void sort(RanIt first, RanIt last, Pred pr);
template<class BidIt>
 void stable_sort(BidIt first, BidIt last);
template<class BidIt, class Pred>
 void stable_sort(BidIt first, BidIt last, Pred pr);
template<class RanIt>
 void partial_sort(RanIt first, RanIt middle, RanIt last);
template<class RanIt, class Pred>
 void partial_sort(RanIt first, RanIt middle, RanIt last, Pred pr);
template<class InIt, class RanIt>
 RanIt partial_sort_copy(InIt first1, InIt last1,
 RanIt first2, RanIt last2);
template<class InIt, class RanIt, class Pred>
 RanIt partial_sort_copy(InIt first1, InIt last1,
 RanIt first2, RanIt last2, Pred pr);
template<class RanIt>
 void nth_element(RanIt first, RanIt nth, RanIt last);
template<class RanIt, class Pred>
 void nth_element(RanIt first, RanIt nth, RanIt last, Pred pr);
template<class FwdIt, class T>
 FwdIt lower_bound(FwdIt first, FwdIt last, const T& val);
template<class FwdIt, class T, class Pred>
 FwdIt lower_bound(FwdIt first, FwdIt last, const T& val, Pred pr);
template<class FwdIt, class T>
 FwdIt upper_bound(FwdIt first, FwdIt last, const T& val);
template<class FwdIt, class T, class Pred>
 FwdIt upper_bound(FwdIt first, FwdIt last, const T& val, Pred pr);
template<class FwdIt, class T>
 pair<FwdIt, FwdIt> equal_range(FwdIt first, FwdIt last,
 const T& val);
template<class FwdIt, class T, class Pred>
 pair<FwdIt, FwdIt> equal_range(FwdIt first, FwdIt last,
 const T& val, Pred pr);
template<class FwdIt, class T>
 bool binary_search(FwdIt first, FwdIt last, const T& val);

template<class FwdIt, class T, class Pred>
 bool binary_search(FwdIt first, FwdIt last, const T& val,
 Pred pr);
template<class InIt1, class InIt2, class OutIt>
 OutIt merge(InIt1 first1, InIt1 last1,
 InIt2 first2, InIt2 last2, OutIt x);
template<class InIt1, class InIt2, class OutIt, class Pred>
 OutIt merge(InIt1 first1, InIt1 last1,
 InIt2 first2, InIt2 last2, OutIt x, Pred pr);
template<class BidIt>
 void inplace_merge(BidIt first, BidIt middle, BidIt last);
template<class BidIt, class Pred>
 void inplace_merge(BidIt first, BidIt middle, BidIt last, Pred pr);
template<class InIt1, class InIt2>
 bool includes(InIt1 first1, InIt1 last1,
 InIt2 first2, InIt2 last2);
template<class InIt1, class InIt2, class Pred>
 bool includes(InIt1 first1, InIt1 last1,
 InIt2 first2, InIt2 last2, Pred pr);
template<class InIt1, class InIt2, class OutIt>
 OutIt set_union(InIt1 first1, InIt1 last1,
 InIt2 first2, InIt2 last2, OutIt x);
template<class InIt1, class InIt2, class OutIt, class Pred>
 OutIt set_union(InIt1 first1, InIt1 last1,
 InIt2 first2, InIt2 last2, OutIt x, Pred pr);
template<class InIt1, class InIt2, class OutIt>
 OutIt set_intersection(InIt1 first1, InIt1 last1,
 InIt2 first2, InIt2 last2, OutIt x);
template<class InIt1, class InIt2, class OutIt, class Pred>
 OutIt set_intersection(InIt1 first1, InIt1 last1,
 InIt2 first2, InIt2 last2, OutIt x, Pred pr);
template<class InIt1, class InIt2, class OutIt>
 OutIt set_difference(InIt1 first1, InIt1 last1,
 InIt2 first2, InIt2 last2, OutIt x);
template<class InIt1, class InIt2, class OutIt, class Pred>
 OutIt set_difference(InIt1 first1, InIt1 last1,
 InIt2 first2, InIt2 last2, OutIt x, Pred pr);
template<class InIt1, class InIt2, class OutIt>
 OutIt set_symmetric_difference(InIt1 first1, InIt1 last1,
 InIt2 first2, InIt2 last2, OutIt x);
template<class InIt1, class InIt2, class OutIt, class Pred>
 OutIt set_symmetric_difference(InIt1 first1, InIt1 last1,
 InIt2 first2, InIt2 last2, OutIt x, Pred pr);
template<class RanIt>
 void push_heap(RanIt first, RanIt last);

template<class RanIt, class Pred>
 void push_heap(RanIt first, RanIt last, Pred pr);
template<class RanIt>
 void pop_heap(RanIt first, RanIt last);
template<class RanIt, class Pred>
 void pop_heap(RanIt first, RanIt last, Pred pr);
template<class RanIt>
 void make_heap(RanIt first, RanIt last);
template<class RanIt, class Pred>
 void make_heap(RanIt first, RanIt last, Pred pr);
template<class RanIt>
 void sort_heap(RanIt first, RanIt last);
template<class RanIt, class Pred>
 void sort_heap(RanIt first, RanIt last, Pred pr);
template<class T>
 const T& max(const T& x, const T& y);
template<class T, class Pred>
 const T& max(const T& x, const T& y, Pred pr);
template<class T>
 const T& min(const T& x, const T& y);
template<class T, class Pred>
 const T& min(const T& x, const T& y, Pred pr);
template<class FwdIt>
 FwdIt max_element(FwdIt first, FwdIt last);
template<class FwdIt, class Pred>
 FwdIt max_element(FwdIt first, FwdIt last, Pred pr);
template<class FwdIt>
 FwdIt min_element(FwdIt first, FwdIt last);
template<class FwdIt, class Pred>
 FwdIt min_element(FwdIt first, FwdIt last, Pred pr);
template<class InIt1, class InIt2>
 bool lexicographical_compare(InIt1 first1, InIt1 last1,
 InIt2 first2, InIt2 last2);
template<class InIt1, class InIt2, class Pred>
 bool lexicographical_compare(InIt1 first1, InIt1 last1,
 InIt2 first2, InIt2 last2, Pred pr);
template<class BidIt>
 bool next_permutation(BidIt first, BidIt last);
template<class BidIt, class Pred>
 bool next_permutation(BidIt first, BidIt last, Pred pr);
template<class BidIt>
 bool prev_permutation(BidIt first, BidIt last);
template<class BidIt, class Pred>
 bool prev_permutation(BidIt first, BidIt last, Pred pr);

 };

Include the STL standard header <algorithm> to define numerous template functions that perform
useful algorithms. The descriptions that follow make extensive use of common template parameter names
(or prefixes) to indicate the least powerful category of iterator permitted as an actual argument type:

OutIt -- to indicate an output iterator●

InIt -- to indicate an input iterator●

FwdIt -- to indicate a forward iterator●

BidIt -- to indicate a bidirectional iterator●

RanIt -- to indicate a random-access iterator●

The descriptions of these templates employ a number of conventions common to all algorithms.

adjacent_find

template<class FwdIt>
 FwdIt adjacent_find(FwdIt first, FwdIt last);
template<class FwdIt, class Pred>
 FwdIt adjacent_find(FwdIt first, FwdIt last, Pred pr);

The first template function determines the lowest N in the range [0, last - first) for which N +
1 != last - first and the predicate *(first + N) == *(first + N + 1) is true. It then
returns first + N. If no such value exists, the function returns last. It evaluates the predicate exactly
N + 1 times.

The second template function behaves the same, except that the predicate is pr(*(first + N),
*(first + N + 1)).

binary_search

template<class FwdIt, class T>
 bool binary_search(FwdIt first, FwdIt last, const T& val);
template<class FwdIt, class T, class Pred>
 bool binary_search(FwdIt first, FwdIt last, const T& val,
 Pred pr);

The first template function determines whether a value of N exists in the range [0, last - first)
for which *(first + N) has equivalent ordering to val, where the elements designated by iterators in
the range [first, last) form a sequence ordered by operator<. If so, th function returns true. If no
such value exists, it returns false.

If FwdIt is a random-access iterator type, the function evaluates the ordering predicate X < Y at most
ceil(log(last - first)) + 2 times. Otherwise, the function evaluates the predicate a number of
times proportional to last - first.

The second template function behaves the same, except that it replaces operator<(X, Y) with pr(X,
Y).

copy

template<class InIt, class OutIt>
 OutIt copy(InIt first, InIt last, OutIt x);

The template function evaluates *(x + N) = *(first + N)) once for each N in the range [0,
last - first), for strictly increasing values of N beginning with the lowest value. It then returns x +
N. If x and first designate regions of storage, x must not be in the range [first, last).

copy_backward

template<class BidIt1, class BidIt2>
 BidIt2 copy_backward(BidIt1 first, BidIt1 last, BidIt2 x);

The template function evaluates *(x - N - 1) = *(last - N - 1)) once for each N in the range
[0, last - first), for strictly decreasing values of N beginning with the highest value. It then
returns x - (last - first). If x and first designate regions of storage, x must not be in the
range [first, last).

count

template<class InIt, class T>
 iterator_traits<InIt>::distance_type count(InIt first, InIt last,
 const T& val);

The template function sets a count n to zero. It then executes ++n for each N in the range [0, last -
first) for which the predicate *(first + N) == val is true. The function returns n. It evaluates
the predicate exactly last - first times.

In this implementation, if a translator does not support partial specialization of templates, the return type is
size_t.

count_if

template<class InIt, class Pred, class Dist>
 iterator_traits<InIt>::distance_type count_if(InIt first, InIt last,
 Pred pr, Dist& n);

The template function sets a count n to zero. It then executes ++n for each N in the range [0, last -
first) for which the predicate pr(*(first + N)) is true. It evaluates the predicate exactly last -
first times.

In this implementation, if a translator does not support partial specialization of templates, the return type is

size_t.

equal

template<class InIt1, class InIt2>
 bool equal(InIt1 first, InIt1 last, InIt2 x);
template<class InIt1, class InIt2, class Pred>
 bool equal(InIt1 first, InIt1 last, InIt2 x, Pred pr);

The first template function returns true only if, for each N in the range [0, last1 - first1), the
predicate *(first1 + N) == *(first2 + N) is true. The function evaluates the predicate at most
once for each N.

The second template function behaves the same, except that the predicate is pr(*(first1 + N),
*(first2 + N)).

equal_range

template<class FwdIt, class T>
 pair<FwdIt, FwdIt> equal_range(FwdIt first, FwdIt last,
 const T& val);
template<class FwdIt, class T, class Pred>
 pair<FwdIt, FwdIt> equal_range(FwdIt first, FwdIt last,
 const T& val, Pred pr);

The first template function effectively returns pair(lower_bound(first, last, val),
upper_bound(first, last, val)), where the elements designated by iterators in the range
[first, last) form a sequence ordered by operator<. Thus, the function determines the largest
range of positions over which val can be inserted in the sequence and still preserve its ordering.

If FwdIt is a random-access iterator type, the function evaluates the ordering predicate X < Y at most
ceil(2 * log(last - first)) + 1. Otherwise, the function evaluates the predicate a number of
times proportional to last - first.

The second template function behaves the same, except that it replaces operator<(X, Y) with pr(X,
Y).

fill

template<class FwdIt, class T>
 void fill(FwdIt first, FwdIt last, const T& x);

The template function evaluates *(first + N) = x once for each N in the range [0, last -
first).

fill_n

template<class OutIt, class Size, class T>
 void fill_n(OutIt first, Size n, const T& x);

The template function evaluates *(first + N) = x once for each N in the range [0, n).

find

template<class InIt, class T>
 InIt find(InIt first, InIt last, const T& val);

The template function determines the lowest value of N in the range [0, last - first) for which the
predicate *(first + N) == val is true. It then returns first + N. If no such value exists, the
function returns last. It evaluates the predicate at most once for each N.

find_end

template<class FwdIt1, class FwdIt2>
 FwdIt1 find_end(FwdIt1 first1, FwdIt1 last1,
 FwdIt2 first2, FwdIt2 last2);
template<class FwdIt1, class FwdIt2, class Pred>
 FwdIt1 find_end(FwdIt1 first1, FwdIt1 last1,
 FwdIt2 first2, FwdIt2 last2, Pred pr);

The first template function determines the highest value of N in the range [0, last1 - first1 -
(last2 - first2)) such that for each M in the range [0, last2 - first2), the predicate
*(first1 + N + M) == *(first2 + N + M) is true. It then returns first1 + N. If no such
value exists, the function returns last1. It evaluates the predicate at most (last2 - first2) *
(last1 - first1 - (last2 - first2) + 1) times.

The second template function behaves the same, except that the predicate is pr(*(first1 + N + M),
*(first2 + N + M)).

find_first_of

template<class FwdIt1, class FwdIt2>
 FwdIt1 find_first_of(FwdIt1 first1, FwdIt1 last1,
 FwdIt2 first2, FwdIt2 last2);
template<class FwdIt1, class FwdIt2, class Pred>
 FwdIt1 find_first_of(FwdIt1 first1, FwdIt1 last1,
 FwdIt2 first2, FwdIt2 last2, Pred pr);

The first template function determines the lowest value of N in the range [0, last1 - first1) such
that for some M in the range [0, last2 - first2), the predicate *(first1 + N) ==
*(first2 + M) is true. It then returns first1 + N. If no such value exists, the function returns

last1. It evaluates the predicate at most (last1 - first1) * (last2 - first2) times.

The second template function behaves the same, except that the predicate is pr(*(first1 + N),
*(first2 + M)).

find_if

template<class InIt, class Pred>
 InIt find_if(InIt first, InIt last, Pred pr);

The template function determines the lowest value of N in the range [0, last - first) for which the
predicate pred(*(first + N)) is true. It then returns first + N. If no such value exists, the
function returns last. It evaluates the predicate at most once for each N.

for_each

template<class InIt, class Fun>
 Fun for_each(InIt first, InIt last, Fun f);

The template function evaluates f(*(first + N)) once for each N in the range [0, last -
first). It then returns f. The call f(*(first + N)) must not alter *(first + N).

generate

template<class FwdIt, class Gen>
 void generate(FwdIt first, FwdIt last, Gen g);

The template function evaluates *(first + N) = g() once for each N in the range [0, last -
first).

generate_n

template<class OutIt, class Pred, class Gen>
 void generate_n(OutIt first, Dist n, Gen g);

The template function evaluates *(first + N) = g() once for each N in the range [0, n).

includes

template<class InIt1, class InIt2>
 bool includes(InIt1 first1, InIt1 last1,
 InIt2 first2, InIt2 last2);
template<class InIt1, class InIt2, class Pred>
 bool includes(InIt1 first1, InIt1 last1,
 InIt2 first2, InIt2 last2, Pred pr);

The first template function determines whether a value of N exists in the range [0, last2 - first2)
such that, for each M in the range [0, last1 - first1), *(first + M) and *(first + N) do
not have equivalent ordering, where the elements designated by iterators in the ranges [first1,
last1) and [first2, last2) each form a sequence ordered by operator<. If so, the function
returns false. If no such value exists, it returns true. Thus, the function determines whether the ordered
sequence designated by iterators in the range [first2, last2) all have equivalent ordering with some
element designated by iterators in the range [first1, last1).

The function evaluates the predicate at most 2 * ((last1 - first1) + (last2 - first2))
- 1 times.

The second template function behaves the same, except that it replaces operator<(X, Y) with pr(X,
Y).

inplace_merge

template<class BidIt>
 void inplace_merge(BidIt first, BidIt middle, BidIt last);
template<class BidIt, class Pred>
 void inplace_merge(BidIt first, BidIt middle, BidIt last, Pred pr);

The first template function reorders the sequences designated by iterators in the ranges [first,
middle) and [middle, last), each ordered by operator<, to form a merged sequence of length
last - first beginning at first also ordered by operator<. The merge occurs without altering
the relative order of elements within either original sequence. Moreover, for any two elements from
different original sequences that have equivalent ordering, the element from the ordered range [first,
middle) precedes the other.

The function evaluates the ordering predicate X < Y at most ceil((last - first) * log(last
- first)) times. (Given enough temporary storage, it can evaluate the predicate at most (last -
first) - 1 times.)

The second template function behaves the same, except that it replaces operator<(X, Y) with pr(X,
Y).

iter_swap

template<class FwdIt1, class FwdIt2>
 void iter_swap(FwdIt1 x, FwdIt2 y);

The template function leaves the value originally stored in *y subsequently stored in *x, and the value
originally stored in *x subsequently stored in *y.

lexicographical_compare

template<class InIt1, class InIt2>
 bool lexicographical_compare(InIt1 first1, InIt1 last1,
 InIt2 first2, InIt2 last2);
template<class InIt1, class InIt2, class Pred>
 bool lexicographical_compare(InIt1 first1, InIt1 last1,
 InIt2 first2, InIt2 last2, Pred pr);

The first template function determines K, the number of elements to compare as the smaller of last1 -
first1 and last2 - first2. It then determines the lowest value of N in the range [0, K) for
which *(first1 + N) and *(first2 + N) do not have equivalent ordering. If no such value exists,
the function returns true only if K < (last2 - first2). Otherwise, it returns true only if
*(first1 + N) < *(first2 + N). Thus, the function returns true only if the sequence designated
by iterators in the range [first1, last1) is lexicographically less than the other sequence.

The function evaluates the ordering predicate X < Y at most 2 * K times.

The second template function behaves the same, except that it replaces operator<(X, Y) with pr(X,
Y).

lower_bound

template<class FwdIt, class T>
 FwdIt lower_bound(FwdIt first, FwdIt last, const T& val);
template<class FwdIt, class T, class Pred>
 FwdIt lower_bound(FwdIt first, FwdIt last, const T& val, Pred pr);

The first template function determines the lowest value of N in the range [0, last - first) such
that, for each M in the range [0, N) the predicate *(first + M) < val is true, where the elements
designated by iterators in the range [first, last) form a sequence ordered by operator<. It then
returns first + N. If no such value exists, the function returns last. Thus, the function determines the
lowest position before which val can be inserted in the sequence and still preserve its ordering.

If FwdIt is a random-access iterator type, the function evaluates the ordering predicate X < Y at most
ceil(log(last - first)) + 1 times. Otherwise, the function evaluates the predicate a number of
times proportional to last - first.

The second template function behaves the same, except that it replaces operator<(X, Y) with pr(X,
Y).

make_heap

template<class RanIt>
 void make_heap(RanIt first, RanIt last);
template<class RanIt, class Pred>
 void make_heap(RanIt first, RanIt last, Pred pr);

The first template function reorders the sequence designated by iterators in the range [first, last) to
form a heap ordered by operator<.

The function evaluates the ordering predicate X < Y at most 3 * (last - first) times.

The second template function behaves the same, except that it replaces operator<(X, Y) with pr(X,
Y).

max

template<class T>
 const T& max(const T& x, const T& y);
template<class T, class Pred>
 const T& max(const T& x, const T& y, Pred pr);

The first template function returns y if x < y. Otherwise it returns x. T need supply only a
single-argument constructor and a destructor.

The second template function behaves the same, except that it replaces operator<(X, Y) with pr(X,
Y).

max_element

template<class FwdIt>
 FwdIt max_element(FwdIt first, FwdIt last);
template<class FwdIt, class Pred>
 FwdIt max_element(FwdIt first, FwdIt last, Pred pr);

The first template function determines the lowest value of N in the range [0, last - first) such
that, for each M in the range [0, last - first) the predicate *(first + N) < *(first +
M) is false. It then returns first + N. Thus, the function determines the lowest position that contains the
largest value in the sequence.

The function evaluates the ordering predicate X < Y exactly max((last - first) - 1, 0) times.

The second template function behaves the same, except that it replaces operator<(X, Y) with pr(X,
Y).

merge

template<class InIt1, class InIt2, class OutIt>
 OutIt merge(InIt1 first1, InIt1 last1,
 InIt2 first2, InIt2 last2, OutIt x);
template<class InIt1, class InIt2, class OutIt, class Pred>
 OutIt merge(InIt1 first1, InIt1 last1,
 InIt2 first2, InIt2 last2, OutIt x, Pred pr);

The first template function determines K, the number of elements to copy as (last1 - first1) +
(last2 - first2). It then alternately copies two sequences, designated by iterators in the ranges
[first1, last1) and [first2, last2) and each ordered by operator<, to form a merged
sequence of length K beginning at x, also ordered by operator<. The function then returns x + K.

The merge occurs without altering the relative order of elements within either sequence. Moreover, for any
two elements from different sequences that have equivalent ordering, the element from the ordered range
[first1, last1) precedes the other. Thus, the function merges two ordered sequences to form
another ordered sequence.

If x and first1 designate regions of storage, the range [x, x + K) must not overlap the range
[first1, last1). If x and first2 designate regions of storage, the range [x, x + K) must not
overlap the range [first2, last2). The function evaluates the ordering predicate X < Y at most K
- 1 times.

The second template function behaves the same, except that it replaces operator<(X, Y) with pr(X,
Y).

min

template<class T>
 const T& min(const T& x, const T& y);
template<class T, class Pred>
 const T& min(const T& x, const T& y, Pred pr);

The first template function returns y if y < x. Otherwise it returns x. T need supply only a
single-argument constructor and a destructor.

The second template function behaves the same, except that it replaces operator<(X, Y) with pr(X,
Y).

min_element

template<class FwdIt>
 FwdIt min_element(FwdIt first, FwdIt last);
template<class FwdIt, class Pred>
 FwdIt min_element(FwdIt first, FwdIt last, Pred pr);

The first template function determines the lowest value of N in the range [0, last - first) such
that, for each M in the range [0, last - first) the predicate *(first + M) < *(first +
N) is false. It then returns first + N. Thus, the function determines the lowest position that contains the
smallest value in the sequence.

The function evaluates the ordering predicate X < Y exactly max((last - first) - 1, 0) times.

The second template function behaves the same, except that it replaces operator<(X, Y) with pr(X,
Y).

mismatch

template<class InIt1, class InIt2>
 pair<InIt1, InIt2> mismatch(InIt1 first, InIt1 last, InIt2 x);
template<class InIt1, class InIt2, class Pred>
 pair<InIt1, InIt2> mismatch(InIt1 first, InIt1 last,
 InIt2 x, Pred pr);

The first template function determines the lowest value of N in the range [0, last1 - first1) for
which the predicate !(*(first1 + N) == *(first2 + N)) is true. It then returns
pair(first1 + N, first2 + N). If no such value exists, N has the value last1 - first1.
The function evaluates the predicate at most once for each N.

The second template function behaves the same, except that the predicate is pr(*(first1 + N),
*(first2 + N)).

next_permutation

template<class BidIt>
 bool next_permutation(BidIt first, BidIt last);
template<class BidIt, class Pred>
 bool next_permutation(BidIt first, BidIt last, Pred pr);

The first template function determines a repeating sequence of permutations, whose initial permutation
occurs when the sequence designated by iterators in the range [first, last) is ordered by
operator<. (The elements are sorted in ascending order.) It then reorders the elements in the sequence,
by evaluating swap(X, Y) for the elements X and Y zero or more times, to form the next permutation.
The function returns true only if the resulting sequence is not the initial permutation. Otherwise, the
resultant sequence is the one next larger lexicographically than the original sequence. No two elements may
have equivalent ordering.

The function evaluates swap(X, Y) at most (last - first) / 2.

The second template function behaves the same, except that it replaces operator<(X, Y) with pr(X,
Y).

nth_element

template<class RanIt>
 void nth_element(RanIt first, RanIt nth, RanIt last);
template<class RanIt, class Pred>
 void nth_element(RanIt first, RanIt nth, RanIt last, Pred pr);

The first template function reorders the sequence designated by iterators in the range [first, last)
such that for each N in the range [0, nth - first) and for each M in the range [nth - first,
last - first) the predicate !(*(first + M) < *(first + N)) is true. Moreover, for N

equal to nth - first and for each M in the range (nth - first, last - first) the predicate
!(*(first + M) < *(first + N)) is true. Thus, if nth != last the element *nth is in its
proper position if elements of the entire sequence were sorted in ascending order, ordered by operator<.
Any elements before this one belong before it in the sort sequence, and any elements after it belong after it.

The function evaluates the ordering predicate X < Y a number of times proportional to last - first,
on average.

The second template function behaves the same, except that it replaces operator<(X, Y) with pr(X,
Y).

partial_sort

template<class RanIt>
 void partial_sort(RanIt first, RanIt middle, RanIt last);
template<class RanIt, class Pred>
 void partial_sort(RanIt first, RanIt middle, RanIt last, Pred pr);

The first template function reorders the sequence designated by iterators in the range [first, last)
such that for each N in the range [0, middle - first) and for each M in the range (N, last -
first) the predicate !(*(first + M) < *(first + N)) is true. Thus, the smallest middle -
first elements of the entire sequence are sorted in ascending order, ordered by operator<. The order
of the remaining elements is otherwise unspecified.

The function evaluates the ordering predicate X < Y at most ceil((last - first) *
log(middle - first)) times.

The second template function behaves the same, except that it replaces operator<(X, Y) with pr(X,
Y).

partial_sort_copy

template<class InIt, class RanIt>
 RanIt partial_sort_copy(InIt first1, InIt last1,
 RanIt first2, RanIt last2);
template<class InIt, class RanIt, class Pred>
 RanIt partial_sort_copy(InIt first1, InIt last1,
 RanIt first2, RanIt last2, Pred pr);

The first template function determines K, the number of elements to copy as the smaller of last1 -
first1 and last2 - first2. It then copies and reorders K of the sequence designated by iterators in
the range [first1, last1) such that the K elements copied to first2 are ordered by operator<.
Moreover, for each N in the range [0, K) and for each M in the range (0, last1 - first1)
corresponding to an uncopied element, the predicate !(*(first2 + M) < *(first1 + N)) is
true. Thus, the smallest K elements of the entire sequence designated by iterators in the range [first1,
last1) are copied and sorted in ascending order to the range [first2, first2 + K).

The function evaluates the ordering predicate X < Y at most ceil((last - first) * log(K))
times.

The second template function behaves the same, except that it replaces operator<(X, Y) with pr(X,
Y).

partition

template<class BidIt, class Pred>
 BidIt partition(BidIt first, BidIt last, Pred pr);

The template function reorders the sequence designated by iterators in the range [first, last) and
determines the value K such that for each N in the range [0, K) the predicate pr(*(first + N)) is
true, and for each N in the range [K, last - first) the predicate pr(*(first + N)) is false.
The function then returns first + K.

The predicate must not alter its operand. The function evaluates pr(*(first + N)) exactly last -
first times, and swaps at most (last - first) / 2 pairs of elements.

pop_heap

template<class RanIt>
 void pop_heap(RanIt first, RanIt last);
template<class RanIt, class Pred>
 void pop_heap(RanIt first, RanIt last, Pred pr);

The first template function reorders the sequence designated by iterators in the range [first, last) to
form a new heap, ordered by operator< and designated by iterators in the range [first, last -
1), leaving the original element at *first subsequently at *(last - 1). The original sequence must
designate an existing heap, also ordered by operator<. Thus, first != last must be true and
*(last - 1) is the element to remove from (pop off) the heap.

The function evaluates the ordering predicate X < Y at most ceil(2 * log(last - first))
times.

The second template function behaves the same, except that it replaces operator<(X, Y) with pr(X,
Y).

prev_permutation

template<class BidIt>
 bool prev_permutation(BidIt first, BidIt last);
template<class BidIt, class Pred>
 bool prev_permutation(BidIt first, BidIt last, Pred pr);

The first template function determines a repeating sequence of permutations, whose initial permutation
occurs when the sequence designated by iterators in the range [first, last) is the reverse of one

ordered by operator<. (The elements are sorted in descending order.) It then reorders the elements in the
sequence, by evaluating swap(X, Y) for the elements X and Y zero or more times, to form the next
permutation. The function returns true only if the resulting sequence is not the initial permutation.
Otherwise, the resultant sequence is the one next smaller lexicographically than the original sequence. No
two elements may have equivalent ordering.

The function evaluates swap(X, Y) at most (last - first) / 2.

The second template function behaves the same, except that it replaces operator<(X, Y) with pr(X,
Y).

push_heap

template<class RanIt>
 void push_heap(RanIt first, RanIt last);
template<class RanIt, class Pred>
 void push_heap(RanIt first, RanIt last, Pred pr);

The first template function reorders the sequence designated by iterators in the range [first, last) to
form a new heap ordered by operator<. Iterators in the range [first, last - 1) must designate
an existing heap, also ordered by operator<. Thus, first != last must be true and *(last -
1) is the element to add to (push on) the heap.

The function evaluates the ordering predicate X < Y at most ceil(log(last - first)) times.

The second template function behaves the same, except that it replaces operator<(X, Y) with pr(X,
Y).

random_shuffle

template<class RanIt>
 void random_shuffle(RanIt first, RanIt last);
template<class RanIt, class Fun>
 void random_shuffle(RanIt first, RanIt last, Fun& f);

The first template function evaluates swap(*(first + N), *(first + M)) once for each N in the
range [1, last - first), where M is a value from some uniform random distribution over the range
[0, N). Thus, the function randomly shuffles the order of elements in the sequence.

The second template function behaves the same, except that M is (Dist)f((Dist)N), where Dist is
the type iterator_traits:: distance_type.

remove

template<class FwdIt, class T>
 FwdIt remove(FwdIt first, FwdIt last, const T& val);

The template function effectively assigns first to X, then executes the statement:

if (!(*(first + N) == val))
 *X++ = *(first + N);

once for each N in the range [0, last - first). It then returns X. Thus, the function removes from
the sequence all elements for which the predicate *(first + N) == val is true, without altering the
relative order of remaining elements, and returns the iterator value that designates the end of the revised
sequence.

remove_copy

template<class InIt, class OutIt, class T>
 OutIt remove_copy(InIt first, InIt last, OutIt x, const T& val);

The template function effectively executes the statement:

if (!(*(first + N) == val))
 *x++ = *(first + N);

once for each N in the range [0, last - first). It then returns x. Thus, the function removes from
the sequence all elements for which the predicate *(first + N) == val is true, without altering the
relative order of remaining elements, and returns the iterator value that designates the end of the revised
sequence.

If x and first designate regions of storage, the range [x, x + (last - first)) must not overlap
the range [first, last).

remove_copy_if

template<class InIt, class OutIt, class Pred>
 OutIt remove_copy_if(InIt first, InIt last, OutIt x, Pred pr);

The template function effectively executes the statement:

if (!pr(*(first + N)))
 *x++ = *(first + N);

once for each N in the range [0, last - first). It then returns x. Thus, the function removes from
the sequence all elements for which the predicate pr(*(first + N)) is true, without altering the
relative order of remaining elements, and returns the iterator value that designates the end of the revised
sequence.

If x and first designate regions of storage, the range [x, x + (last - first)) must not overlap
the range [first, last).

remove_if

template<class FwdIt, class Pred>
 FwdIt remove_if(FwdIt first, FwdIt last, Pred pr);

The template function effectively assigns first to X, then executes the statement:

if (!pr(*(first + N)))
 *X++ = *(first + N);

once for each N in the range [0, last - first). It then returns X. Thus, the function removes from
the sequence all elements for which the predicate pr(*(first + N)) is true, without altering the
relative order of remaining elements, and returns the iterator value that designates the end of the revised
sequence.

replace

template<caass FwdIt, class T>
 void replace(FwdIt first, FwdIt last,
 const T& vold, const T& vnew);

The template function executes the statement:

if (*(first + N) == vold)
 *(first + N) = vnew;

once for each N in the range [0, last - first).

replace_copy

template<class InIt, class OutIt, class T>
 OutIt replace_copy(InIt first, InIt last, OutIt x,
 const T& vold, const T& vnew);

The template function executes the statement:

if (*(first + N) == vold)
 *(x + N) = vnew;
else
 *(x + N) = *(first + N)

once for each N in the range [0, last - first).

If x and first designate regions of storage, the range [x, x + (last - first)) must not overlap
the range [first, last).

replace_copy_if

template<class InIt, class OutIt, class Pred, class T>
 OutIt replace_copy_if(InIt first, InIt last, OutIt x,
 Pred pr, const T& val);

The template function executes the statement:

if (pr(*(first + N)))
 *(x + N) = vnew;
else
 *(x + N) = *(first + N)

once for each N in the range [0, last - first).

If x and first designate regions of storage, the range [x, x + (last - first)) must not overlap
the range [first, last).

replace_if

template<class FwdIt, class Pred, class T>
 void replace_if(FwdIt first, FwdIt last,
 Pred pr, const T& val);

The template function executes the statement:

if (pr(*(first + N)))
 *(first + N) = val;

once for each N in the range [0, last - first).

reverse

template<class BidIt>
 void reverse(BidIt first, BidIt last);

The template function evaluates swap(*(first + N), *(last - 1 - N) once for each N in the
range [0, (last - first) / 2). Thus, the function reverses the order of elements in the sequence.

reverse_copy

template<class BidIt, class OutIt>
 OutIt reverse_copy(BidIt first, BidIt last, OutIt x);

The template function evaluates *(x + N) = *(last - 1 - N) once for each N in the range [0,
last - first). It then returns x + (last - first). Thus, the function reverses the order of

elements in the sequence that it copies.

If x and first designate regions of storage, the range [x, x + (last - first)) must not overlap
the range [first, last).

rotate

template<class FwdIt>
 void rotate(FwdIt first, FwdIt middle, FwdIt last);

The template function leaves the value originally stored in *(first + (N + (middle - last))
% (last - first)) subsequently stored in *(first + N) for each N in the range [0, last -
first). Thus, if a ``left'' shift by one element leaves the element originally stored in *(first + (N +
1) % (last - first)) subsequently stored in *(first + N), then the function can be said to
rotate the sequence either left by middle - first elements or right by last - middle elements.
Both [first, middle) and [middle, last) must be valid ranges. The function swaps at most
last - first pairs of elements.

rotate_copy

template<class FwdIt, class OutIt>
 OutIt rotate_copy(FwdIt first, FwdIt middle, FwdIt last, OutIt x);

The template function evaluates *(x + N) = *(first + (N + (middle - first)) %
(last - first)) once for each N in the range [0, last - first). Thus, if a ``left'' shift by one
element leaves the element originally stored in *(first + (N + 1) % (last - first))
subsequently stored in *(first + N), then the function can be said to rotate the sequence either left by
middle - first elements or right by last - middle elements as it copies. Both [first,
middle) and [middle, last) must be valid ranges.

If x and first designate regions of storage, the range [x, x + (last - first)) must not overlap
the range [first, last).

search

template<class FwdIt1, class FwdIt2>
 FwdIt1 search(FwdIt1 first1, FwdIt1 last1,
 FwdIt2 first2, FwdIt2 last2);
template<class FwdIt1, class FwdIt2, class Pred>
 FwdIt1 search(FwdIt1 first1, FwdIt1 last1,
 FwdIt2 first2, FwdIt2 last2, Pred pr);

The first template function determines the lowest value of N in the range [0, (last1 - first1) -
(last2 - first2)) such that for each M in the range [0, last2 - first2), the predicate
*(first1 + N + M) == *(first2 + M) is true. It then returns first1 + N. If no such value
exists, the function returns last1. It evaluates the predicate at most (last2 - first2) * (last1

- first1) times.

The second template function behaves the same, except that the predicate is pr(*(first1 + N + M),
*(first2 + M)).

search_n

template<class FwdIt, class Dist, class T>
 FwdIt search_n(FwdIt first, FwdIt last,
 Dist n, const T& val);
template<class FwdIt, class Dist, class T, class Pred>
 FwdIt search_n(FwdIt first, FwdIt last,
 Dist n, const T& val, Pred pr);

The first template function determines the lowest value of N in the range [0, (last - first) - n)
such that for each M in the range [0, n), the predicate *(first + N + M) == val is true. It then
returns first + N. If no such value exists, the function returns last. It evaluates the predicate at most
n * (last - first) times.

The second template function behaves the same, except that the predicate is pr(*(first + N + M),
val).

set_difference

template<class InIt1, class InIt2, class OutIt>
 OutIt set_difference(InIt1 first1, InIt1 last1,
 InIt2 first2, InIt2 last2, OutIt x);
template<class InIt1, class InIt2, class OutIt, class Pred>
 OutIt set_difference(InIt1 first1, InIt1 last1,
 InIt2 first2, InIt2 last2, OutIt x, Pred pr);

The first template function alternately copies values from two sequences designated by iterators in the
ranges [first1, last1) and [first2, last2), both ordered by operator<, to form a merged
sequence of length K beginning at x, also ordered by operator<. The function then returns x + K.

The merge occurs without altering the relative order of elements within either sequence. Moreover, for two
elements from different sequences that have equivalent ordering that would otherwise be copied to adjacent
elements, the function copies only the element from the ordered range [first1, last1) and skips the
other. An element from one sequence that has equivalent ordering with no element from the other sequence
is copied from the ordered range [first1, last1) and skipped from the other. Thus, the function
merges two ordered sequences to form another ordered sequence that is effectively the difference of two
sets.

If x and first1 designate regions of storage, the range [x, x + K) must not overlap the range
[first1, last1). If x and first2 designate regions of storage, the range [x, x + K) must not
overlap the range [first2, last2). The function evaluates the ordering predicate X < Y at most 2
* ((last1 - first1) + (last2 - first2)) - 1 times.

The second template function behaves the same, except that it replaces operator<(X, Y) with pr(X,
Y).

set_intersection

template<class InIt1, class InIt2, class OutIt>
 OutIt set_intersection(InIt1 first1, InIt1 last1,
 InIt2 first2, InIt2 last2, OutIt x);
template<class InIt1, class InIt2, class OutIt, class Pred>
 OutIt set_intersection(InIt1 first1, InIt1 last1,
 InIt2 first2, InIt2 last2, OutIt x, Pred pr);

The first template function alternately copies values from two sequences designated by iterators in the
ranges [first1, last1) and [first2, last2), both ordered by operator<, to form a merged
sequence of length K beginning at x, also ordered by operator<. The function then returns x + K.

The merge occurs without altering the relative order of elements within either sequence. Moreover, for two
elements from different sequences that have equivalent ordering that would otherwise be copied to adjacent
elements, the function copies only the element from the ordered range [first1, last1) and skips the
other. An element from one sequence that has equivalent ordering with no element from the other sequence
is also skipped. Thus, the function merges two ordered sequences to form another ordered sequence that is
effectively the intersection of two sets.

If x and first1 designate regions of storage, the range [x, x + K) must not overlap the range
[first1, last1). If x and first2 designate regions of storage, the range [x, x + K) must not
overlap the range [first2, last2). The function evaluates the ordering predicate X < Y at most 2
* ((last1 - first1) + (last2 - first2)) - 1 times.

The second template function behaves the same, except that it replaces operator<(X, Y) with pr(X,
Y).

set_symmetric_difference

template<class InIt1, class InIt2, class OutIt>
 OutIt set_symmetric_difference(InIt1 first1, InIt1 last1,
 InIt2 first2, InIt2 last2, OutIt x);
template<class InIt1, class InIt2, class OutIt, class Pred>
 OutIt set_symmetric_difference(InIt1 first1, InIt1 last1,
 InIt2 first2, InIt2 last2, OutIt x, Pred pr);

The first template function alternately copies values from two sequences designated by iterators in the
ranges [first1, last1) and [first2, last2), both ordered by operator<, to form a merged
sequence of length K beginning at x, also ordered by operator<. The function then returns x + K.

The merge occurs without altering the relative order of elements within either sequence. Moreover, for two
elements from different sequences that have equivalent ordering that would otherwise be copied to adjacent
elements, the function copies neither element. An element from one sequence that has equivalent ordering

with no element from the other sequence is copied. Thus, the function merges two ordered sequences to
form another ordered sequence that is effectively the symmetric difference of two sets.

If x and first1 designate regions of storage, the range [x, x + K) must not overlap the range
[first1, last1). If x and first2 designate regions of storage, the range [x, x + K) must not
overlap the range [first2, last2). The function evaluates the ordering predicate X < Y at most 2
* ((last1 - first1) + (last2 - first2)) - 1 times.

The second template function behaves the same, except that it replaces operator<(X, Y) with pr(X,
Y).

set_union

template<class InIt1, class InIt2, class OutIt>
 OutIt set_union(InIt1 first1, InIt1 last1,
 InIt2 first2, InIt2 last2, OutIt x);
template<class InIt1, class InIt2, class OutIt, class Pred>
 OutIt set_union(InIt1 first1, InIt1 last1,
 InIt2 first2, InIt2 last2, OutIt x, Pred pr);

The first template function alternately copies values from two sequences designated by iterators in the
ranges [first1, last1) and [first2, last2), both ordered by operator<, to form a merged
sequence of length K beginning at x, also ordered by operator<. The function then returns x + K.

The merge occurs without altering the relative order of elements within either sequence. Moreover, for two
elements from different sequences that have equivalent ordering that would otherwise be copied to adjacent
elements, the function copies only the element from the ordered range [first1, last1) and skips the
other. Thus, the function merges two ordered sequences to form another ordered sequence that is
effectively the union of two sets.

If x and first1 designate regions of storage, the range [x, x + K) must not overlap the range
[first1, last1). If x and first2 designate regions of storage, the range [x, x + K) must not
overlap the range [first2, last2). The function evaluates the ordering predicate X < Y at most 2
* ((last1 - first1) + (last2 - first2)) - 1 times.

The second template function behaves the same, except that it replaces operator<(X, Y) with pr(X,
Y).

sort

template<class RanIt>
 void sort(RanIt first, RanIt last);
template<class RanIt, class Pred>
 void sort(RanIt first, RanIt last, Pred pr);

The first template function reorders the sequence designated by iterators in the range [first, last) to
form a sequence ordered by operator<. Thus, the elements are sorted in ascending order.

The function evaluates the ordering predicate X < Y at most ceil((last - first) * log(last
- first)) times.

The second template function behaves the same, except that it replaces operator<(X, Y) with pr(X,
Y).

sort_heap

template<class RanIt>
 void sort_heap(RanIt first, RanIt last);
template<class RanIt, class Pred>
 void sort_heap(RanIt first, RanIt last, Pred pr);

The first template function reorders the sequence designated by iterators in the range [first, last) to
form a sequence that is ordered by operator<. The original sequence must designate a heap, also
ordered by operator<. Thus, the elements are sorted in ascending order.

The function evaluates the ordering predicate X < Y at most ceil((last - first) * log(last
- first)) times.

The second template function behaves the same, except that it replaces operator<(X, Y) with pr(X,
Y).

stable_partition

template<class FwdIt, class Pred>
 FwdIt stable_partition(FwdIt first, FwdIt last, Pred pr);

The template function reorders the sequence designated by iterators in the range [first, last) and
determines the value K such that for each N in the range [0, K) the predicate pr(*(first + N)) is
true, and for each N in the range [K, last - first) the predicate pr(*(first + N)) is false. It
does so without altering the relative order of either the elements designated by indexes in the range [0,
K) or the elements designated by indexes in the range [K, last - first). The function then returns
first + K.

The predicate must not alter its operand. The function evaluates pr(*(first + N)) exactly last -
first times, and swaps at most ceil((last - first) * log(last - first)) pairs of
elements. (Given enough temporary storage, it can replace the swaps with at most 2 * (last -
first) assignments.)

stable_sort

template<class BidIt>
 void stable_sort(BidIt first, BidIt last);
template<class BidIt, class Pred>
 void stable_sort(BidIt first, BidIt last, Pred pr);

The first template function reorders the sequence designated by iterators in the range [first, last) to
form a sequence ordered by operator<. It does so without altering the relative order of elements that
have equivalent ordering. Thus, the elements are sorted in ascending order.

The function evaluates the ordering predicate X < Y at most ceil((last - first) *
log2(last - first)) times. (Given enough temporary storage, it can evaluate the predicate at most
ceil((last - first) * log(last - first)) times.)

The second template function behaves the same, except that it replaces operator<(X, Y) with pr(X,
Y).

swap

template<class T>
 void swap(T& x, T& y);

The template function leaves the value originally stored in y subsequently stored in x, and the value
originally stored in x subsequently stored in y.

swap_ranges

template<class FwdIt1, class FwdIt2>
 FwdIt2 swap_ranges(FwdIt1 first, FwdIt1 last, FwdIt2 x);

The template function evaluates swap(*(first + N), *(x + N)) once for each N in the range
[0, last - first). It then returns x + (last - first). If x and first designate regions of
storage, the range [x, x + (last - first)) must not overlap the range [first, last).

transform

template<class InIt, class OutIt, class Unop>
 OutIt transform(InIt first, InIt last, OutIt x, Unop uop);
template<class InIt1, class InIt2, class OutIt, class Binop>
 OutIt transform(InIt1 first1, InIt1 last1, InIt2 first2,
 OutIt x, Binop bop);

The first template function evaluates *(x + N) = uop(*(first + N)) once for each N in the range
[0, last - first). It then returns x + (last - first). The call uop(*(first + N))
must not alter *(first + N).

The second template function evaluates *(x + N) = bop(*(first1 + N), *(first2 + N))
once for each N in the range [0, last1 - first1). It then returns x + (last1 - first1).
The call bop(*(first1 + N), *(first2 + N)) must not alter either *(first1 + N) or
*(first2 + N).

unique

template<class FwdIt>
 FwdIt unique(FwdIt first, FwdIt last);
template<class FwdIt, class Pred>
 FwdIt unique(FwdIt first, FwdIt last, Pred pr);

The first template function effectively assigns first to X, then executes the statement:

if (N == 0 || !(*(first + N) == V))
 V = *(first + N), *X++ = V;

once for each N in the range [0, last - first). It then returns X. Thus, the function repeatedly
removes from the sequence the second of a pair of elements for which the predicate *(first + N) ==
*(first + N - 1) is true, until only the first of a sequence of equal elements survives. It does so
without altering the relative order of remaining elements, and returns the iterator value that designates the
end of the revised sequence. The function evaluates the predicate at most last - first times.

The second template function behaves the same, except that it executes the statement:

if (N == 0 || !pr(*(first + N), V))
 V = *(first + N), *X++ = V;

unique_copy

template<class InIt, class OutIt>
 OutIt unique_copy(InIt first, InIt last, OutIt x);
template<class InIt, class OutIt, class Pred>
 OutIt unique_copy(InIt first, InIt last, OutIt x, Pred pr);

The first template function effectively executes the statement:

if (N == 0 || !(*(first + N) == V))
 V = *(first + N), *x++ = V;

once for each N in the range [0, last - first). It then returns x. Thus, the function repeatedly
removes from the sequence it copies the second of a pair of elements for which the predicate *(first +
N) == *(first + N - 1) is true, until only the first of a sequence of equal elements survives. It
does so without altering the relative order of remaining elements, and returns the iterator value that
designates the end of the copied sequence.

If x and first designate regions of storage, the range [x, x + (last - first)) must not overlap
the range [first, last).

The second template function behaves the same, except that it executes the statement:

if (N == 0 || !pr(*(first + N), V))

 V = *(first + N), *x++ = V;

upper_bound

template<class FwdIt, class T>
 FwdIt upper_bound(FwdIt first, FwdIt last, const T& val);
template<class FwdIt, class T, class Pred>
 FwdIt upper_bound(FwdIt first, FwdIt last, const T& val, Pred pr);

The first template function determines the highest value of N in the range [0, last - first) such
that, for each M in the range [0, N) the predicate *(first + M) < val is true, where the elements
designated by iterators in the range [first, last) form a sequence ordered by operator<. It then
returns first + N. If no such value exists, the function returns last. Thus, the function determines the
highest position before which val can be inserted in the sequence and still preserve its ordering.

If FwdIt is a random-access iterator type, the function evaluates the ordering predicate X < Y at most
ceil(log(last - first)) + 1 times. Otherwise, the function evaluates the predicate a number of
times proportional to last - first.

The second template function behaves the same, except that it replaces operator<(X, Y) with pr(X,
Y).

See also the Table of Contents and the Index.

Copyright © 1992-1996 by P.J. Plauger. Portions derived from work copyright © 1994 by
Hewlett-Packard Company. All rights reserved.

<bitset>

namespace std {
template<size_t N>
 class bitset;
// TEMPLATE FUNCTIONS
template<class E, class T, size_t N>
 basic_istream<E, T>& operator>>(basic_istream<E, T>& is,
 bitset<N>& x);
template<class E, class T, size_t N>
 basic_ostream<E, T>& operator<<(basic_ostream<E, T>& os,
 const bitset<N>& x);
 };

Include the standard header <bitset> to define the template class bitset and two supporting
templates.

bitset

any · at · bitset · bitset_size · count · element_type · flip · none ·
operator!= · operator&= · operator<< · operator<<= · operator== ·
operator>> · operator>>= · operator[] · operator^= · operator|= ·
operator~ · reference · reset · set · size · test · to_string ·
to_ulong

template<size_t N>
 class bitset {
public:
 typedef bool element_type;
 class reference;
 bitset();
 bitset(unsigned long val);
 template<class E, class T, class A>
 explicit bitset(const string<E, T, A>& str,
 string<E, T, A>size_type pos = 0,
 string<E, T, A>size_type n = string<E, T, A>::npos);
 bitset<N>& operator&=(const bitset<N>& rhs);

http://www.dinkumware.com/

 bitset<N>& operator|=(const bitset<N>& rhs);
 bitset<N>& operator^=(const bitset<N>& rhs);
 bitset<N>& operator<<=(const bitset<N>& pos);
 bitset<N>& operator>>=(const bitset<N>& pos);
 bitset<N>& set();
 bitset<N>& set(size_t pos, bool val = true);
 bitset<N>& reset();
 bitset<N>& reset(size_t pos);
 bitset<N>& flip();
 bitset<N>& flip(size_t pos);
 reference operator[](size_t pos);
 bool operator[](size_t pos) const;
 reference at(size_t pos);
 bool at(size_t pos) const;
 unsigned long to_ulong() const;
 template<class E, class T, class A>
 string to_string() const;
 size_t count() const;
 size_t size() const;
 bool operator==(const bitset<N>& rhs) const;
 bool operator!=(const bitset<N>& rhs) const;
 bool test(size_t pos) const;
 bool any() const;
 bool none() const;
 bitset<N> operator<<(size_t pos) const;
 bitset<N> operator>>(size_t pos) const;
 bitset<N> operator~();
 static const size_t bitset_size = N;
 };

The template class describes an object that stores a sequence of N bits. A bit is set if its value is 1, reset
if its value is 0. To flip a bit is to change its value from 1 to 0 or from 0 to 1. When converting between
an object of class bitset<N> and an object of some integral type, bit position j corresponds to the bit
value 1 << j. The integral value corresponding to two or more bits is the sum of their bit values.

bitset::any

bool any() const;

The member function returns true if any bit is set in the bit sequence.

bitset::at

bool at(size_type pos) const;
reference at(size_type pos);

The member function returns an object of class reference, which designates the bit at position pos, if
the object can be modified. Otherwise, it returns the value of the bit at position pos in the bit sequence.
If that position is invalid, the function throws an object of class out_of_range.

bitset::bitset

bitset();
bitset(unsigned long val);
template<class E, class T, class A>
 explicit bitset(const string<E, T, A>& str,
 string<E, T, A>size_type pos = 0,
 string<E, T, A>size_type n = string<E, T, A>::npos);

The first constructor resets all bits in the bit sequence. The second constructor sets only those bits at
position j for which val & 1 << j is nonzero.

The third constructor determines the initial bit values from elements of a string determined from str. If
str.size() < pos, the constructor throws out_of_range. Otherwise, the effective length of the
string rlen is the smaller of n and str.size() - pos. If any of the rlen elements beginning at
position pos is other than 0 or 1, the constructor throws invalid_argument. Otherwise, the
constructor sets only those bits at position j for which the element at position pos + j is 1.

In this implementation, if a translator does not support member template functions, the template is
replaced by:

explicit bitset(const string& str,
 size_t pos = 0, size_t n = -1);

bitset::bitset_size

static const size_t bitset_size = N;

The const static member is initialized to the template parameter N.

bitset::count

size_t count() const;

The member function returns the number of bits set in the bit sequence.

bitset::element_type

typedef bool element_type;

The type is a synonyn for bool.

bitset::flip

bitset<N>& flip();
bitset<N>& flip(size_t pos);

The first member function flips all bits in the bit sequence, then returns *this. The second member
function throws out_of_range if size() <= pos. Otherwise, it flips the bit at position pos, then
returns *this.

bitset::none

bool none() const;

The member function returns true if none of the bits are set in the bit sequence.

bitset::operator!=

bool operator !=(const bitset<N>& rhs) const;

The member operator function returns true only if the bit sequence stored in *this differs from the one
stored in rhs.

bitset::operator&=

bitset<N>& operator&=(const bitset<N>& rhs);

The member operator function replaces each element of the bit sequence stored in *this with the
logical AND of its previous value and the corresponding bit in rhs. The function returns *this.

bitset::operator<<

bitset<N> operator<<(const bitset<N>& pos);

The member operator function returns bitset(*this) <<= pos.

bitset::operator<<=

bitset<N>& operator<<=(const bitset<N>& pos);

The member operator function replaces each element of the bit sequence stored in *this with the
element pos positions earlier in the sequence. If no such earlier element exists, the function clears the
bit. The function returns *this.

bitset::operator==

bool operator ==(const bitset<N>& rhs) const;

The member operator function returns true only if the bit sequence stored in *this is the same as the
one stored in rhs.

bitset::operator>>

bitset<N> operator>>(const bitset<N>& pos);

The member operator function returns bitset(*this) >>= pos.

bitset::operator>>=

bitset<N>& operator>>=(const bitset<N>& pos);

The member function replaces each element of the bit sequence stored in *this with the element pos
positions later in the sequence. If no such later element exists, the function clears the bit. The function
returns *this.

bitset::operator[]

bool operator[](size_type pos) const;
reference operator(size_type pos);

The member function returns an object of class reference, which designates the bit at position pos, if
the object can be modified. Otherwise, it returns the value of the bit at position pos in the bit sequence.
If that position is invalid, the behavior is undefined.

bitset::operator^=

bitset<N>& operator^=(const bitset<N>& rhs);

The member operator function replaces each element of the bit sequence stored in *this with the
logical EXCLUSIVE OR of its previous value and the corresponding bit in rhs. The function returns
*this.

bitset::operator|=

bitset<N>& operator|=(const bitset<N>& rhs);

The member operator function replaces each element of the bit sequence stored in *this with the
logical OR of its previous value and the corresponding bit in rhs. The function returns *this.

bitset::operator~

bitset<N> operator~();

The member operator function returns bitset(*this).flip().

bitset::reference

class reference {
public:
 reference& operator=(bool b};
 reference& operator=(const reference& x);
 bool operator~() const;
 operator bool() const;
 reference& flip();
 };

The member class describes an object that designates an individual bit within the bit sequence. Thus, for
b an object of type bool, x and y objects of type bitset<N>, and i and j valid positions within such
an object, the member functions of class reference ensure that (in order):

x[i] = b stores b at bit position i in x●

x[i] = y[j] stores the value of the bit y[j] at bit position i in x●

b = ~x[i] stores the flipped value of the bit x[i] in b●

b = x[i] stores the value of the bit x[i] in b●

x[i].flip() stores the flipped value of the bit x[i] back at bit position i in x●

bitset::reset

bitset<N>& reset();
bitset<N>& reset(size_t pos);

The first member function resets all bits in the bit sequence, then returns *this. The second member
function throws out_of_range if size() <= pos. Otherwise, it resets the bit at position pos,
then returns *this.

bitset::set

bitset<N>& set();
bitset<N>& set(size_t pos, bool val = true);

The first member function resets all bits in the bit sequence, then returns *this. The second member
function throws out_of_range if size() <= pos. Otherwise, it stores val in the bit at position
pos, then returns *this.

bitset::size

size_t size() const;

The member function returns N.

bitset::test

bool test(size_t pos, bool val = true);

The member function throws out_of_range if size() <= pos. Otherwise, it returns true only if
the bit at position pos is set.

bitset::to_string

template<class E, class T, class A>
 string to_string() const;

The member function constructs str, an object of class string. For each bit in the bit sequence, the
function appends 1 if the bit is set, otherwise 0. The last element appended to str corresponds to bit
position zero. The function returns str.

In this implementation, if a translator does not support member template functions, the template is
replaced by:

string to_string() const;

bitset::to_ulong

unsigned long to_ulong() const;

The member function throws overflow_error if any bit in the bit sequence has a bit value that
cannot be represented as a value of type unsigned long. Otherwise, it returns the sum of the bit values in
the bit sequence.

operator<<

template<class E, class T, size_t N>
 basic_ostream<E, T>& operator<<(basic_ostream<E, T>& os,
 const bitset<N>& x);

The template function overloads operator<< to insert a text representation of the bit sequence in os.
It effectively executes os << x.to_string<E, char_traits<E>, allocator<E> >(),
then returns os.

operator>>

template<class E, class T, size_t N>
 basic_istream<E, T>& operator>>(basic_istream<E, T>&
 is, bitset<N>& x);

The template function overloads operator>> to store in x the value bitset(str), where str is an
object of type basic_string<E, T, allocator<E> >& extracted from is. The function
extracts elements and appends them to str until:

N elements have been extracted and stored●

end-of-file occurs on the input sequence●

the next input element is neither 0 not 1, in which case the input element is not extracted●

If the function stores no characters in str, it calls is.setstate(ios_base::failbit). In any
case, it returns is.

See also the Table of Contents and the Index.

Copyright © 1992-1996 by P.J. Plauger. All rights reserved.

<complex>

abs · arg · complex · complex<double> · complex<float> · complex<long
double> · conjg · cos · cosh · exp · imag · log · log10 · norm ·
operator!= · operator* · operator+ · operator- · operator/ · operator<<
· operator== · operator>> · polar · pow · real · sin · sinh · sqrt ·
__STD_COMPLEX

namespace std {
#define __STD_COMPLEX
// TEMPLATE CLASSES
template<class T>
 class complex;
class complex<float>;
class complex<double>;
class complex<long double>;
// TEMPLATE FUNCTIONS
template<class T>
 complex<T> operator+(const complex<T>& lhs, const complex<T>& rhs);
template<class T>
 complex<T> operator+(const complex<T>& lhs, const T& rhs);
template<class T>
 complex<T> operator+(const T& lhs, const complex<T>& rhs);
template<class T>
 complex<T> operator-(const complex<T>& lhs, const complex<T>& rhs);
template<class T>
 complex<T> operator-(const complex<T>& lhs, const T& rhs);
template<class T>
 complex<T> operator-(const T& lhs, const complex<T>& rhs);
template<class T>
 complex<T> operator*(const complex<T>& lhs, const complex<T>& rhs);
template<class T>
 complex<T> operator*(const complex<T>& lhs, const T& rhs);
template<class T>
 complex<T> operator*(const T& lhs, const complex<T>& rhs);
template<class T>
 complex<T> operator/(const complex<T>& lhs, const complex<T>& rhs);
template<class T>

http://www.dinkumware.com/

 complex<T> operator/(const complex<T>& lhs, const T& rhs);
template<class T>
 complex<T> operator/(const T& lhs, const complex<T>& rhs);
template<class T>
 complex<T> operator+(const complex<T>& lhs);
template<class T>
 complex<T> operator-(const complex<T>& lhs);
template<class T>
 bool operator==(const complex<T>& lhs, const complex<T>& rhs);
template<class T>
 bool operator==(const complex<T>& lhs, const T& rhs);
template<class T>
 bool operator==(const T& lhs, const complex<T>& rhs);
template<class T>
 bool operator!=(const complex<T>& lhs, const complex<T>& rhs);
template<class T>
 bool operator!=(const complex<T>& lhs, const T& rhs);
template<class T>
 bool operator!=(const T& lhs, const complex<T>& rhs);
template<class E, class Ti, class T>
 basic_istream<E, Ti>& operator>>(basic_istream<E, Ti>& is,
 complex<T>& x);
template<class E, class T, class U>
 basic_ostream<E, T>& operator<<(basic_ostream<E, T>& os,
 const complex<U>& x);
template<class T>
 T real(const complex<T>& x);
template<class T>
 T imag(const complex<T>& x);
template<class T>
 T abs(const complex<T>& x);
template<class T>
 T arg(const complex<T>& x);
template<class T>
 T norm(const complex<T>& x);
template<class T>
 complex<T> conjg(const complex<T>& x);
template<class T>
 complex<T> polar(const T& rho, const T& theta = 0);
template<class T>
 complex<T> cos(const complex<T>& x);
template<class T>
 complex<T> cosh(const complex<T>& x);

template<class T>
 complex<T> exp(const complex<T>& x);
template<class T>
 complex<T> log(const complex<T>& x);
template<class T>
 complex<T> log10(const complex<T>& x);
template<class T>
 complex<T> pow(const complex<T>& x, int y);
template<class T>
 complex<T> pow(const complex<T>& x, const T& y);
template<class T>
 complex<T> pow(const complex<T>& x, const complex<T>& y);
template<class T>
 complex<T> pow(const T& x, const complex<T>& y);
template<class T>
 complex<T> sin(const complex<T>& x);
template<class T>
 complex<T> sinh(const complex<T>& x);
template<class T>
 complex<T> sqrt(const complex<T>& x);
 };

Include the standard header <complex> to define template class complex and a host of supporting
template functions. Unless otherwise specified, functions that can return multiple values return an
imaginary part in the half-open interval (-pi, pi].

abs

template<class T>
 T abs(const complex<T>& x);

The template function returns the magnitude of x.

arg

template<class T>
 T arg(const complex<T>& x);

The template function returns the phase angle of x.

complex

template<class T>
 class complex {
public:
 complex(const T& re = 0, const T& im = 0);
 template<class U>
 complex(const complex<U>& x);
public:
 typedef T value_type;
 T real() const;
 T imag() const;
 template<class U>
 complex& operator=(const complex<U>& rhs);
 template<class U>
 complex& operator+=(const complex<U>& rhs);
 template<class U>
 complex& operator-=(const complex<U>& rhs);
 template<class U>
 complex& operator*=(const complex<U>& rhs);
 template<class U>
 complex& operator/=(const complex<U>& rhs);
 complex& operator=(const T& rhs);
 complex& operator+=(const T& rhs);
 complex& operator-=(const T& rhs);
 complex& operator*=(const T& rhs);
 complex& operator/=(const T& rhs);
 friend complex<T>
 operator+(const complex<T>& lhs, const T& rhs);
 friend complex<T>
 operator+(const T& lhs, const complex<T>& rhs);
 friend complex<T>
 operator-(const complex<T>& lhs, const T& rhs);
 friend complex<T>
 operator-(const T& lhs, const complex<T>& rhs);
 friend complex<T>
 operator*(const complex<T>& lhs, const T& rhs);
 friend complex<T>
 operator*(const T& lhs, const complex<T>& rhs);
 friend complex<T>
 operator/(const complex<T>& lhs, const T& rhs);
 friend complex<T>

 operator/(const T& lhs, const complex<T>& rhs);
 friend bool operator==(const complex<T>& lhs, const T& rhs);
 friend bool operator==(const T& lhs, const complex<T>& rhs);
 friend bool operator!=(const complex<T>& lhs, const T& rhs);
 friend bool operator!=(const T& lhs, const complex<T>& rhs);
 };

The template class describes an object that stores two objects of type T, one that represents the real part of
a complex number and one that represents the imaginary part. An object of class T:

has a public default constructor, destructor, copy constructor, and assignment operator -- with
conventional behavior

●

can be assigned integer or floating-point values, or type cast to such values -- with conventional
behavior

●

define the arithmetic operators defined for the floating-point types -- with conventional behavior●

Explicit specializations of template class complex exist for the three floating-point types. In this
implementation, all other types may be type cast to double for actual calculations, with the double results
assigned back to the stored objects of type T.

complex::complex

complex(const T& re = 0, const T& im = 0);
template<class U>
 complex(const complex<U>& x);

The first constructor initializes the stored real part to re and the stored imaginary part to im. The
template constructor initializes the stored real part to x.real() and the stored imaginary part to
x.imag().

In this implementation, if a translator does not support member template functions, the template is
replaced by:

complex(const complex& x);

which is the copy constructor.

complex::imag

T imag() const;

The member function returns the stored imaginary part.

complex::operator*=

template<class U>
 complex& operator*=(const complex<U>& rhs);
complex& operator*=(const T& rhs);

The template member function replaces the stored real and imaginary parts with those corresponding to
the complex product of *this and rhs. It then returns *this.

The second member function multiplies both the stored real part and the stored imaginary part with rhs.
It then returns *this.

In this implementation, if a translator does not support member template functions, the template is
replaced by:

complex& operator*=(const complex& rhs);

complex::operator+=

template<class U>
 complex& operator+=(const complex<U>& rhs);
complex& operator+=(const T& rhs);

The template member function replaces the stored real and imaginary parts with those corresponding to
the complex sum of *this and rhs. It then returns *this.

The second member function adds rhs to the stored real part. It then returns *this.

In this implementation, if a translator does not support member template functions, the template is
replaced by:

complex& operator+=(const complex& rhs);

complex::

template<class U>
 complex& operator-=(const complex<U>& rhs);
complex& operator-=(const T& rhs);

The template member function replaces the stored real and imaginary parts with those corresponding to
the complex difference of *this and rhs. It then returns *this.

The second member function subtracts rhs from the stored real part. It then returns *this.

In this implementation, if a translator does not support member template functions, the template is
replaced by:

complex& operator-=(const complex& rhs);

complex::operator/=

template<class U>
 complex& operator/=(const complex<U>& rhs);
complex& operator/=(const T& rhs);

The template member function replaces the stored real and imaginary parts with those corresponding to
the complex quotient of *this and rhs. It then returns *this.

The second member function multiplies both the stored real part and the stored imaginary part with rhs.
It then returns *this.

In this implementation, if a translator does not support member template functions, the template is
replaced by:

complex& operator/=(const complex& rhs);

complex::operator=

template<class U>
 complex& operator=(const complex<U>& rhs);
complex& operator=(const T& rhs);

The template member function replaces the stored real part with rhs.real() and the stored imaginary
part with rhs.imag(). It then returns *this.

The second member function replaces the stored real part with rhs and the stored imaginary part with
zero. It then returns *this.

In this implementation, if a translator does not support member template functions, the template is
replaced by:

complex& operator=(const complex& rhs);

which is the default assignment operator.

complex::real

T real() const;

The member function returns the stored real part.

complex::value_type

typedef T value_type;

The type is a synonym for the template parameter T.

complex<double>

class complex<double> {
public:
 complex(double re = 0, double im = 0);
 complex(const complex<float>& x);
 explicit complex(const complex<long double>& x);
// rest same as template class complex
 };

The explicitly specialized template class describes an object that stores two objects of type double, one
that represents the real part of a complex number and one that represents the imaginary part. The explicit
specialization differs only in the constructors it defines. The first constructor initializes the stored real part
to re and the stored imaginary part to im. The remaining two constructors initialize the stored real part to
x.real() and the stored imaginary part to x.imag().

complex<float>

class complex<float> {
public:
 complex(float re = 0, float im = 0);
 explicit complex(const complex<double>& x);
 explicit complex(const complex<long double>& x);
// rest same as template class complex
 };

The explicitly specialized template class describes an object that stores two objects of type float, one
that represents the real part of a complex number and one that represents the imaginary part. The explicit
specialization differs only in the constructors it defines. The first constructor initializes the stored real part
to re and the stored imaginary part to im. The remaining two constructors initialize the stored real part to
x.real() and the stored imaginary part to x.imag().

complex<long double>

class complex<long double> {
public:
 complex(long double re = 0, long double im = 0);
 complex(const complex<float>& x);
 complex(const complex<double>& x);
// rest same as template class complex
 };

The explicitly specialized template class describes an object that stores two objects of type long
double, one that represents the real part of a complex number and one that represents the imaginary
part. The explicit specialization differs only in the constructors it defines. The first constructor initializes
the stored real part to re and the stored imaginary part to im. The remaining two constructors initialize
the stored real part to x.real() and the stored imaginary part to x.imag().

conjg

template<class T>
 complex<T> conjg(const complex<T>& x);

The template function returns the conjugate of x.

cos

template<class T>
 complex<T> cos(const complex<T>& x);

The template function returns the cosine of x.

cosh

template<class T>
 complex<T> cosh(const complex<T>& x);

The template function returns the hyperbolic cosine of x.

exp

template<class T>
 complex<T> exp(const complex<T>& x);

The template function returns the exponential of x.

imag

template<class T>
 T imag(const complex<T>& x);

The template function returns the imaginary part of x.

log

template<class T>
 complex<T> log(const complex<T>& x);

The template function returns the logarithm of x. The branch cuts are along the negative real axis.

log10

template<class T>
 complex<T> log10(const complex<T>& x);

The template function returns the base 10 logarithm of x. The branch cuts are along the negative real axis.

norm

template<class T>
 T norm(const complex<T>& x);

The template function returns the squared magnitude of x.

operator!=

template<class T>
 bool operator!=(const complex<T>& lhs, const complex<T>& rhs);
template<class T>
 bool operator!=(const complex<T>& lhs, const T& rhs);
template<class T>
 bool operator!=(const T& lhs, const complex<T>& rhs);

The template operators each return true only if real(lhs) != real(rhs) || imag(lhs) !=
imag(rhs).

operator*

template<class T>
 complex<T> operator*(const complex<T>& lhs, const complex<T>& rhs);
template<class T>
 complex<T> operator*(const complex<T>& lhs, const T& rhs);
template<class T>
 complex<T> operator*(const T& lhs, const complex<T>& rhs);

The template operators each convert both operands to type complex<T>, then return the complex
product of the converted lhs and rhs.

operator+

template<class T>
 complex<T> operator+(const complex<T>& lhs, const complex<T>& rhs);
template<class T>
 complex<T> operator+(const complex<T>& lhs, const T& rhs);
template<class T>
 complex<T> operator+(const T& lhs, const complex<T>& rhs);
template<class T>
 complex<T> operator+(const complex<T>& lhs);

The first three template operators each convert both operands to type complex<T>, then return the
complex sum of the converted lhs and rhs.

The last template operator returns lhs.

operator-

template<class T>
 complex<T> operator-(const complex<T>& lhs, const complex<T>& rhs);
template<class T>
 complex<T> operator-(const complex<T>& lhs, const T& rhs);
template<class T>
 complex<T> operator-(const T& lhs, const complex<T>& rhs);
template<class T>
 complex<T> operator-(const complex<T>& lhs);

The first three template operators each convert both operands to type complex<T>, then return the
complex difference of the converted lhs and rhs.

The last template operator returns a value whose real part is -real(lhs) and whose imaginary part is
-imag(lhs).

operator/

template<class T>
 complex<T> operator/(const complex<T>& lhs, const complex<T>& rhs);
template<class T>
 complex<T> operator/(const complex<T>& lhs, const T& rhs);
template<class T>
 complex<T> operator/(const T& lhs, const complex<T>& rhs);

The template operators each convert both operands to type complex<T>, then return the complex
quotient of the converted lhs and rhs.

operator<<

template<class E, class T, class U>
 basic_ostream<E, T>& operator<<(basic_ostream<E, T>& os,
 const complex<U>& x);

The template function inserts the complex value x in the output stream os, effectively by executing:

basic_ostringstream<E, T> ostr;
ostr.flags(os.flags());
ostr.imbue(os.imbue());
ostr.precision(os.precision());
ostr << '(' << real(x) << ','
 << imag(x) << ')';
os << ostr.str().c_str();

Thus, if os.width() is greater than zero, any padding occurs either before or after the parenthesized
pair of values, which itself contains no padding. The function returns os.

operator==

template<class T>
 bool operator==(const complex<T>& lhs, const complex<T>& rhs);
template<class T>
 bool operator==(const complex<T>& lhs, const T& rhs);
template<class T>
 bool operator==(const T& lhs, const complex<T>& rhs);

The template operators each return true only if real(lhs) == real(rhs) && imag(lhs) ==
imag(rhs).

operator>>

template<class E, class T, class U>
 basic_istream<E, T>& operator>>(basic_istream<E, T>& is,
 complex<U>& x);

The template function attempts to extract a complex value from the input stream is, effectively by
executing:

is >> ch && ch == '('
 is >> re >> ch && ch == ','
 is >> im >> ch && ch == ')'

Here, ch is an object of type char, and re and im are objects of type U.

If the result of this expression is true, the function stores re in the real part and im in the imaginary part
of x. In any event, the function returns is.

polar

template<class T>
 complex<T> polar(const T& rho, const T& theta = 0);

The template function returns the complex value whose magnitude is rho and whose phase angle is
theta.

pow

template<class T>
 complex<T> pow(const complex<T>& x, int y);
template<class T>
 complex<T> pow(const complex<T>& x, const T& y);
template<class T>
 complex<T> pow(const complex<T>& x, const complex<T>& y);
template<class T>
 complex<T> pow(const T& x, const complex<T>& y);

The template functions each each effectively convert both operands to type complex<T>, then return
the converted x to the power y. The branch cut for x is along the negative real axis.

real

template<class T>
 T real(const complex<T>& x);

The template function returns the real part of x.

sin

template<class T>
 complex<T> sin(const complex<T>& x);

The template function returns the imaginary sine of x.

sinh

template<class T>
 complex<T> sinh(const complex<T>& x);

The template function returns the hyperbolic sine of x.

sqrt

template<class T>
 complex<T> sqrt(const complex<T>& x);

The template function returns the square root of x, with phase angle in the half-open interval (-pi/2,
pi/2]. The branch cuts are along the negative real axis.

__STD_COMPLEX

#define __STD_COMPLEX

The macro is defined, with an unspecified expansion, to indicate compliance with the specifications of
this header.

See also the Table of Contents and the Index.

Copyright © 1992-1996 by P.J. Plauger. All rights reserved.

<deque>

namespace std {
template<class T, class A>
 class deque;
// TEMPLATE FUNCTIONS
template<class T, class A>
 bool operator==(
 const deque<T, A>& lhs,
 const deque<T, A>& rhs);
template<class T, class A>
 bool operator!=(
 const deque<T, A>& lhs,
 const deque<T, A>& rhs);
template<class T, class A>
 bool operator<(
 const deque<T, A>& lhs,
 const deque<T, A>& rhs);
template<class T, class A>
 bool operator>(
 const deque<T, A>& lhs,
 const deque<T, A>& rhs);
template<class T, class A>
 bool operator<=(
 const deque<T, A>& lhs,
 const deque<T, A>& rhs);
template<class T, class A>
 bool operator>=(
 const deque<T, A>& lhs,
 const deque<T, A>& rhs);
template<class T, class A>
 void swap(
 const deque<T, A>& lhs,
 const deque<T, A>& rhs);
 };

Include the STL standard header <deque> to define the container template class deque and three
supporting templates.

http://www.dinkumware.com/

deque

allocator_type · assign · at · back · begin · clear · const_iterator ·
const_reference · const_reverse_iterator · deque · difference_type ·
empty · end · erase · front · get_allocator · insert · iterator ·
max_size · operator[] · pop_back · pop_front · push_back · push_front
· rbegin · reference · rend · resize · reverse_iterator · size ·
size_type · swap · value_type

template<class T, class A = allocator<T> >
 class deque {
public:
 typedef A allocator_type;
 typedef A::size_type size_type;
 typedef A::difference_type difference_type;
 typedef A::reference reference;
 typedef A::const_reference const_reference;
 typedef A::value_type value_type;
 typedef T0 iterator;
 typedef T1 const_iterator;
 typedef reverse_iterator<iterator, value_type,
 reference, A::pointer, difference_type>
 reverse_iterator;
 typedef reverse_iterator<const_iterator, value_type,
 const_reference, A::const_pointer, difference_type>
 const_reverse_iterator;
 explicit deque(const A& al = A());
 explicit deque(size_type n, const T& v = T(), const A& al = A());
 deque(const deque& x);
 template<class InIt>
 deque(InIt first, InIt last, const A& al = A());
 iterator begin();
 const_iterator begin() const;
 iterator end();
 iterator end() const;
 reverse_iterator rbegin();
 const_reverse_iterator rbegin() const;
 reverse_iterator rend();
 const_reverse_iterator rend() const;
 void resize(size_type n, T x = T());

 size_type size() const;
 size_type max_size() const;
 bool empty() const;
 A get_allocator() const;
 reference at(size_type pos);
 const_reference at(size_type pos) const;
 reference operator[](size_type pos);
 const_reference operator[](size_type pos);
 reference front();
 const_reference front() const;
 reference back();
 const_reference back() const;
 void push_front(const T& x);
 void pop_front();
 void push_back(const T& x);
 void pop_back();
 template<class InIt>
 void assign(InIt first, InIt last);
 template<class Size, class T2>
 void assign(Size n, const T2& x = T2());
 iterator insert(iterator it, const T& x = T());
 void insert(iterator it, size_type n, const T& x);
 template<class InIt>
 void insert(iterator it, InIt first, InIt last);
 iterator erase(iterator it);
 iterator erase(iterator first, iterator last);
 void clear();
 void swap(deque x);
protected:
 A allocator;
 };

The template class describes an object that controls a varying-length sequence of elements of type T. The
sequence is represented in a way that permits insertion and removal of an element at either end with a
single element copy (constant time). Such operations in the middle of the sequence require element
copies and assignments proportional to the number of elements in the sequence (linear time).

The object allocates and frees storage for the sequence it controls through a protected object named
allocator, of class A. Such an allocator object must have the same external interface as an object of
template class allocator. Note that allocator is not copied when the object is assigned.

Deque reallocation occurs when a member function must insert or erase elements of the controlled
sequence. In all such cases, iterators or references that point anywhere within the controlled sequence

become invalid.

deque::allocator_type

typedef A allocator_type;

The type is a synonym for the template parameter A.

deque::assign

template<class InIt>
 void assign(InIt first, InIt last);
template<class Size, class T2>
 void assign(Size n, const T2& x = T2());

The first member template function replaces the sequence controlled by *this with the sequence
[first, last). The second member template function replaces the sequence controlled by *this
with a repetition of n elements of value x.

In this implementation, if a translator does not support member template functions, the templates are
replaced by:

void assign(const_iterator first, const_iterator last);
void assign(size_type n, const T& x = T());

deque::at

const_reference at(size_type pos) const;
reference at(size_type pos);

The member function returns a reference to the element of the controlled sequence at position pos. If
that position is invalid, the function throws an object of class out_of_range.

deque::back

reference back();
const_reference back() const;

The member function returns a reference to the last element of the controlled sequence, which must be
non-empty.

deque::begin

const_iterator begin() const;
iterator begin();

The member function returns a random-access iterator that points at the first element of the sequence (or

just beyond the end of an empty sequence).

deque::clear

void clear() const;

The member function calls erase(begin(), end()).

deque::const_iterator

typedef T1 const_iterator;

The type describes an object that can serve as a constant random-access iterator for the controlled
sequence. It is described here as a synonym for the unspecified type T1.

deque::const_reference

typedef A::const_reference const_reference;

The type describes an object that can serve as a constant reference to an element of the controlled
sequence.

deque::const_reverse_iterator

typedef reverse_iterator<const_iterator, value_type,
 const_reference, A::const_pointer, difference_type>
 const_reverse_iterator;

The type describes an object that can serve as a constant reverse random-access iterator for the controlled
sequence.

deque::deque

explicit deque(const A& al = A());
explicit deque(size_type n, const T& v = T(), const A& al = A());
deque(const deque& x);
template<class InIt>
 deque(InIt first, InIt last, const A& al = A());

All constructors store the allocator object al (or, for the copy constructor, x.get_allocator()) in
allocator and initialize the controlled sequence. The first constructor specifies an empty initial
controlled sequence. The second constructor specifies a repetition of n elements of value x. The third
constructor specifies a copy of the sequence controlled by x. The member template constructor specifies
the sequence [first, last).

In this implementation, if a translator does not support member template functions, the template is
replaced by:

deque(const_iterator first, const_iterator last, const A& al = A());

deque::difference_type

typedef A::difference_type difference_type;

The signed integer type describes an object that can represent the difference between the addresses of any
two elements in the controlled sequence.

deque::empty

bool empty() const;

The member function returns true for an empty controlled sequence.

deque::end

const_iterator end() const;
iterator end();

The member function returns a random-access iterator that points just beyond the end of the sequence.

deque::erase

iterator erase(iterator it);
iterator erase(iterator first, iterator last);

The first member function removes the element of the controlled sequence pointed to by it. The second
member function removes the elements of the controlled sequence in the range [first, last). Both
return an iterator that designates the first element remaining beyond any elements removed, or end() if
no such element exists.

Removing N elements causes N destructor calls and an assignment for each of the elements between the
insertion point and the nearer end of the sequence. Removing an element at either end invalidates only
iterators and references that designate the erased elements. Otherwise, erasing an element invalidates all
iterators and references.

deque::front

reference front();
const_reference front() const;

The member function returns a reference to the first element of the controlled sequence, which must be
non-empty.

deque::get_allocator

A get_allocator() const;

The member function returns allocator.

deque::insert

iterator insert(iterator it, const T& x = T());
void insert(iterator it, size_type n, const T& x);
template<class InIt>
 void insert(iterator it, InIt first, InIt last);

Each of the member functions inserts, before the element pointed to by it in the controlled sequence, a
sequence specified by the remaining operands. The first member function inserts a single element with
value x and returns an iterator that points to the newly inserted element. The second member function
inserts a repetition of n elements of value x. The member template function inserts the sequence
[first, last).

In this implementation, if a translator does not support member template functions, the template is
replaced by:

void insert(iterator it, const_iterator first, const_iterator last);

When inserting a single element, the number of element copies is linear in the number of elements
between the insertion point and the nearer end of the sequence. When inserting a single element at either
end of the sequence, the amortized number of element copies is constant. When inserting N elements, the
number of element copies is linear in N plus the number of elements between the insertion point and the
nearer end of the sequence -- except when the template member is specialized for InIt an input or
forward iterator, which behaves like N single insertions. Inserting an element at either end invalidates all
iterators, but no references, that designate existing elements. Otherwise, inserting an element invalidates
all iterators and references.

deque::iterator

typedef T0 iterator;

The type describes an object that can serve as a random-access iterator for the controlled sequence. It is
described here as a synonym for the unspecified type T0.

deque::max_size

size_type max_size() const;

The member function returns the length of the longest sequence that the object can control.

deque::operator[]

const_reference operator[](size_type pos) const;
reference operator[](size_type pos);

The member function returns a reference to the element of the controlled sequence at position pos. If
that position is invalid, the behavior is undefined.

deque::pop_back

void pop_back();

The member function removes the last element of the controlled sequence, which must be non-empty.
Removing the element invalidates only iterators and references that designate the erased element.

deque::push_back

void push_back(const T& x);

The member function inserts an element with value x at the end of the controlled sequence. Inserting the
element invalidates all iterators, but no references, to existing elements.

deque::pop_front

void pop_front();

The member function removes the first element of the controlled sequence, which must be non-empty.
Removing the element invalidates only iterators and references that designate the erased element.

deque::push_front

void push_front(const T& x);

The member function inserts an element with value x at the beginning of the controlled sequence.
Inserting the element invalidates all iterators, but no references, to existing elements.

deque::rbegin

const_reverse_iterator rbegin() const;
reverse_iterator rbegin();

The member function returns a reverse iterator that points just beyond the end of the controlled sequence.
Hence, it designates the beginning of the reverse sequence.

deque::reference

typedef A::reference reference;

The type describes an object that can serve as a reference to an element of the controlled sequence.

deque::rend

const_reverse_iterator rend() const;
reverse_iterator rend();

The member function returns a reverse iterator that points at the first element of the sequence (or just
beyond the end of an empty sequence). Hence, it designates the end of the reverse sequence.

deque::resize

void resize(size_type n, T x = T());

The member function ensures that size() henceforth returns n. If it must make the controlled sequence
longer, it appends elements with value x.

deque::reverse_iterator

typedef reverse_iterator<iterator, value_type,
 reference, A::pointer, difference_type>
 reverse_iterator;

The type describes an object that can serve as a reverse random-access iterator for the controlled
sequence.

deque::size

size_type size() const;

The member function returns the length of the controlled sequence.

deque::size_type

typedef A::size_type size_type;

The unsigned integer type describes an object that can represent the length of any controlled sequence.

deque::swap

void swap(deque& str);

The member function swaps the controlled sequences between *this and str. If allocator ==
str.allocator, it does so in constant time. Otherwise, it performs a number of element assignments

and constructor calls proportional to the number of elements in the two controlled sequences.

deque::value_type

typedef A::value_type value_type;

The type is a synonym for the template parameter T.

operator!=

template<class T, class A>
 bool operator!=(
 const deque <T, A>& lhs,
 const deque <T, A>& rhs);

The template function returns !(lhs == rhs).

operator==

template<class T, class A>
 bool operator==(
 const deque <T, A>& lhs,
 const deque <T, A>& rhs);

The template function overloads operator== to compare two objects of template class deque. The
function returns lhs.size() == rhs.size() && equal(lhs. begin(), lhs. end(),
rhs.begin()).

operator<

template<class T, class A>
 bool operator<(
 const deque <T, A>& lhs,
 const deque <T, A>& rhs);

The template function overloads operator< to compare two objects of template class deque. The
function returns lexicographical_compare(lhs. begin(), lhs. end(),
rhs.begin(), rhs.end()).

operator<=

template<class T, class A>
 bool operator<=(
 const deque <T, A>& lhs,

 const deque <T, A>& rhs);

The template function returns !(rhs < lhs).

operator>

template<class T, class A>
 bool operator>(
 const deque <T, A>& lhs,
 const deque <T, A>& rhs);

The template function returns rhs < lhs.

operator>=

template<class T, class A>
 bool operator>=(
 const deque <T, A>& lhs,
 const deque <T, A>& rhs);

The template function returns !(rhs < lhs).

swap

template<class T, class A>
 void swap(
 const deque <T, A>& lhs,
 const deque <T, A>& rhs);

The template function executes lhs.swap(rhs).

See also the Table of Contents and the Index.

Copyright © 1992-1996 by P.J. Plauger. Portions derived from work copyright © 1994 by
Hewlett-Packard Company. All rights reserved.

<exception>

namespace std {
 class exception;
 class bad_exception;
 typedef void (*terminate_handler)();
 typedef void (*unexpected_handler)();
 terminate_handler set_terminate(terminate_handler ph) throw();
 unexpected_handler set_unexpected(unexpected_handler ph) throw();
 void terminate();
 void unexpected();
 bool uncaught_exception();
 };

Include the standard header <exception> to define several types and functions related to the handling
of exceptions.

bad_exception

class bad_cast : public exception {
 };

The class describes an exception that can be thrown from an unexpected handler. The value returned by
what() is implementation-defined. None of the member functions throw any exceptions.

exception

class exception {
public:
 exception() throw();
 exception(const exception& rhs) throw();
 exception& operator=(const exception& rhs) throw();
 virtual ~exception() throw();
 virtual const char *what() const throw();
 };

The class serves as the base class for all exceptions thrown by certain expressions and by the Standard
C++ library. The C string value returned by what() is left unspecified by the default constructor, but
may be defined by the constructors for certain derived classes. None of the member functions throw any

http://www.dinkumware.com/

exceptions.

set_terminate

terminate_handler set_terminate(terminate_handler ph) throw();

The function establishes a new terminate handler as the function *ph. Thus, ph must not be a null
pointer. The function returns the address of the previous terminate handler.

set_unexpected

unexpected_handler set_unexpected(unexpected_handler ph) throw();

The function establishes a new unexpected handler as the function *ph. Thus, ph must not be a null
pointer. The function returns the address of the previous unexpected handler.

terminate_handler

typedef void (*terminate_handler)();

The type describes a pointer to a function suitable for use as a terminate handler.

unexpected_handler

typedef void (*unexpected_handler)();

The type describes a pointer to a function suitable for use as an unexpected handler.

terminate

void terminate();

The function calls the current terminate handler, a function of type void () called when exception
handling must be abandoned for any of several reasons. A terminate handler may not return to its caller.
At program startup, the terminate handler is a function that calls abort().

uncaught_exception

bool uncaught_exception();

The function returns true only if a thrown exception is being currently processed.

unexpected

void unexpected();

The function calls the current unexpected handler, a function of type void () called when control
leaves a function by a thrown exception of a type not permitted by an exception specification for the
function, as in:

void f() throw() // function may throw no exceptions
 {throw "bad"; } // unexpected throw calls unexpected()

An unexpected handler may not return to its caller. It may terminate execution by:

throwing an object of a type listed in the exception specification●

throwing an object of type bad_exception●

calling terminate(), abort(), or exit(int)●

At program startup, the unexpected handler is a function that calls terminate().

See also the Table of Contents and the Index.

Copyright © 1992-1996 by P.J. Plauger. All rights reserved.

<fstream>

namespace std {
 template<class E, class T = char_traits<E> >
 class basic_filebuf;
 typedef basic_filebuf<char> filebuf;
 typedef basic_filebuf<wchar_t> wfilebuf;
 template<class E, class T = char_traits<E> >
 class basic_ifstream;
 typedef basic_ifstream<char> ifstream;
 typedef basic_ifstream<wchar_t> wifstream;
 template<class E, class T = char_traits<E> >
 class basic_ofstream;
 typedef basic_ofstream<char> ofstream;
 typedef basic_ofstream<wchar_t> wofstream;
 template<class E, class T = char_traits<E> >
 class basic_fstream;
 typedef basic_fstream<char> fstream;
 typedef basic_fstream<wchar_t> wfstream;
 };

Include the iostreams standard header <fstream> to define several template classes that support
iostreams operations on sequences stored in external files.

basic_filebuf

template <class E, class T = char_traits<E> >
 class basic_filebuf {
public:
 typedef E char_type;
 typedef T traits_type;
 typedef T::int_type int_type;
 typedef T::pos_type pos_type;
 typedef T::off_type off_type;
 basic_filebuf();
 bool is_open() const;
 basic_filebuf *open(const char *s, ios_base::openmode mode);

http://www.dinkumware.com/

 basic_filebuf *close();
protected:
 virtual pos_type seekoff(off_type off, ios_base::seekdir way,
 ios_base::openmode which = ios_base::in | ios_base::out);
 virtual pos_type seekpos(pos_type pos,
 ios_base::openmode which = ios_base::in | ios_base::out);
 virtual int_type underflow();
 virtual int_type pbackfail(int_type c = T::eof());
 virtual int_type overflow(int_type c = T::eof());
 virtual int sync();
 virtual basic_streambuf<E, T> *setbuf(E *s, streamsize n);
 };

The template class describes a stream buffer that controls the transmission of elements to and from a
sequence of elements stored in an external file.

An object of class basic_filebuf<E, T> stores a file pointer, which designates the FILE object
that controls the stream associated with an open file. It also stores pointers to two file conversion facets
for use by the protected member functions overflow and underflow.

basic_filebuf::basic_filebuf

basic_filebuf();

The constructor stores a null pointer in all the pointers controlling the input buffer and the output buffer.
It also stores a null pointer in the file pointer.

basic_filebuf::char_type

typedef E char_type;

The type is a synonym for the template parameter E.

basic_filebuf::close

basic_filebuf *close();

The member function returns a null pointer if the file pointer fp is a null pointer. Otherwise, it calls
fclose(fp). If that function returns a nonzero value, the function returns a null pointer. Otherwise, it
returns this to indicate that the file was successfully closed.

basic_filebuf::int_type

typedef T::int_type int_type;

The type is a synonym for T::int_type.

basic_filebuf::off_type

typedef T::off_type off_type;

The type is a synonym for T::off_type.

basic_filebuf::is_open

bool is_open();

The member function returns true if the file pointer is not a null pointer.

basic_filebuf::open

basic_filebuf *open(const char *s, ios_base::openmode mode);

The member function endeavors to open the file with filename s, by calling fopen(s, strmode).
Here strmode is determined from mode & ~(ate & | binary):

ios_base::in becomes "r" (open existing file for reading).●

ios_base::out or●

ios_base::out | ios_base::trunc becomes "w" (truncate existing file or create for
writing).

●

ios_base::out | app becomes "a" (open existing file for appending all writes).●

ios_base::in | ios_base::out becomes "r+" (open existing file for reading and
writing).

●

ios_base::in | ios_base::out | ios_base::trunc becomes "w+" (truncate
existing file or create for reading and writing).

●

ios_base::in | ios_base::out | ios_base::app becomes "a+" (open existing
file for reading and for appending all writes).

●

If mode & ios_base::binary is nonzero, the function appends b to strmode to open a binary
stream instead of a text stream. It then stores the value returned by fopen in the file pointer fp. If mode
& ios_base::ate is nonzero and the file pointer is not a null pointer, the function calls fseek(fp,
0, SEEK_END) to position the stream at end-of-file. If that positioning operation fails, the function
calls close(fp) and stores a null pointer in the file pointer.

If the file pointer is not a null pointer, the function determines the file conversion facet use_facet<
codecvt<E, char, T::state_type> >(getloc()), for use by underflow and

overflow

If the file pointer is a null pointer, the function returns a null pointer. Otherwise, it returns this.

basic_filebuf::overflow

virtual int_type overflow(int_type c = T::eof());

If c != T::eof(), the protected virtual member function endeavors to insert the element
T::to_char_type(c) into the output buffer. It can do so in various ways:

If a write position is available, it can store the element into the write position and increment the
next pointer for the output buffer.

●

It can make a write position available by allocating new or additional storage for the output buffer.●

It can convert any pending output in the output buffer, followed by c, by using the file conversion
facet fac to call fac.out as needed. Each element x of type char thus produced is written to the
associated stream designated by the file pointer fp as if by successive calls of the form
fputc(x, fp). If any conversion or write fails, the function does not succeed.

●

If the function cannot succeed, it returns T::eof(). Otherwise, it returns T::not_eof(c).

basic_filebuf::pbackfail

virtual int_type pbackfail(int_type c = T::eof());

The protected virtual member function endeavors to put back an element into the input buffer, then make
it the current element (pointed to by the next pointer). If c == T::eof(), the element to push back is
effectively the one already in the stream before the current element. Otherwise, that element is replaced
by x = T::to_char_type(c). The function can put back an element in various ways:

If a putback position is available, and the element stored there compares equal to x, it can simply
decrement the next pointer for the input buffer.

●

If the function can make a putback position available, it can do so, set the next pointer to point at
that position, and store x in that position.

●

If the function can push back an element onto the input stream, it can do so, such as by calling
ungetc for an element of type char.

●

If the function cannot succeed, it returns T::eof(). Otherwise, it returns T::not_eof(c).

basic_filebuf::pos_type

typedef T::pos_type pos_type;

The type is a synonym for T::pos_type.

basic_filebuf::seekoff

virtual pos_type seekoff(off_type off, ios_base::seekdir way,
 ios_base::openmode which = ios_base::in | ios_base::out);

The protected virtual member function endeavors to alter the current positions for the controlled streams.
For an object of class basic_filebuf<E, T>, a stream position can be represented by an object of
type fpos_t, which stores an offset and any state information needed to parse a wide stream. Offset
zero designates the first element of the stream. (An object of type pos_type stores at least an fpos_t
object.)

For a file opened for both reading and writing, both the input and output streams are positioned in
tandem. To switch between inserting and extracting, you must call either pubseekoff or
pubseekoff. Calls to pubseekoff (and hence to seekoff) have various limitations for text
streams, binary streams, and wide streams.

If the file pointer fp is a null pointer, the function fails. Otherwise, it endeavors to alter the stream
position by calling fseek(fp, off, way). If that function succeeds and the resultant position
fposn can be determined by calling fgetpos(fp, &fposn), the function succeeds. If the function
succeeds, it returns a value of type pos_type containing fposn. Otherwise, it returns an invalid
stream position.

basic_filebuf::seekpos

virtual pos_type seekpos(pos_type pos,
 ios_base::openmode which = ios_base::in | ios_base::out);

The protected virtual member function endeavors to alter the current positions for the controlled streams.
For an object of class basic_filebuf<E, T>, a stream position can be represented by an object of
type fpos_t, which stores an offset and any state information needed to parse a wide stream. Offset
zero designates the first element of the stream. (An object of type pos_type stores at least an fpos_t
object.)

For a file opened for both reading and writing, both the input and output streams are positioned in
tandem. To switch between inserting and extracting, you must call either pubseekoff or
pubseekoff. Calls to pubseekoff (and hence to seekoff) have various limitations for text
streams, binary streams, and wide streams.

If the file pointer fp is a null pointer, the function fails. Otherwise, it endeavors to alter the stream
position by calling fsetpos(fp, &fposn), where fposn is the fpos_t object stored in pos. If
that function succeeds, the function returns pos. Otherwise, it returns an invalid stream position.

basic_filebuf::setbuf

virtual basic_streambuf<E, T> *setbuf(E *s, streamsize n);

The protected member function returns zero if the file pointer fp is a null pointer. Otherwise, it calls
setvbuf(fp, (char *)s, _IOFBF, n * sizeof (E)) to offer the array of n elements
beginning at s as a buffer for the stream. If that function returns a nonzero value, the function returns a
null pointer. Otherwise, it returns this to signal success.

basic_filebuf::sync

int sync();

The protected member function returns zero if the file pointer fp is a null pointer. Otherwise, it returns
fflush(fp) to flush any pending output to the stream.

basic_filebuf::traits_type

typedef T traits_type;

The type is a synonym for the template parameter T.

basic_filebuf::underflow

virtual int_type underflow();

The protected virtual member function endeavors to extract the current element c from the input stream,
and return the element as T::to_int_type(c). It can do so in various ways:

If a read position is available, it takes c as the element stored in the read position and advances the
next pointer for the input buffer.

●

It can read one or more elements of type char, as if by successive calls of the form fgetc(fp),
and convert them to an element c of type E by using the file conversion facet fac to call fac.in
as needed. If any read or conversion fails, the function does not succeed.

●

If the function cannot succeed, it returns T::eof(). Otherwise, it returns c, converted as described
above.

basic_fstream

template <class E, class T = char_traits<E> >
 class basic_fstream : public basic_iostream<E, T> {
public:
 typedef E char_type;
 typedef T traits_type;

 typedef T::int_type int_type;
 typedef T::pos_type pos_type;
 typedef T::off_type off_type;
 explicit basic_fstream();
 explicit basic_fstream(const char *s,
 ios_base::openmode mode = ios_base::in | ios_base::out);
 basic_filebuf<E, T> *rdbuf() const;
 bool is_open() const;
 void open(const char *s,
 ios_base::openmode mode = ios_base::in | ios_base::out);
 void close();
 };

The template class describes an object that controls insertion and extraction of elements and encoded
objects using a stream buffer of class basic_filebuf<E, T>, with elements of type E, whose
character traits are determined by the class T. The object stores an object of class basic_filebuf<E,
T>.

basic_fstream::basic_fstream

explicit basic_fstream();
explicit basic_fstream(const char *s,
 ios_base::openmode mode = ios_base::in | ios_base::out);

The first constructor initializes the base class by calling basic_iostream(sb), where sb is the
stored object of class basic_filebuf<E, T>. It also initializes sb by calling
basic_filebuf<E, T>().

The second constructor initializes the base class by calling basic_iostream(sb). It also initializes
sb by calling basic_filebuf<E, T>(), then sb.open(s, mode). If the latter function returns
a null pointer, the constructor calls setstate(failbit).

basic_fstream::char_type

typedef E char_type;

The type is a synonym for the template parameter E.

basic_fstream::close

 voidclose();

The member function calls rdbuf()-> close().

basic_fstream::int_type

typedef T::int_type int_type;

The type is a synonym for T::int_type.

basic_fstream::is_open

bool is_open();

The member function returns rdbuf()-> is_open().

basic_fstream::off_type

typedef T::off_type off_type;

The type is a synonym for T::off_type.

basic_fstream::open

void open(const char *s,
 ios_base::openmode mode = ios_base::in | ios_base::out);

The member function calls rdbuf()-> open(s, mode). If that function returns a null pointer, the
function calls setstate(failbit).

basic_fstream::pos_type

typedef T::pos_type pos_type;

The type is a synonym for T::pos_type.

basic_fstream::rdbuf

basic_filebuf<E, T> *rdbuf() const

The member function returns the address of the stored stream buffer, of type pointer to
basic_filebuf<E, T>.

basic_fstream::traits_type

typedef T traits_type;

The type is a synonym for the template parameter T.

basic_ifstream

template <class E, class T = char_traits<E> >
 class basic_ifstream : public basic_istream<E, T> {
public:
 typedef E char_type;
 typedef T traits_type;
 typedef T::int_type int_type;
 typedef T::pos_type pos_type;
 typedef T::off_type off_type;
 explicit basic_ifstream();
 explicit basic_ifstream(const char *s,
 ios_base::openmode mode = ios_base::in);
 basic_filebuf<E, T> *rdbuf() const;
 bool is_open() const;
 void open(const char *s,
 ios_base::openmode mode = ios_base::in);
 void close();
 };

The template class describes an object that controls extraction of elements and encoded objects from a
stream buffer of class basic_filebuf<E, T>, with elements of type E, whose character traits are
determined by the class T. The object stores an object of class basic_filebuf<E, T>.

basic_ifstream::basic_ifstream

explicit basic_ifstream();
explicit basic_ifstream(const char *s,
 ios_base::openmode mode = ios_base::in);

The first constructor initializes the base class by calling basic_istream(sb), where sb is the stored
object of class basic_filebuf<E, T>. It also initializes sb by calling basic_filebuf<E,
T>().

The second constructor initializes the base class by calling basic_istream(sb). It also initializes
sb by calling basic_filebuf<E, T>(), then sb.open(s, mode | ios_base::in). If the
latter function returns a null pointer, the constructor calls setstate(failbit).

basic_ifstream::char_type

typedef E char_type;

The type is a synonym for the template parameter E.

basic_ifstream::close

void close();

The member function calls rdbuf()-> close().

basic_ifstream::int_type

typedef T::int_type int_type;

The type is a synonym for T::int_type.

basic_ifstream::is_open

bool is_open();

The member function returns rdbuf()-> is_open().

basic_ifstream::off_type

typedef T::off_type off_type;

The type is a synonym for T::off_type.

basic_ifstream::open

void open(const char *s,
 ios_base::openmode mode = ios_base::in);

The member function calls rdbuf()-> open(s, mode | ios_base::in). If that function
returns a null pointer, the function calls setstate(failbit).

basic_ifstream::pos_type

typedef T::pos_type pos_type;

The type is a synonym for T::pos_type.

basic_ifstream::rdbuf

basic_filebuf<E, T> *rdbuf() const

The member function returns the address of the stored stream buffer, of type pointer to
basic_filebuf<E, T>.

basic_ifstream::traits_type

typedef T traits_type;

The type is a synonym for the template parameter T.

basic_ofstream

template <class E, class T = char_traits<E> >
 class basic_ofstream : public basic_ostream<E, T> {
public:
 typedef E char_type;
 typedef T traits_type;
 typedef T::int_type int_type;
 typedef T::pos_type pos_type;
 typedef T::off_type off_type;
 explicit basic_ofstream();
 explicit basic_ofstream(const char *s,
 ios_base::openmode mode = ios_base::out | ios_base::trunc);
 basic_filebuf<E, T> *rdbuf() const;
 bool is_open() const;
 void open(const char *s,
 ios_base::openmode mode = ios_base::out | ios_base::trunc);
 void close();
 };

The template class describes an object that controls insertion of elements and encoded objects into a
stream buffer of class basic_filebuf<E, T>, with elements of type E, whose character traits are
determined by the class T. The object stores an object of class basic_filebuf<E, T>.

basic_ofstream::basic_ofstream

explicit basic_ofstream();
explicit basic_ofstream(const char *s,
 ios_base::openmode which = ios_base::out | ios_base::trunc);

The first constructor initializes the base class by calling basic_ostream(sb), where sb is the stored
object of class basic_filebuf<E, T>. It also initializes sb by calling basic_filebuf<E,
T>().

The second constructor initializes the base class by calling basic_ostream(sb). It also initializes
sb by calling basic_filebuf<E, T>(), then sb.open(s, mode | ios_base::out). If
the latter function returns a null pointer, the constructor calls setstate(failbit).

basic_ofstream::char_type

typedef E char_type;

The type is a synonym for the template parameter E.

basic_ofstream::close

void close();

The member function calls rdbuf()-> close().

basic_ofstream::int_type

typedef T::int_type int_type;

The type is a synonym for T::int_type.

basic_ofstream::is_open

bool is_open();

The member function returns rdbuf()-> is_open().

basic_ofstream::off_type

typedef T::off_type off_type;

The type is a synonym for T::off_type.

basic_ofstream::open

void open(const char *s,
 ios_base::openmode mode = ios_base::out | ios_base::trunc);

The member function calls rdbuf()-> open(s, mode | ios_base::out). If that function
returns a null pointer, the function calls setstate(failbit).

basic_ofstream::pos_type

typedef T::pos_type pos_type;

The type is a synonym for T::pos_type.

basic_ofstream::rdbuf

basic_filebuf<E, T> *rdbuf() const

The member function returns the address of the stored stream buffer, of type pointer to
basic_filebuf<E, T>.

basic_ofstream::traits_type

typedef T traits_type;

The type is a synonym for the template parameter T.

filebuf

typedef basic_filebuf<char, char_traits<char> > filebuf;

The type is a synonym for template class basic_filebuf, specialized for elements of type char with
default character traits.

fstream

typedef basic_fstream<char, char_traits<char> > fstream;

The type is a synonym for template class basic_fstream, specialized for elements of type char with
default character traits.

ifstream

typedef basic_ifstream<char, char_traits<char> > ifstream;

The type is a synonym for template class basic_ifstream, specialized for elements of type char
with default character traits.

ofstream

typedef basic_ofstream<char, char_traits<char> > ofstream;

The type is a synonym for template class basic_ofstream, specialized for elements of type char
with default character traits.

wfstream

typedef basic_fstream<wchar_t, char_traits<wchar_t> > wfstream;

The type is a synonym for template class basic_fstream, specialized for elements of type wchar_t
with default character traits.

wifstream

typedef basic_ifstream<wchar_t, char_traits<wchar_t> > wifstream;

The type is a synonym for template class basic_ifstream, specialized for elements of type
wchar_t with default character traits.

wofstream

typedef basic_ofstream<wchar_t, char_traits<wchar_t> > wofstream;

The type is a synonym for template class basic_ofstream, specialized for elements of type
wchar_t with default character traits.

wfilebuf

typedef basic_filebuf<wchar_t, char_traits<wchar_t> > wfilebuf;

The type is a synonym for template class basic_filebuf, specialized for elements of type wchar_t
with default character traits.

See also the Table of Contents and the Index.

Copyright © 1992-1996 by P.J. Plauger. All rights reserved.

<functional>

binary_function · binary_negate · binder1st · binder2nd · divides ·
equal_to · greater · greater_equal · less · less_equal · logical_and ·
logical_not · logical_or · mem_fun_t · mem_fun_ref_t · mem_fun1 ·
mem_fun1_ref_t · minus · modulus · multiplies · negate · not_equal_to
· plus · pointer_to_binary_function · pointer_to_unary_function ·
unary_function · unary_negate

bind1st · bind2nd · mem_fun · mem_fun_ref · mem_fun1 · mem_fun1_ref ·
not1 · not2 · ptr_fun

namespace std {
// TEMPLATE CLASSES
template<class Arg, class Result>
 struct unary_function;
template<class Arg1, class Arg2, class Result>
 struct binary_function;
template<class T>
 struct plus;
template<class T>
 struct minus;
template<class T>
 struct multiplies;
template<class T>
 struct divides;
template<class T>
 struct modulus;
template<class T>
 struct negate;
template<class T>
 struct equal_to;
template<class T>
 struct not_equal_to;
template<class T>
 struct greater;
template<class T>
 struct less;

http://www.dinkumware.com/

template<class T>
 struct greater_equal;
template<class T>
 struct less_equal;
template<class T>
 struct logical_and;
template<class T>
 struct logical_or;
template<class T>
 struct logical_not;
template<class Pred>
 struct unary_negate;
template<class Pred>
 struct binary_negate;
template<class Pred>
 class binder1st;
template<class Pred>
 class binder2nd;
template<class Arg, class Result>
 class pointer_to_unary_function;
template<class Arg1, class Arg2, class Result>
 class pointer_to_binary_function;
template<class R, class T>
 struct mem_fun_t;
template<class R, class T, class A>
 struct mem_fun1_t;
template<class R, class T>
 struct mem_fun_ref_t;
template<class R, class T, class A>
 struct mem_fun1_ref_t;
// TEMPLATE FUNCTIONS
template<class Pred>
 unary_negate<Pred> not1(const Pred& pr);
template<class Pred>
 binary_negate<Pred> not2(const Pred& pr);
template<class Pred, class T>
 binder1st<Pred> bind1st(const Pred& pr, const T& x);
template<class Pred, class T>
 binder2nd<Pred> bind2nd(const Pred& pr, const T& x);
template<class Arg, class Result>
 pointer_to_unary_function<Arg, Result>
 ptr_fun(Result (*)(Arg));
template<class Arg1, class Arg2, class Result>

 pointer_to_binary_function<Arg1, Arg2, Result>
 ptr_fun(Result (*)(Arg1, Arg2));
template<class R, class T>
 mem_fun_t<R, T> mem_fun(R (T::*pm)());
template<class R, class T, class A>
 mem_fun1_t<R, T, A> mem_fun1(R (T::*pm)(A arg));
template<class R, class T>
 mem_fun_ref_t<R, T> mem_fun_ref(R (T::*pm)());
template<class R, class T, class A>
 mem_fun1_ref_t<R, T, A> mem_fun1_ref(R (T::*pm)(A arg));
 };

Include the STL standard header <functional> to define several templates that help construct
function objects, objects of a class that defines operator(). Hence, function objects behave much
like function pointers, except that the object can store additional information that can be used during a
function call.

binary_function

template<class Arg1, class Arg2, class Result>
 struct binary_function {
 typedef Arg1 first_argument_type;
 typedef Arg2 second_argument_type;
 typedef Result result_type;
 };

The template class serves as a base for classes that define a member function of the form:

result_type operator()(first_argument_type, second_argument_type)

Hence, all such binary functions can refer to their first argument type as first_argument_type,
their second argument type as second_argument_type, and their return type as result_type.

binary_negate

template<class Pred>
 class binary_negate
 : public binary_function<Pred::first_argument_type,
 Pred::second_argument_type, bool> {
public:
 explicit binary_negate(const Pred& pr);
 bool operator()(const first_argument_type& x,
 const second_argument_type& y) const;
 };

The template class stores a copy of pr, which must be a binary function object. It defines its member
function operator() as returning !pr(x, y).

bind1st

template<class Pred, class T>
 binder1st<Pred> bind1st(const Pred& pr, const T& x);

The function returns binder1st<Pred>(pr, Pred::first_argument_type(x)).

bind2nd

template<class Pred, class T>
 binder2nd<Pred> bind2nd(const Pred& pr, const T& y);

The function returns binder2nd<Pred>(pr, Pred::second_argument_type(y)).

binder1st

template<class Pred>
 class binder1st
 : public unary_function<Pred::second_argument_type,
 Pred::result_type> {
public:
 binder1st(const Pred& pr, const Pred::first_argument_type x);
 result_type operator()(const argument_type& y) const;
protected:
 Pred op;
 Pred::first_argument_type value;
 };

The template class stores a copy of pr, which must be a binary function object, in op, and a copy of x in
value. It defines its member function operator() as returning op(value, y).

binder2nd

template<class Pred>
 class binder2nd
 : public unary_function<Pred::first_argument_type,
 Pred::result_type> {
public:
 binder2nd(const Pred& pr, const Pred::second_argument_type y);
 result_type operator()(const argument_type& x) const;

protected:
 Pred op;
 Pred::second_argument_type value;
 };

The template class stores a copy of pr, which must be a binary function object, in op, and a copy of y in
value. It defines its member function operator() as returning op(x, value).

divides

template<class T>
 struct divides : public binary_function<T, T, T> {
 T operator()(const T& x, const T& y) const;
 };

The template class defines its member function as returning x / y.

equal_to

template<class T>
 struct equal_to : public binary_function<T, T, bool> {
 bool operator()(const T& x, const T& y) const;
 };

The template class defines its member function as returning x == y.

greater

template<class T>
 struct greater : public binary_function<T, T, bool> {
 bool operator()(const T& x, const T& y) const;
 };

The template class defines its member function as returning x > y. The member function defines a total
ordering, even if T is an object pointer type.

greater_equal

template<class T>
 struct greater_equal : public binary_function<T, T, bool> {
 bool operator()(const T& x, const T& y) const;
 };

The template class defines its member function as returning x >= y. The member function defines a

total ordering, even if T is an object pointer type.

less

template<class T>
 struct less : public binary_function<T, T, bool> {
 bool operator()(const T& x, const T& y) const;
 };

The template class defines its member function as returning x < y. The member function defines a total
ordering, even if T is an object pointer type.

less_equal

template<class T>
 struct less_equal : public binary_function<T, T, bool> {
 bool operator()(const T& x, const T& y) const;
 };

The template class defines its member function as returning x <= y. The member function defines a
total ordering, even if T is an object pointer type.

logical_and

template<class T>
 struct logical_and : public binary_function<T, T, bool> {
 bool operator()(const T& x, const T& y) const;
 };

The template class defines its member function as returning x && y.

logical_not

template<class T>
 struct logical_not : public unary_function<T, bool> {
 bool operator()(const T& x) const;
 };

The template class defines its member function as returning !x.

logical_or

template<class T>
 struct logical_or : public binary_function<T, T, bool> {
 bool operator()(const T& x, const T& y) const;
 };

The template class defines its member function as returning x || y.

mem_fun

template<class R, class T>
 mem_fun_t<R, T> mem_fun(R (T::*pm)());

The template function returns mem_fun_t<R, T>(pm).

mem_fun_t

template<class R, class T>
 struct mem_fun_t : public unary_function<T *, R> {
 explicit mem_fun_t(R (T::*pm)());
 R operator()(T *p);
 };

The template class stores a copy of pm, which must be a pointer to a member function of class T, in a
private member object. It defines its member function operator() as returning (p->*pm)().

mem_fun_ref

template<class R, class T>
 mem_fun_ref_t<R, T> mem_fun_ref(R (T::*pm)());

The template function returns mem_fun_ref_t<R, T>(pm).

mem_fun_ref_t

template<class R, class T>
 struct mem_fun_ref_t : public unary_function<T *, R> {
 explicit mem_fun_t(R (T::*pm)());
 R operator()(T& x);
 };

The template class stores a copy of pm, which must be a pointer to a member function of class T, in a
private member object. It defines its member function operator() as returning (x.*Pm)().

mem_fun1

template<class R, class T, class A>
 mem_fun1_t<R, T, A> mem_fun1(R (T::*pm)(A));

The template function returns mem_fun1_t<R, T, A>(pm).

mem_fun1_t

template<class R, class T, class A>
 struct mem_fun1_t : public binary_function<T *, A, R> {
 explicit mem_fun1_t(R (T::*pm)(A));
 R operator()(T *p, A arg);
 };

The template class stores a copy of pm, which must be a pointer to a member function of class T, in a
private member object. It defines its member function operator() as returning (p->*pm)(arg).

mem_fun1_ref

template<class R, class T, class A>
 mem_fun1_ref_t<R, T, A> mem_fun1_ref(R (T::*pm)(A));

The template function returns mem_fun1_ref_t<R, T, A>(pm).

mem_fun1_ref_t

template<class R, class T, class A>
 struct mem_fun1_ref_t : public binary_function<T *, A, R> {
 explicit mem_fun1_ref_t(R (T::*pm)(A));
 R operator()(T& x, A arg);
 };

The template class stores a copy of pm, which must be a pointer to a member function of class T, in a
private member object. It defines its member function operator() as returning (x.*pm)(arg).

minus

template<class T>
 struct minus : public binary_function<T, T, T> {
 T operator()(const T& x, const T& y) const;
 };

The template class defines its member function as returning x - y.

modulus

template<class T>
 struct modulus : public binary_function<T, T, T> {
 T operator()(const T& x, const T& y) const;
 };

The template class defines its member function as returning x % y.

multiplies

template<class T>
 struct multiplies : public binary_function<T, T, T> {
 T operator()(const T& x, const T& y) const;
 };

The template class defines its member function as returning x * y.

negate

template<class T>
 struct negate : public unary_function<T, T> {
 T operator()(const T& x) const;
 };

The template class defines its member function as returning -x.

not1

template<class Pred>
 unary_negate<Pred> not1(const Pred& pr);

The template function returns unary_negate<Pred>(pr).

not2

template<class Pred>
 binary_negate<Pred> not2(const Pred& pr);

The template function returns binary_negate<Pred>(pr).

not_equal_to

template<class T>
 struct not_equal_to : public binary_function<T, T, bool> {
 bool operator()(const T& x, const T& y) const;
 };

The template class defines its member function as returning x != y.

plus

template<class T>
 struct plus : public binary_function<T, T, T> {
 T operator()(const T& x, const T& y) const;
 };

The template class defines its member function as returning x + y.

pointer_to_binary_function

template<class Arg1, class Arg2, class Result>
 class pointer_to_binary_function
 : public binary_function<Arg1, Arg2, Result> {
public:
 explicit pointer_to_binary_function(Result (*pf)(Arg1, Arg2));
 Result operator()(const Arg1 x, const Arg2 y) const;
 };

The template class stores a copy of pf. It defines its member function operator() as returning
(*pf)(x, y).

pointer_to_unary_function

template<class Arg, class Result>
 class pointer_to_unary_function
 : public unary_function<Arg, Result> {
public:
 explicit pointer_to_unary_function(Result (*pf)(Arg));
 Result operator()(const Arg x) const;
 };

The template class stores a copy of pf. It defines its member function operator() as returning
(*pf)(x).

ptr_fun

template<class Arg, class Result>
 pointer_to_unary_function<Arg, Result>
 ptr_fun(Result (*pf)(Arg));
template<class Arg1, class Arg2, class Result>
 pointer_to_binary_function<Arg1, Arg2, Result>
 ptr_fun(Result (*pf)(Arg1, Arg2));

The first template function returns pointer_to_unary_function<Arg, Result>(pf).

The second template function returns pointer_to_binary_function<Arg1, Arg2,
Result>(pf).

unary_function

template<class Arg, class Result>
 struct unary_function {
 typedef Arg argument_type;
 typedef Result result_type;
 };

The template class serves as a base for classes that define a member function of the form:

result_type operator()(argument_type)

Hence, all such unary functions can refer to their sole argument type as argument_type and their
return type as result_type.

unary_negate

template<class Pred>
 class unary_negate
 : public unary_function<Pred::argument_type, bool> {
public:
 explicit unary_negate(const Pred& pr);
 bool operator()(const argument_type& x) const;
 };

The template class stores a copy of pr, which must be a unary function object. It defines its member
function operator() as returning !pr(x).

See also the Table of Contents and the Index.

Copyright © 1992-1996 by P.J. Plauger. Portions derived from work copyright © 1994 by

Hewlett-Packard Company. All rights reserved.

<iomanip>

namespace std {
// MANIPULATORS
T1 resetiosflags(ios_base::fmtflags mask);
T2 setiosflags(ios_base::fmtflags mask);
T3 setbase(int base);
template<class E>
 T4 setfill(E c);
T5 setprecision(int n);
T6 setw(int n);
 };

Include the iostreams standard header <iomanip> to define several manipulators that each take a
single argument. Each of these manipulators returns an unspecified type, called T1 through T6 here, that
overloads both basic_istream<E, T>::operator>> and basic_ostream<E,
T>::operator<<. Thus, you can write extractors and inserters such as:

cin >> setbase(8);
cout << setbase(8);

resetiosflags

T1 resetiosflags(ios_base::fmtflags mask);

The manipulator returns an object that, when extracted from or inserted into the stream str, calls
str.setf(ios_base:: fmtflags(), mask), then returns str.

setiosflags

T2 setiosflags(ios_base::fmtflags mask);

The manipulator returns an object that, when extracted from or inserted into the stream str, calls
str.setf(mask), then returns str.

http://www.dinkumware.com/

setbase

T3 setbase(int base);

The manipulator returns an object that, when extracted from or inserted into the stream str, calls
str.setf(mask, ios_base::basefield), then returns str. Here, mask is determined as
follows:

If base is 8, then mask is ios_base::oct●

If base is 10, then mask is ios_base::dec●

If base is 16, then mask is ios_base::hex●

If base is any other value, then mask is ios_base::fmtflags(0)●

setfill

template<class E>
 T4 setfill(E fillch);

The template manipulator returns an object that, when extracted from or inserted into the stream str,
calls str.fill(fillch), then returns str. The type E must be the same as the element type for the
stream str.

setprecision

T5 setprecision(int prec);

The manipulator returns an object that, when extracted from or inserted into the stream str, calls
str.precision(prec), then returns str.

setw

T6 setw(int wide);

The manipulator returns an object that, when extracted from or inserted into the stream str, calls
str.width(wide), then returns str.

See also the Table of Contents and the Index.

Copyright © 1992-1996 by P.J. Plauger. All rights reserved.

<ios>

basic_ios · fpos · ios · ios_base · streamoff · streampos · streamsize
· wios · wstreampos

boolalpha · dec · fixed · hex · internal · left · noboolalpha ·
noshowbase · noshowpoint · noshowpos · noskipws · nounitbuf ·
nouppercase · oct · right · scientific · showbase · showpoint ·
showpos · skipws · unitbuf · uppercase

namespace std {
 typedef T1 streamoff;
 typedef T2 streamsize;
 class ios_base;
// TEMPLATE CLASSES
 template <class E, class T = char_traits<E> >
 class basic_ios;
 typedef basic_ios<char, char_traits<char> > ios;
 typedef basic_ios<wchar_t, char_traits<wchar_t> > wios;
 template <class St>
 class fpos;
 typedef fpos<mbstate_t> streampos;
 typedef fpos<mbstate_t> wstreampos;
// MANIPULATORS
 ios_base& boolalpha(ios_base& str);
 ios_base& noboolalpha(ios_base& str);
 ios_base& showbase(ios_base& str);
 ios_base& noshowbase(ios_base& str);
 ios_base& showpoint(ios_base& str);
 ios_base& noshowpoint(ios_base& str);
 ios_base& showpos(ios_base& str);
 ios_base& noshowpos(ios_base& str);
 ios_base& skipws(ios_base& str);
 ios_base& noskipws(ios_base& str);
 ios_base& unitbuf(ios_base& str);
 ios_base& nounitbuf(ios_base& str);
 ios_base& uppercase(ios_base& str);

http://www.dinkumware.com/

 ios_base& nouppercase(ios_base& str);
 ios_base& internal(ios_base& str);
 ios_base& left(ios_base& str);
 ios_base& right(ios_base& str);
 ios_base& dec(ios_base& str);
 ios_base& hex(ios_base& str);
 ios_base& oct(ios_base& str);
 ios_base& fixed(ios_base& str);
 ios_base& scientific(ios_base& str);
 };

Include the iostreams standard header <ios> to define several types and functions basic to the operation
of iostreams. (This header is typically included for you by another of the iostreams headers. You seldom
have occasion to include it directly.)

A large group of functions are manipulators. The manipulators declared in <ios> alter the values
stored in its argument object of class ios_base. Other manipulators perform actions on streams
controlled by objects of a type derived from this class, such as a specialization of one of the template
classes basic_istream or basic_ostream. For example, noskipws(istr) clears the format
flag ios_base::skipws in the object istr, which might be of type istream.

You can also call a manipulator by inserting it into an output stream or extracting it from an input stream,
thanks to some special machinery supplied in the classes derived from ios_base. For example:

istr >> noskipws;

calls noskipws(istr).

basic_ios

bad · basic_ios · char_type · clear · copyfmt · eof · exceptions ·
init · fail · good · imbue · init · int_type · narrow · off_type ·
operator! · operator void * · pos_type · rdbuf · rdstate · setstate ·
tie · widen

template <class E, class T = char_traits<E> >
 class basic_ios : public ios_base {
public:
 typedef E char_type;
 typedef T::int_type int_type;
 typedef T::pos_type pos_type;
 typedef T::off_type off_type;

 explicit basic_ios(basic_streambuf<E, T>* sb);
 virtual ~basic_ios();
 operator void *() const;
 bool operator!() const;
 iostate rdstate() const;
 void clear(iostate state = goodbit);
 void setstate(iostate state);
 bool good() const;
 bool eof() const;
 bool fail() const;
 bool bad() const;
 iostate exceptions() const;
 iostate exceptions(iostate except);
 basic_ios& copyfmt(const basic_ios& rhs);
 E fill() const;
 E fill(E ch);
 basic_ostream<E, T> *tie() const;
 basic_ostream<E, T> *tie(basic_ostream<E, T> *str);
 basic_streambuf<E, T> *rdbuf() const;
 basic_streambuf<E, T> *rdbuf(basic_streambuf<E, T> *sb);
 basic_ios& copyfmt(const basic_ios& rhs);
 locale imbue(const locale& loc);
 E widen(char ch);
 char narrow(E ch, char dflt);
protected:
 basic_ios();
 void init(basic_streambuf<E, T>* sb);
 };

The template class describes the storage and member functions common to both input streams (of
template class basic_istream) and output streams (of template class basic_ostream) that
depend on the template parameters. (The class ios_base describes what is common and not dependent
on template parameters. An object of class basic_ios<E, T> helps control a stream with elements of
type E, whose character traits are determined by the class T.

An object of class basic_ios<E, T> stores:

formatting information and●

stream state information in a base object of type ios_base●

a fill character in an object of type E●

a tie pointer to an object of type basic_ostream<E, T>●

a stream buffer pointer to an object of type basic_streambuf<E, T>●

basic_ios::bad

bool bad() const;

The member function returns true if rdstate() & badbit.

basic_ios::basic_ios

explicit basic_ios(basic_streambuf<E, T>* sb);
basic_ios();

The first constructor initializes its member objects by calling init(sb). The second (protected)
constructor leaves its member objects uninitialized. A later call to init must initialize the object before
it can be safely destroyed.

basic_ios::char_type

typedef E char_type;

The type is a synonym for the template parameter E.

basic_ios::clear

void clear(iostate state = goodbit);

The member function replaces the stored stream state information with state | (rdbuf() != 0
? goodbit : badbit). If state & exceptions() is nonzero, it then throws an object of
class failure.

basic_ios::copyfmt

basic_ios& copyfmt(const basic_ios& rhs);

The member function reports the callback event erase_event. It then copies from rhs into *this
the fill character, the tie pointer, and the formatting information. Before altering the exception mask, it
reports the callback event copyfmt_event. If, after the copy is complete, state &
exceptions() is nonzero, the function effectively calls clear with the argument rdstate(). It
returns *this.

basic_ios::eof

bool eof() const;

The member function returns true if rdstate() & eofbit.

basic_ios::exceptions

iostate exceptions() const;
iostate exceptions(iostate except);

The first member function returns the stored exception mask. The second member function stores
except in the exception mask and returns its previous stored value. Note that storing a new exception
mask can throw an exception just like the call clear(rdstate()).

basic_ios::fail

bool fail() const;

The member function returns true if rdstate() & failbit.

basic_ios::fill

E fill() const;
E fill(E ch);

The first member function returns the stored fill character. The second member function stores ch in the
fill character and returns its previous stored value.

basic_ios::good

bool good() const;

The member function returns true if rdstate() == goodbit (no state flags are set).

basic_ios::imbue

locale imbue(const locale& loc);

If rdbuf is not a null pointer, the member function calls rdbuf()->pubimbue(loc). In any case,
it returns ios_base::imbue(loc).

basic_ios::init

void init(basic_streambuf<E, T>* sb);

The member function stores values in all member objects, so that:

rdbuf() returns sb●

tie() returns a null pointer●

rdstate() returns goodbit if sb is nonzero; otherwise, it returns badbit●

exceptions() returns goodbit●

flags() returns skipws | dec●

width() returns zero●

precision() returns 6●

fill() returns the space character●

getloc() returns locale::classic()●

iword returns zero and pword returns a null pointer for all argument value●

basic_ios::int_type

typedef T::int_type int_type;

The type is a synonym for T::int_type.

basic_ios::narrow

char narrow(E ch, char dflt);

The member function returns use_facet< ctype<E> >(getloc()). narrow(ch, dflt).

basic_ios::off_type

typedef T::off_type off_type;

The type is a synonym for T::off_type.

basic_ios::operator void *

operator void *() const;

The operator returns a null pointer only if fail().

basic_ios::operator!

bool operator!() const;

The operator returns fail().

basic_ios::pos_type

typedef T::pos_type pos_type;

The type is a synonym for T::pos_type.

basic_ios::rdbuf

basic_streambuf<E, T> *rdbuf() const;
basic_streambuf<E, T> *rdbuf(basic_streambuf<E, T> *sb);

The member function returns the stored stream buffer pointer.

basic_ios::rdstate

iostate rdstate() const;

The member function returns the stored stream state information.

basic_ios::setstate

void setstate(iostate state);

The member function effectively calls clear(state | rdstate()).

basic_ios::tie

basic_ostream<E, T> *tie() const;
basic_ostream<E, T> *tie(basic_ostream<E, T> *str);

The first member function returns the stored tie pointer. The second member function stores str in the
tie pointer and returns its previous stored value.

basic_ios::widen

E narrow(char ch);

The member function returns use_facet< ctype<E> >(getloc()). widen(ch).

boolalpha

ios_base& boolalpha(ios_base& str);

The manipulator effectively calls str.setf(ios_base:: boolalpha), then returns str.

dec

ios_base& dec(ios_base& str);

The manipulator effectively calls str.setf(ios_base:: dec, ios_base:: basefield),
then returns str.

fixed

ios_base& fixed(ios_base& str);

The manipulator effectively calls str.setf(ios_base:: fixed, ios_base::
floatfield), then returns str.

fpos

template <class St>
 class fpos {
public:
 fpos(St state, fpos_t fposn);
 fpos(streamoff off);
 fpos_t get_fpos_t() const;
 St state() const;
 void state(St state);
 operator streamoff() const;
 streamoff operator-(const fpos<St>& rhs) const;
 fpos<St>& operator+=(streamoff off);
 fpos<St>& operator-=(streamoff off);
 fpos<St> operator+(streamoff off) const;
 fpos<St> operator-(streamoff off) const;
 bool operator==(const fpos<St>& rhs) const;
 bool operator!=(const fpos<St>& rhs) const;
 };

The template class describes an object that can store all the information needed to restore an arbitrary
file-position indicator within any stream. An object of class fpos<St> effectively stores three member
objects:

a byte offset, of type streamoff●

an arbitrary file position, for use by an object of class basic_filebuf, of type fpos_t●

a conversion state, for use by an object of class basic_filebuf, of type St, typically
mbstate_t

●

For an environment with limited file size, however, streamoff and fpos_t may sometimes be used
interchangeably. And for an environment with no streams that have a state-dependent encoding,
mbstate_t may actually be unused. So the number of member objects stored may well vary from one
to three.

fpos::fpos

fpos(St state, fpos_t fposn);
fpos(streamoff off);

The first constructor stores a zero offset and the objects state and fposn. The second constructor
stores the offset off, relative to the beginning of file and in the initial conversion state (if that matters).
If off is -1, the resulting object represents an invalid stream position.

fpos::get_fpos_t

fpos_t get_fpos_t() const;

returns the value stored in the fpos_t member object.

fpos::operator!=

bool operator!=(const fpos<St>& rhs) const;

The member function returns !(*this == rhs).

fpos::operator+

fpos<St> operator+(streamoff off) const;

The member function returns fpos<St>(*this) += off.

fpos::operator+=

fpos<St>& operator+=(streamoff off);

The member function adds off to the stored offset member object, then returns *this. For positioning
within a file, the result is generally valid only for binary streams that do not have a state-dependent
encoding.

fpos::operator-

streamoff operator-(const fpos<St>& rhs) const;
fpos<St> operator-(streamoff off) const;

The first member function returns (streamoff)*this - (streamoff)rhs. The second member
function returns fpos<St>(*this) -= off.

fpos::operator-=

fpos<St>& operator-=(streamoff off);

The member function returns fpos<St>(*this) -= off. For positioning within a file, the result is
generally valid only for binary streams that do not have a state-dependent encoding.

fpos::operator==

bool operator==(const fpos<St>& rhs) const;

The member function returns (streamoff)*this == (streamoff)rhs.

fpos::operator streamoff

operator streamoff() const;

The member function returns the stored offset member object, plus any additional offset stored as part of
the fpos_t member object.

fpos::state

St state() const;
void state(St state);

The first member function returns the value stored in the St member object. The second member
function stores state in the St member object.

hex

ios_base& hex(ios_base& str);

The manipulator effectively calls str.setf(ios_base:: hex, ios_base:: basefield),
then returns str.

internal

ios_base& internal(ios_base& str);

The manipulator effectively calls str.setf(ios_base:: internal, ios_base::
adjustfield), then returns str.

ios

typedef basic_ios<char, char_traits<char> > ios;

The type is a synonym for template class basic_ios, specialized for elements of type char with
default character traits.

ios_base

event · event_callback · failure · flags · fmtflags · getloc · imbue ·
Init · ios_base · iostate · iword · openmode · operator= · precision ·
pword · register_callback · seekdir · setf · sync_with_stdio · unsetf
· width · xalloc

class ios_base {
public:
 class failure;
 typedef T1 fmtflags;
 static const fmtflags boolalpha, dec, fixed, hex, internal,
 left, oct, right, scientific, showbase, showpoint,
 showpos, skipws, unitbuf, uppercase, adjustfield,
 basefield, floatfield;
 typedef T2 iostate;
 static const iostate badbit, eofbit, failbit, goodbit;
 typedef T3 openmode;
 static const openmode app, ate, binary, in, out, trunc;
 typedef T4 seekdir;
 static const seekdir beg, cur, end;
 typedef T5 event;
 static const event copyfmt_event, erase_event,
 copyfmt_event;
 class Init;
 ios_base& operator=(const ios_base& rhs);
 fmtflags flags() const;
 fmtflags flags(fmtflags fmtfl);
 fmtflags setf(fmtflags fmtfl);
 fmtflags setf(fmtflags fmtfl, fmtflags mask);
 void unsetf(fmtflags mask);
 streamsize precision() const;
 streamsize precision(streamsize prec);
 streamsize width() const;

 stramsize width(streamsize wide);
 locale imbue(const locale& loc);
 locale getloc() const;
 static int xalloc();
 long& iword(int idx);
 void *& pword(int idx);
 typedef void *(event_callback(event ev, ios_base& ios, int idx);
 void register_callback(event_callback pfn, int idx);
 static bool sync_with_stdio(bool sync = true);
protected:
 ios_base();
 };

The class describes the storage and member functions common to both
input and output streams that does not depend on the template
parameters. (The template class basic_ios describes what is common and
is dependent on template parameters.

An object of class ios_base stores formatting information, which
consists of:

format flags in an object of type fmtflags●

an exception mask in an object of type iostate●

a field width in an object of type int●

a display precison in an object of type int●

a locale object in an object of type locale●

two extensible arrays, with elements of type long and void pointer●

An object of class ios_base also stores stream state information, in
an object of type iostate, and a callback stack.

ios_base::event

typedef T5 event;
static const event copyfmt_event, erase_event,
 imbue_event;

The type is an enumerated type T5 that describes an object that can
store the callback event used as an argument to a function registered
with register_callback. The distinct event values are:

copyfmt_event, to identify a callback that occurs near the end of
a call to copyfmt, just before the exception mask is copied.

●

erase_event, to identify a callback that occurs at the beginning
of a call to copyfmt, or at the beginning of a call to the

●

destructor for *this.

imbue_event, to identify a callback that occurs at the end of a
call to imbue, just before the function returns.

●

ios_base::event_callback

typedef void *(event_callback(event ev, ios_base& ios, int idx);

The type describes a pointer to a function that can be registered with
register_callback.

ios_base::failure

class failure : public exception {
public:
 explicit failure(const string& what_arg) {
 };

The member class serves as the base class for all exceptions thrown by
the member function clear in template class basic_ios. The value
returned by what() is what_arg.data().

ios_base::flags

fmtflags flags() const;
fmtflags flags(fmtflags fmtfl);

The first member function returns the stored format flags. The second
member function stores fmtfl in the format flags and returns its
previous stored value.

ios_base::fmtflags

typedef T1 fmtflags;
static const fmtflags boolalpha, dec, fixed, hex, internal,
 left, oct, right, scientific, showbase, showpoint,
 showpos, skipws, unitbuf, uppercase, adjustfield,
 basefield, floatfield;

The type is an enumerated type T1 that describes an object that can
store format flags. The distinct flag values are:

boolalpha, to insert or extract objects of type bool as names
(such as true and false) rather than as numeric values

●

dec, to insert or extract integer values in decimal format●

fixed, to insert floating-point values in fixed-point format (with●

no exponent field)

hex, to insert or extract integer values in hexadecimal format●

internal, to pad to a field width as needed by inserting fill
characters at a point internal to a generated numeric field

●

left, to pad to a field width as needed by inserting fill
characters at the end of a generated field (left justification)

●

oct, to insert or extract integer values in octal format●

right, to pad to a field width as needed by inserting fill
characters at the beginning of a generated field (right
justification)

●

scientific, to insert floating-point values in scientific format
(with an exponent field)

●

showbase, to insert a prefix that reveals the base of a generated
integer field

●

showpoint, to insert a decimal point unconditionally in a
generated floating-point field

●

showpos, to insert a plus sign in a non-negative generated numeric
field

●

skipws, to skip leading white space before certain extractions●

unitbuf, to flush output after each insertion●

uppercase, to insert uppercase equivalents of lowercase letters in
certain insertions

●

In addition, several useful values are:

adjustfield, internal | left | right●

basefield, dec | hex | oct●

floatfield, fixed | scientific●

ios_base::getloc

locale getloc() const;

The member function returns the stored locale object.

ios_base::imbue

locale imbue(const locale& loc);

The member function stores loc in the locale object, then reports the
callback event imbue_event. It returns the previous stored value.

ios_base::Init

class Init {
 };

The nested class describes an object whose construction ensures that
the standard iostreams objects are properly constructed, even during
the execution of a constructor for an arbitrary static object.

ios_base::ios_base

ios_base();

The (protected) constructor does nothing. A later call to
basic_ios::init must initialize the object before it can be safely
destroyed. Thus, the only safe use for class ios_base is as a base
class for template class basic_ios.

ios_base::iostate

typedef T2 iostate;
static const iostate badbit, eofbit, failbit, goodbit;

The type is an enumerated type T2 that describes an object that can
store stream state information. The distinct flag values are:

badbit, to record a loss of integrity of the stream buffer●

eofbit, to record end-of-file while extracting from a stream●

failbit, to record a failure to extract a valid field from a strea●

In addition, a useful value is:

goodbit, no bits set●

ios_base::iword

long& iword(int idx);

The member function returns a reference to element idx of the
extensible array with elements of type long. All elements are
effectively present and initially store the value zero. The returned
reference is invalid after the next call to iword for the object,
after the object is altered by a call to basic_ios::copyfmt, or after
the object is destroyed.

To obtain a unique index, for use across all objects of type ios_base,
call xalloc.

ios_base::openmode

typedef T3 openmode;
static const openmode app, ate, binary, in, out, trunc;

The type is an enumerated type T3 that describes an object that can
store the opening mode for several iostreams objects. The distinct
flag values are:

app, to seek to the end of a stream before each insertion●

ate, to seek to the end of a stream when its controlling object is
first created

●

binary, to read a file as a binary stream, rather than as a text
stream

●

in, to permit extraction from a stream●

out, to permit insertion to a stream●

trunc, to truncate an existing file when its controlling object is
first created

●

ios_base::operator=

ios_base& operator=(const ios_base& rhs) const;

The operator copies the stored formatting information, making a new
copy of any extensible arrays. It then returns *this. Note that the
callback stack is not copied.

ios_base::precision

streamsize precision() const;
streamsize precision(streamsize prec);

The first member function returns the stored display precision. The
second member function stores prec in the display precision and
returns its previous stored value.

ios_base::pword

void *& pword(int idx);

The member function returns a reference to element idx of the
extensible array with elements of type void pointer. All elements are
effectively present and initially store the null pointer. The returned
reference is invalid after the next call to pword for the object,
after the object is altered by a call to basic_ios::copyfmt, or after

the object is destroyed.

To obtain a unique index, for use across all objects of type ios_base,
call xalloc.

ios_base::register_callback

void register_callback(event_callback pfn, int idx);

The member function pushes the pair {pfn, idx} onto the stored
callback stack. When a callback event ev is reported, the functions
are called, in reverse order of registry, by the expression (*pfn)(ev,
*this, idx).

ios_base::seekdir

typedef T4 seekdir;
static const seekdir beg, cur, end;

The type is an enumerated type T4 that describes an object that can
store the seek mode used as an argument to the member functions of
several iostreams classes. The distinct flag values are:

beg, to seek (alter the current read or write position) relative
to the beginning oc a sequence (array, stream, or file)

●

cur, to seek relative to the current position within a sequence●

end, to seek relative to the end of a sequence●

ios_base::setf

void setf(fmtflags mask);
fmtflags setf(fmtflags fmtfl, fmtflags mask);

The first member function effectively calls flags(mask | flags()) (set
selected bits), then returns the previous format flags. The second
member function effectively calls flags(mask & fmtfl, flags() & ~mask)
(replace selected bits under a mask), then returns the previous format
flags.

ios_base::sync_with_stdio

static bool sync_with_stdio(bool sync = true);

The static member function stores a stdio sync flag, which is
initially true. When true, this flag ensures that operations on the
same file are properly synchronized between the iostreams functions
and those defined in the Standard C library. Otherwise,

synchronization may or may not be guaranteed, but performance may be
improved. The function stores sync in the stdio sync flag and returns
its previous stored value. You can call it reliably only before
performing any operations on the standard streams.

ios_base::unsetf

void unsetf(fmtflags mask);

The member function effectively calls flags(~mask & flags()) (clear selected bits).

ios_base::width

streamsize width() const;
streamsize width(streamsize wide);

The first member function returns the stored field width. The second member function stores wide in the
field width and returns its previous stored value.

ios_base::xalloc

static int xalloc();

The static member function returns a stored static value, which it increments on each call. You can use
the return value as a unique index argument when calling the member functions iword or pword.

left

ios_base& left(ios_base& str);

The manipulator effectively calls str.setf(ios_base:: left, ios_base::
adjustfield), then returns str.

noboolalpha

ios_base& noboolalpha(ios_base& str);

The manipulator effectively calls str.unsetf(ios_base:: boolalpha), then returns str.

noshowbase

ios_base& noshowbase(ios_base& str);

The manipulator effectively calls str.unsetf(ios_base:: showbase), then returns str.

noshowpoint

ios_base& noshowpoint(ios_base& str);

The manipulator effectively calls str.unsetf(ios_base:: showpoint), then returns str.

noshowpos

ios_base& noshowpos(ios_base& str);

The manipulator effectively calls str.unsetf(ios_base:: showpos"), then returns str.

noskipws

ios_base& noskipws(ios_base& str);

The manipulator effectively calls str.unsetf(ios_base:: skipws), then returns str.

nounitbuf

ios_base& nounitbuf(ios_base& str);

The manipulator effectively calls str.unsetf(ios_base:: unitbuf), then returns str.

nouppercase

ios_base& nouppercase(ios_base& str);

The manipulator effectively calls str.unsetf(ios_base:: uppercase), then returns str.

oct

ios_base& oct(ios_base& str);

The manipulator effectively calls str.setf(ios_base:: oct, ios_base:: basefield),
then returns str.

right

ios_base& right(ios_base& str);

The maiipulator effectively calls str.setf(ios_base:: right, ios_base::
adjustfield), then returns str.

scientific

ios_base& scientific(ios_base& str);

The manipulator effectively calls str.setf(ios_base:: scientific, ios_base::
floatfield), then returns str.

showbase

ios_base& showbase(ios_base& str);

The manipulator effectively calls str.setf(ios_base:: showbase), then returns str.

showpoint

ios_base& showpoint(ios_base& str);

The manipulator effectively calls str.setf(ios_base:: showpoint), then returns str.

showpos

ios_base& showpos(ios_base& str);

The manipulator effectively calls str.setf(ios_base:: showpos), then returns str.

skipws

ios_base& skipws(ios_base& str);

The manipulator effectively calls str.setf(ios_base:: skipws), then returns str.

streamoff

typedef T1 streamoff;

The type is a signed integer type T1 that describes an object that can store a byte offset involved in
various stream positioning operations. Its representation has at least 32 value bits. It is not necessarily
large enough to represent an arbitrary byte position within a stream. The value streamoff(-1)
generally indicates an erroneous offset.

streampos

typedef fpos<mbstate_t> streampos;

The type is a synonym for fpos< mbstate_t>.

streamsize

typedef T2 streamsize;

The type is a signed integer type T3 that describes an object that can store a count of the number of
elements involved in various stream operations. Its representation has at least 16 bits. It is not necessarily
large enough to represent an arbitrary byte position within a stream.

unitbuf

ios_base& unitbuf(ios_base& str);

The manipulator effectively calls str.setf(ios_base:: unitbuf), then returns str.

uppercase

ios_base& uppercase(ios_base& str);

The manipulator effectively calls str.setf(ios_base:: uppercase), then returns str.

wios

typedef basic_ios<wchar_t, char_traits<wchar_t> > wios;

The type is a synonym for template class basic_ios, specialized for elements of type wchar_t with
default character traits.

wstreampos

typedef fpos<mbstate_t> wstreampos;

The type is a synonym for fpos< mbstate_t>.

See also the Table of Contents and the Index.

Copyright © 1992-1996 by P.J. Plauger. All rights reserved.

<iosfwd>

namespace std {
 // TYPE DEFINITIONS
typedef T1 streamoff;
typedef T2 streampos;
 // TEMPLATES
template<class E>
 class char_traits;
class char_traits<char>;
class char_traits<wchar_t>;
template<class E, class T = char_traits<E> >
 class basic_ios;
template<class E, class T = char_traits<E> >
 class istreambuf_iterator;
template<class E, class T = char_traits<E> >
 class ostreambuf_iterator;
template<class E, class T = char_traits<E> >
 class basic_streambuf;
template<class E, class T = char_traits<E> >
 class basic_istream;
template<class E, class T = char_traits<E> >
 class basic_ostream;
template<class E, class T = char_traits<E> >
 class basic_iostream;
template<class E, class T = char_traits<E> >
 class basic_stringbuf;
template<class E, class T = char_traits<E> >
 class basic_istringstream;
template<class E, class T = char_traits<E> >
 class basic_ostringstream;
template<class E, class T = char_traits<E> >
 class basic_stringstream;
template<class E, class T = char_traits<E> >
 class basic_filebuf;
template<class E, class T = char_traits<E> >
 class basic_ifstream;
template<class E, class T = char_traits<E> >
 class basic_ofstream;
template<class E, class T = char_traits<E> >
 class basic_fstream;

http://www.dinkumware.com/

 // char TYPE DEFINITIONS
typedef basic_ios<char, char_traits<char> > ios;
typedef basic_streambuf<char, char_traits<char> > streambuf;
typedef basic_istream<char, char_traits<char> > istream;
typedef basic_ostream<char, char_traits<char> > ostream;
typedef basic_iostream<char, char_traits<char> > iostream;
typedef basic_stringbuf<char, char_traits<char> > stringbuf;
typedef basic_istringstream<char, char_traits<char> > istringstream;
typedef basic_ostringstream<char, char_traits<char> > ostringstream;
typedef basic_stringstream<char, char_traits<char> > stringstream;
typedef basic_filebuf<char, char_traits<char> > filebuf;
typedef basic_ifstream<char, char_traits<char> > ifstream;
typedef basic_ofstream<char, char_traits<char> > ofstream;
typedef basic_fstream<char, char_traits<char> > fstream;
 // wchar_t TYPE DEFINITIONS
typedef basic_ios<wchar_t, char_traits<wchar_t> > wios;
typedef basic_streambuf<wchar_t, char_traits<wchar_t> > wstreambuf;
typedef basic_istream<wchar_t, char_traits<wchar_t> > wistream;
typedef basic_ostream<wchar_t, char_traits<wchar_t> > wostream;
typedef basic_iostream<wchar_t, char_traits<wchar_t> > wiostream;
typedef basic_stringbuf<wchar_t, char_traits<wchar_t> > wstringbuf;
typedef basic_istringstream<wchar_t, char_traits<wchar_t> > wistringstream;
typedef basic_ostringstream<wchar_t, char_traits<wchar_t> > wostringstream;
typedef basic_stringstream<wchar_t, char_traits<wchar_t> > wstringstream;
typedef basic_filebuf<wchar_t, char_traits<wchar_t> > wfilebuf;
typedef basic_ifstream<wchar_t, char_traits<wchar_t> > wifstream;
typedef basic_ofstream<wchar_t, char_traits<wchar_t> > wofstream;
typedef basic_fstream<wchar_t, char_traits<wchar_t> > wfstream;
 };

Include the iostreams standard header <iosfwd> to declare forward references to several template classes
used throughout iostreams. All such template classes are defined in other standard headers. You include this
header explicitly only when you need one of the above declarations, but not its definition.

See also the Table of Contents and the Index.

Copyright © 1992-1996 by P.J. Plauger. All rights reserved.

<iostream>

namespace std {
 extern istream cin;
 extern ostream cout;
 estern ostream cerr;
 extern ostream clog;
 extern wistream wcin;
 extern wostream wcout;
 extern wostream wcerr;
 extern wostream wclog;
 };

Include the iostreams standard header <iostream> to declare several objects that control reading from
and writing to the standard streams. This is often the only header you need include to perform input and
output from a C++ program.

The objects fall into two groups:

cin, cout, cerr, and clog are byte oriented, performing conventional byte-at-a-time transfers●

wcin, wcout, wcerr, and wclog are wide oriented, translating to and from the wide
characters that the program manipulates internally

●

Once you perform certain operations on a stream, such as the standard input, you cannot perform
operations of a different orientation on the same stream. Hence, a program cannot operate
interchangeably on both cin and wcin, for example.

All the objects declared in this header share a peculiar property -- you can assume they are constructed
before any static objects you define, in a translation unit that includes <iostreams>. Equally, you can
assume that these objects are not destroyed before the destructors for any such static objects you define.
(The output streams are, however, flushed during program termination.) Hence, you can safely read from
or write to the standard streams prior to program startup and after program termination.

This guarantee is not universal, however. A static constructor may call a function in another translation
unit. The called function cannot assume that the objects declared in this header have been constructed,
given the uncertain order in which translation units participate in static construction. To use these objects
in such a context, you must first construct an object of class ios_base::Init, as in:

#include <iostream>
void marker()
 { // called by some constructor

http://www.dinkumware.com/

 ios_base::Init unused_name;
 cout <<: "called fun" << endl;
 }

cerr

extern ostream cerr;

The object controls unbuffered insertions to the standard error output as a byte stream. Once the object is
constructed, the expression cerr.flags() & unitbuf is nonzero.

cin

extern istream cin;

The object controls extractions from the standard input as a byte stream. Once the object is constructed,
the call cin.tie() returns &cout.

clog

extern ostream clog;

The object controls buffered insertions to the standard error output as a byte stream.

cout

extern ostream cout;

The object controls insertions to the standard output as a byte stream.

wcerr

extern wostream wcerr;

The object controls unbuffered insertions to the standard error output as a wide stream. Once the object is
constructed, the expression wcerr.flags() & unitbuf is nonzero.

wcin

extern wistream wcin;

The object controls extractions from the standard input as a wide stream. Once the object is constructed,
the call wcin.tie() returns &wcout.

wclog

extern wostream wclog;

The object controls buffered insertions to the standard error output as a wide stream.

wcout

extern wostream wcout;

The object controls insertions to the standard output as a wide stream.

See also the Table of Contents and the Index.

Copyright © 1992-1996 by P.J. Plauger. All rights reserved.

<istream>

namespace std {
 template<class E, class T = char_traits<E> >
 class basic_istream;
 typedef basic_istream<char, char_traits<char> > istream;
 typedef basic_istream<wchar_t, char_traits<wchar_t> > wistream;
 template<class E, class T = char_traits<E> >
 class basic_iostream;
 typedef basic_iostream<char, char_traits<char> > iostream;
 typedef basic_iostream<wchar_t, char_traits<wchar_t> > wiostream;
// EXTRACTORS
 template<class E, class T>
 basic_istream<E, T>& operator>>(basic_istream<E, T> is, E *s);
 template<class E, class T>
 basic_istream<E, T>& operator>>(basic_istream<E, T> is, E& c);
 template<class T>
 basic_istream<char, T>& operator>>(basic_istream<char, T> is, signed char
*s);
 template<class T>
 basic_istream<char, T>& operator>>(basic_istream<char, T> is, signed char&
c);
 template<class T>
 basic_istream<char, T>& operator>>(basic_istream<char, T> is, unsigned char
*s);
 template<class T>
 basic_istream<char, T>& operator>>(basic_istream<char, T> is, unsigned char&
c);
// MANIPULATOR
 template class<E, T>
 basic_istream<E, T>& ws(basic_istream<E, T> is);
 };

Include the iostreams standard header <istream> to define template class basic_istream, which mediates extractions
for the iostreams, and the template class. basic_iostream, which mediates both insertions and extractions. The header
also defines a related manipulator. (This header is typically included for you by another of the iostreams headers. You seldom
have occasion to include it directly.)

basic_iostream

template <class E, class T = char_traits<E> >
 class basic_iostream : public basic_istream<E, T>,
 public basic_ostream<E, T> {
public:
 typedef T traits_type;
 explicit basic_iostream(basic_streambuf<E, T> *sb);
 virtual ~basic_iostream();

http://www.dinkumware.com/

 };

The template class describes an object that controls insertions, through its base object basic_ostream<E, T>, and
extractions, through its base object basic_istream<E, T>. The two objects share a common virtual base object
basic_ios<E, T>. They also manage a common stream buffer, with elements of type E, whose character traits are
determined by the class T. The constructor initializes its base objects via basic_istream(sb) and
basic_ostream(sb).

basic_istream

basic_istream · char_type · gcount · get · getline · ignore · int_type · ipfx · isfx
· off_type · operator>> · peek · pos_type · putback · read · readsome · seekg ·
sentry · sync · tellg · traits_type · unget

template <class E, class T = char_traits<E> >
 class basic_istream : virtual public basic_ios<E, T> {
public:
 typedef T traits_type;
 typedef T::char_type char_type;
 typedef T::int_type int_type;
 typedef T::pos_type pos_type;
 typedef T::off_type off_type;
 class sentry;
 explicit basic_istream(basic_streambuf<E, T> *sb);
 virtual ~istream();
 bool ipfx(bool noskip = false);
 void isfx();
 basic_istream& operator>>(basic_istream& (*pf)(basic_istream&));
 basic_istream& operator>>(basic_ios<E, T>& (*pf)(basic_ios<E, T>&));
 basic_istream& operator>>(ios_base<E, T>& (*pf)(ios_base<E, T>&));
 basic_istream& operator>>(basic_streambuf<E, T> *sb);
 basic_istream& operator>>(bool& n);
 basic_istream& operator>>(short& n);
 basic_istream& operator>>(unsigned short& n);
 basic_istream& operator>>(int& n);
 basic_istream& operator>>(unsigned int& n);
 basic_istream& operator>>(long& n);
 basic_istream& operator>>(unsigned long& n);
 basic_istream& operator>>(void *& n);
 basic_istream& operator>>(float& n);
 basic_istream& operator>>(double& n);
 basic_istream& operator>>(long double& n);
 streamsize gcount() const;
 int_type get();
 basic_istream& get(E& c);
 basic_istream& get(E *s, streamsize n);
 basic_istream& get(E *s, streamsize n, E delim);
 basic_istream& get(basic_streambuf<E, T> *sb);

 basic_istream& get(baiic_streambuf<E, T> *sb, E delim);
 basic_istream& getline(E *s, streamsize n)E
 basic_istream& getline(E *s, streamsize n, E delim);
 basic_istream& ignore(streamsize n = 1,
 int_type delim = T::eof());
 int_type peek();
 basic_istream& read(E *s, streamsize n);
 streamsize readsome(E *s, streamsize n);
 basic_istream& putback(E c);
 basic_istream& unget();
 basic_istream& tellg();
 basic_istream& seekg(pos_type pos);
 basic_istream& seekg(off_type off, ios_base::seek_dir way);
 int sync();
 };

The template class describes an object that controls extraction of elements and encoded objects from a stream buffer with
elements of type E, whose character traits are determined by the class T.

Most of the member functions that overload operator>> are formatted input functions. They follow the pattern:

 iostate state = goodbit;
 const sentry ok(*this);
 if (ok)
 {try
 {extract elements and convert
 accumulate flags in state
 store a successful conversion}
 catch (...)
 {if (exceptions() & badbit)
 throw;
 setstate(badbit); }}
 setstate(state);
 return (*this);

Many other member functions are unformatted input functions. They follow the pattern:

 iostate state = goodbit;
 count = 0; // the value returned by gcount
 const sentry ok(*this, true);
 if (ok)
 {try
 {extract elements and deliver
 count extracted elements in count
 accumulate flags in state}
 catch (...)
 {if (rdstate() & badbit)
 throw;
 setstate(badbit); }}
 setstate(state);

Both groups of functions call setstate(eofbit) if they encounter end-of-file while extracting elements.

An object of class basic_istream<E, T> stores:

a virtual public base object of class basic_ios<E, T>●

an extraction count for the last unformatted input operation (called count in the code above●

basic_istream::basic_istream

explicit basic_istream(basic_streambuf<E, T> *sb);

The constructor initializes the base class by calling init(sb). It also stores zero in the extraction count.

basic_istream::char_type

typedef T::char_type char_type;

The type describes an element of the controlled sequence. Typically, it is the same as the template parameter E. In this
implementation, however, if wchar_t is not a unique type, then char_type is defined as an encapsulated wchar_t, so that
operator>>: can be overloaded on char_type&.

basic_istream::gcount

streamsize gcount() const;

The member function returns the extraction count.

basic_istream::get

int_type get();
basic_istream& get(E& c);
basic_istream& get(E *s, streamsize n);
basic_istream& get(E *s, streamsize n, E delim);
basic_istream& get(basic_streambuf<E, T> *sb);
basic_istream& get(basic_streambuf<E, T> *sb, E delim);

The first of these unformatted input functions extracts an element, if possible, as if by returning rdbuf()->sbumpc().
Otherwise, it returns T::eof(). If the function extracts no element, it calls setstate(failbit).

The second function extracts the int_type element x the same way. If x compares equal to T::eof(x), the function
calls setstate(failbit). Otherwise, it stores T::to_char_type(x) in c. The function returns *this.

The third function returns get(s, n, widen('\n')).

The fourth function extracts up to n - 1 elements and stores them in the array beginning at s. It always stores E(0) after
any extracted elements it stores. Extraction stops early on end-of-file or on an element that compares equal to delim (which
is not extracted). If the function extracts no elements, it calls setstate(failbit). In any case, it returns *this.

The fifth function returns get(sb, widen('\n')).

The sixth function extracts elements and inserts them in sb. Extraction stops on end-of-file or on an element that compares
equal to delim (which is not extracted). It also stops, without extracting the element in question, if an insertion fails or
throws an exception (which is caught but not rethrown). If the function extracts no elements, it calls
setstate(failbit). In any case, the function returns *this.

basic_istream::getline

basic_istream& getline(E *s, streamsize n);
basic_istream& getline(E *s, streamsize n, E delim);

The first of these unformatted input functions returns getline(s, n, widen('\n')).

The second function extracts up to n - 1 elements and stores them in the array beginning at s. It always stores E(0) after
any extracted elements it stores. In order of testing, extraction stops:

at end of file1.

after the function extracts an element that compares equal to delim, in which case the element is neither put back nor
appended to the controlled sequence

2.

after the function extracts is.max_size() elements3.

If the function extracts no elements, it calls setstate(failbit). In any case, it returns *this.

basic_istream::ignore

basic_istream& ignore(streamsize n = 1,
 int_type delim = T::eof());

The unformatted input function extracts up to n elements and discards them. If n equals
numeric_limits<int>::max(), however, it is taken as arbitrarily large. Extraction stops early on end-of-file or on an
element x such that T::to_int_type(x) compares equal to delim (which is also extracted). The function returns
*this.

basic_istream::int_type

typedef T::int_type int_type;

The type is a synonym for T::int_type.

basic_istream::ipfx

bool ipfx(bool noskip = false);

The member function prepares for formatted or unformatted input. If good() is true, the function:

calls tie-> flush() if tie() is not a null pointer●

effectively calls ws(*this) if flags() & skipws is nonzero●

If, after any such preparation, good() is false, the function calls setstate(failbit). In any case, the function returns
good().

You should not call ipfx directly. It is called as needed by an object of class sentry.

basic_istream::isfx

void isfx();

The member function has no official duties, but an implementation may depend on a call to isfx by a formatted or
unformatted input function to tidy up after an extraction. You should not call isfx directly. It is called as needed by an
object of class sentry.

basic_istream::off_type

typedef T::off_type off_type;

The type is a synonym for T::off_type.

basic_istream::operator>>

basic_istream& operator>>(
 basic_istream& (*pf)(basic_istream&));
basic_istream& operator>>(
 basic_ios<E, T>& (*pf)(basic_ios<E, T>&));
basic_istream& operator>>(
 ios_base<E, T>& (*pf)(ios_base<E, T>&));
basic_istream& operator>>(
 basic_streambuf<E, T> *sb);
basic_istream& operator>>(bool& n);
basic_istream& operator>>(short& n);
basic_istream& operator>>(unsigned short& n);
basic_istream& operator>>(int& n);
basic_istream& operator>>(unsigned int& n);
basic_istream& operator>>(long& n);
basic_istream& operator>>(unsigned long& n);
basic_istream& operator>>(void *& n);
basic_istream& operator>>(float& n);
basic_istream& operator>>(double& n);
basic_istream& operator>>(long double& n);

The first member function ensures that an expression of the form istr >>: ws calls ws(istr), then returns *this.
The second and third functions ensure that other manipulators, such as hex behave similarly. The remaining functions
constitute the formatted input functions.

The function:

basic_istream& operator>>(
 basic_streambuf<E, T> *sb);

extracts elements, if sb is not a null pointer, and inserts them in sb. Extraction stops on end-of-file. It also stops, without
extracting the element in question, if an insertion fails or throws an exception (which is caught but not rethrown). If the
function extracts no elements, it calls setstate(failbit). In any case, the function returns *this.

The function:

basic_istream& operator>>(bool& n);

extracts a field and converts it to a boolean value by calling use_facet<num_get<E, InIt>(getloc()).
get(InIt(rdbuf()), Init(0), *this, getloc(), n). Here, InIt is defined as
istreambuf_iterator<E, T>. The function returns *this.

The functions:

basic_istream& operator>>(short& n);
basic_istream& operator>>(unsigned short& n);
basic_istream& operator>>(int& n);
basic_istream& operator>>(unsigned int& n);
basic_istream& operator>>(long& n);
basic_istream& operator>>(unsigned long& n);
basic_istream& operator>>(void *& n);

each extract a field and convert it to a numeric value by calling use_facet<num_get<E, InIt>(getloc()).
get(InIt(rdbuf()), Init(0), *this, getloc(), x). Here, InIt is defined as
istreambuf_iterator<E, T>, and x has type long, unsigned long, or void * as needed. If the converted value cannot
be represented as the type of n, the function calls setstate(failbit). In any case, it returns *this.

The functions:

basic_istream& operator>>(float& n);
basic_istream& operator>>(double& n);
basic_istream& operator>>(long double& n);

each extract a field and convert it to a numeric value by calling use_facet<num_get<E, InIt>(getloc()).
get(InIt(rdbuf()), Init(0), *this, getloc(), x). Here, InIt is defined as
istreambuf_iterator<E, T>, and x has type double or long double as needed. If the converted value cannot be
represented as the type of n, the function calls setstate(failbit). In any case, it returns *this.

basic_istream::peek

int_type peek();

The unformatted input function extracts an element, if possible, as if by returning rdbuf()->sgetc(). Otherwise, it
returns T::eof().

basic_istream::pos_type

typedef T::pos_type pos_type;

The type is a synonym for T::pos_type.

basic_istream::putback

basic_istream& putback(E c);

The unformatted input function puts back c, if possible, as if by calling rdbuf()->sputbackc(). If rdbuf() is a null
pointer, or if the call to sputbackc returns T::eof(), the function calls setstate(badbit). In any case, it returns
*this.

basic_istream::read

basic_istremm& read(E *s, streamsize n);

The unformatted input function extracts up to n elements and stores them in the array beginning at s. Extraction stops early
on end-of-file, in which case the function calls setstate(failbit). In any case, it returns *this.

basic_istream::readsome

readsome readsome(E *s, streamsize n);

The member function extracts up to n elements and stores them in the array beginning at s. If rdbuf() is a null pointer, the
function calls setstate(failbit). Otherwise, it assigns the value of rdbuf()-<in_avail() to N. if N < 0, the
function calls setstate(eofbit). Otherwise, it replaces the value stored in N with the smaller of n and N, then calls
read(s, N). In any case, the function returns gcount().

basic_istream::seekg

basic_istream& seekg(pos_type pos);
basic_istream& seekg(off_type off, ios_base::seek_dir way);

If fail() is false, the first member function calls rdbuf()-> pubseekpos(pos). If fail() is false, the second
function calls rdbuf()-> pubseekoff(off, way). Both functions return *this.

basic_istream::sentry

class sentry {
public:
 explicit sentry(basic_istream<E, T>& is, bool noskip = false);
 operator bool() const;
 };

The nested class describes an object whose declaration structures the formatted input functions and the unformatted input
functions. The constructor effectively calls is.ipfx(noskip) and stores the return value. operator bool() delivers
this return value. The destructor effectively calls is.isfx().

basic_istream::sync

int sync();

If rdbuf() is a null pointer, the function returns -1. Otherwise, it calls rdbuf()->pubsync(). If that returns -1, the
function calls setstate(badbit) and returns -1. Otherwise, the function returns zero.

basic_istream::tellg

basic_istream& tellg();

If fail() is false, the member function returns rdbuf()-> pubseekoff(0, cur, in). Otherwise, it returns
streampos(-1).

basic_istream::traits_type

typedef T traits_type;

basic_istream::unget

basic_istream& unget();

The unformatted input function puts back the previous element in the stream, if possible, as if by calling
rdbuf()->sungetc(). If rdbuf() is a null pointer, or if the call to sungetc returns T::eof(), the function calls
setstate(badbit). In any case, it returns *this.

iostream

typedef basic_iostream<char, char_traits<char> > iostream;

The type is a synonym for template class basic_iostream, specialized for elements of type char with default character
traits.

istream

typedef basic_istream<char, char_traits<char> > istream;

The type is a synonym for template class basic_istream, specialized for elements of type char with default character
traits.

operator>>

template<class E, class T>
 basic_istream<E, T>& operator>>(basic_istream<E, T> is, E *s);
template<class E, class T>
 basic_istream<E, T>& operator>>(basic_istream<E, T> is, E& c);
template<class T>
 basic_istream<char, T>& operator>>(basic_istream<char, T> is, signed char *s);
template<class T>
 basic_istream<char, T>& operator>>(basic_istream<char, T> is, signed char& c);
template<class T>
 basic_istream<char, T>& operator>>(basic_istream<char, T> is, unsigned char *s);
template<class T>
 basic_istream<char, T>& operator>>(basic_istream<char, T> is, unsigned char& c);

The template function:

template<class E, class T>
 basic_istream<E, T>& operator>>(basic_istream<E, T>& is, E *s);

extracts up to n - 1 elements and stores them in the array beginning at s. If is.width() is greater than zero, n is
is.width(); otherwise it is the largest array of E that can be declared. The function always stores E(0) after any
extracted elements it stores. Extraction stops early on end-of-file or on any element (which is not extracted) that would be
discarded by ws. If the function extracts no elements, it calls is.setstate(failbit). In any case, it calls
is.width(0) and returns is.

The template function:

template<class E, class T>
 basic_istream<E, T>& operator>>(basic_istream<E, T>& is, char& c);

extracts an element, if possible, and stores it in c. Otherwise, it calls is.setstate(failbit). In any case, it returns is.

The template function:

template<class T>
 basic_istream<char, T>& operator>>(basic_istream<char, T> is, signed char *s);

returns is >> (char *)s.

The template function:

template<class T>
 basic_istream<char, T>& operator>>(basic_istream<char, T> is, signed char& c);

returns is >> (char&)c.

The template function:

template<class T>
 basic_istream<char, T>& operator>>(basic_istream<char, T> is, unsigned char *s);

returns is >> (char *)s.

The template function:

template<class T>
 basic_istream<char, T>& operator>>(basic_istream<char, T> is, unsigned char& c);

returns is >> (char&)c.

wiostream

typedef basic_iostream<wchar_t, char_traits<wchar_t> > wiostream;

The type is a synonym for template class basic_iostream, specialized for elements of type wchar_t with default
character traits.

wistream

typedef basic_istream<wchar_t, char_traits<wchar_t> > wistream;

The type is a synonym for template class basic_istream, specialized for elements of type wchar_t with default
character traits.

ws

template class<E, T>
 basic_istream<E, T>& ws(basic_istream<E, T> is);

The manipulator extracts and discards any elements x for which use_facet< ctype<E> >(getloc()). is(
ctype<E>::space, x) is true. It calls setstate(eofbit) if it encounters end-of-file while extracting elements.
The function returns is.

See also the Table of Contents and the Index.

Copyright © 1992-1996 by P.J. Plauger. All rights reserved.

<iterator>

advance · back_insert_iterator · back_inserter · bidirectional_iterator_tag ·
distance · forward_iterator_tag · front_insert_iterator · front_inserter ·
input_iterator_tag · insert_iterator · inserter · istream_iterator ·
istreambuf_iterator · iterator · iterator_traits · operator!= · operator== ·
operator< · operator<= · operator> · operator>= · operator+ · operator- ·
ostream_iterator · ostreambuf_iterator · output_iterator_tag ·
random_access_iterator_tag · reverse_bidirectional_iterator · reverse_iterator

namespace std {
struct input_iterator_tag;
struct output_iterator_tag;
struct forward_iterator_tag;
struct bidirectional_iterator_tag;
struct random_access_iterator_tag;
// TEMPLATE CLASSES
template<class C, class T, class Dist>
 struct iterator;
template<class It>
 struct iterator_traits;
template<class T>
 struct iterator_traits<T *>
template<class BidIt, class T, class Ref,
 class Ptr, class Dist>
 class reverse_bidirectional_iterator;
template<class RanIt, class T, class Ref,
 class Ptr, class Dist>
 class reverse_iterator;
template<class Cont>
 class back_insert_iterator;
template<class Cont>
 class front_insert_iterator;
template<class Cont>
 class insert_iterator;
template<class T, class Dist>
 class istream_iterator;
template<class T>
 class ostream_iterator;
template<class E, class T>
 class istreambuf_iterator;
template<class E, class T>
 class ostreambuf_iterator;

http://www.dinkumware.com/

// TEMPLATE FUNCTIONS
template<class BidIt, class T, class Ref, class Ptr, class Dist>
 bool operator==(
 const reverse_bidirectional_iterator<BidIt, T, Ref,
 Ptr, Dist>& lhs,
 const reverse_bidirectional_iterator<BidIt, T, Ref,
 Ptr, Dist>& rhs);
template<class RanIt, class T, class Ref, class Ptr, class Dist>
 bool operator==(
 const reverse_iterator<RanIt, T, Ref, Ptr, Dist>& lhs,
 const reverse_iterator<RanIt, T, Ref, Ptr, Dist>& rhs);
template<class T, class Dist>
 bool operator==(
 const istream_iterator<T, Dist>& lhs,
 const istream_iterator<T, Dist>& rhs);
template<class E, class T>
 bool operator==(
 const istreambuf_iterator<E, T>& lhs,
 const istreambuf_iterator<E, T>& rhs);
template<class BidIt, class T, class Ref, class Ptr, class Dist>
 bool operator!=(
 const reverse_bidirectional_iterator<BidIt, T, Ref,
 Ptr, Dist>& lhs,
 const reverse_bidirectional_iterator<BidIt, T, Ref,
 Ptr, Dist>& rhs);
template<class RanIt, class T, class Ref, class Ptr, class Dist>
 bool operator!=(
 const reverse_iterator<RanIt, T, Ref, Ptr, Dist>& lhs,
 const reverse_iterator<RanIt, T, Ref, Ptr, Dist>& rhs);
template<class T, class Dist>
 bool operator!=(
 const istream_iterator<T, Dist>& lhs,
 const istream_iterator<T, Dist>& rhs);
template<class E, class T>
 bool operator!=(
 const istreambuf_iterator<E, T>& lhs,
 const istreambuf_iterator<E, T>& rhs);
template<class RanIt, class T, class Ref, class Ptr, class Dist>
 bool operator<(
 const reverse_iterator<RanIt, T, Ref, Ptr, Dist>&mmp; lhs,
 const reverse_iterator<RanIt, T, Ref, Ptr, Dist>& rhs);
template<class RanIt, class T, class Ref, class Ptr, class Dist>
 bool operator>(
 const reverse_iterator<RanIt, T, Ref, Ptr, Dist>&mmp; lhs,
 const reverse_iterator<RanIt, T, Ref, Ptr, Dist>& rhs);
template<class RanIt, class T, class Ref, class Ptr, class Dist>
 bool operator<=(
 const reverse_iterator<RanIt, T, Ref, Ptr, Dist>&mmp; lhs,
 const reverse_iterator<RanIt, T, Ref, Ptr, Dist>& rhs);
template<class RanIt, class T, class Ref, class Ptr, class Dist>

 bool operator>=(
 const reverse_iterator<RanIt, T, Ref, Ptr, Dist>&mmp; lhs,
 const reverse_iterator<RanIt, T, Ref, Ptr, Dist>& rhs);
template<class RanIt, class T, class Ref, class Ptr, class Dist>
 Dist operator-(
 const reverse_iterator<RanIt, T, Ref, Ptr, Dist>& lhs,
 const reverse_iterator<RanIt, T, Ref, Ptr, Dist>& rhs);
template<class RanIt, class T, class Ref, class Ptr, class Dist>
 reverse_iterator<RanIt, T, Ref, Ptr, Dist> operator+(
 Dist n,
 const reverse_iterator<RanIt, T, Ref, Ptr, Dist>& rhs);
template<class Cont>
 back_insert_iterator<Cont> back_inserter(Cont& x);
template<class Cont>
 front_insert_iterator<Cont> front_inserter(Cont& x);
template<class Cont, class Iter>
 insert_iterator<Cont> inserter(Cont& x, Iter it);
template<class InIt, class Dist>
 void advance(InIt& it, Dist n);
template<class Init, class Dist>
 iterator_traits<InIt>::distance_type
 distance(InIt first, InIt last);
 };

Include the STL standard header <iterator> to define a number of classes, template classes, and template functions
that aid in the declaration and manipulation of iterators.

advance

template<class InIt, class Dist>
 void advance(InIt& it, Dist n);

The template function effectively advances it by incrementing it n times. If InIt is a random-access iterator type,
the function evaluates the expression it += n. Otherwise, it performs each increment by evaluating ++it. If InIt
is an input or forward iterator type, n must not be negative.

back_insert_iterator

template<class Cont>
 class back_insert_iterator
 : public iterator<output_iterator_tag, void, void> {
public:
 typedef Cont container_type;
 typedef Cont::value_type value_type;
 explicit back_insert_iterator(Cont& x);
 back_insert_iterator& operator=(const Cont::value_type& val);
 back_insert_iterator& operator*();
 back_insert_iterator& operator++();
 back_insert_iterator operator++(int);

protected:
 Cont& container;
 };

The template class describes an output iterator object. It inserts elements into a container of type Cont, which it
accesses via the protected reference object it stores called container. The container must define:

the member type value_type, which is the type of an element of the sequence controlled by the container●

the member function push_back(value_type c), which appends a new element with value c to the end
of the sequence

●

back_insert_iterator::back_insert_iterator

explicit back_insert_iterator(Cont& x);

The constructor initializes container with x.

back_insert_iterator::container_type

typedef Cont container_type;

The type is a synonym for the template parameter Cont.

back_insert_iterator::operator*

back_insert_iterator& operator*();

The member function returns *this.

back_insert_iterator::operator++

back_insert_iterator& operator++();
back_insert_iterator operator++(int);

The member functions both return *this.

back_insert_iterator::operator=

back_insert_iterator& operator=(const Cont::value_type& val);

The member function evaluates container. push_back(val), then returns *this.

back_insert_iterator::value_type

typedef Cont::value_type value_type;

The type describes the elements of the sequence controlled by the associated container.

back_inserter

template<class Cont>
 back_insert_iterator<Cont> back_inserter(Cont& x);

The template member function returns back_insert_iterator<Cont>(x).

bidirectional_iterator_tag

struct bidirectional_iterator_tag
 : public forward_iterator_tag {
 };

The type is the same as iterator<It>::iterator_category when It describes an object that can serve as a
bidirectional iterator.

distance

template<class Init, class Dist>
 iterator_traits<InIt>::distance_type distance(InIt first, InIt last);

The template function sets a count n to zero. It then effectively advances first and increments n until first ==
last. If InIt is a random-access iterator type, the function evaluates the expression n += last - first.
Otherwise, it performs each iterator increment by evaluating ++first.

In this implementation, if a translator does not support partial specialization of templates, the return type is
ptrdiff_t. If you are not certain this type is adequate, use the template function:

template<class InIt, class Dist>
 void _Distance(InIt first, InIt last, Dist& n0);

which adds n to the value stored in n0.

forward_iterator_tag

struct forward_iterator_tag
 : public input_iterator_tag {
 };

The type is the same as iterator<It>::iterator_category when It describes an object that can serve as a
forward iterator.

front_insert_iterator

template<class Cont>
 class front_insert_iterator
 : public iterator<output_iterator_tag, void, void> {
public:
 typedef Cont container_type;
 typedef Cont::value_type value_type;
 explicit front_insert_iterator(Cont& x);
 front_insert_iterator& operator=(const Cont::value_type& val);
 front_insert_iterator& operator*();
 front_insert_iterator& operator++();
 front_insert_iterator operator++(int);
protected:
 Cont& container;

 };

The template class describes an output iterator object. It inserts elements into a container of type Cont, which it
accesses via the protected reference object it stores called container. The container must define:

the member type value_type, which is the type of an element of the sequence controlled by the container●

the member function push_front(value_type c), which prepends a new element with value c to the
beginning of the sequence

●

front_insert_iterator::container_type

typedef Cont container_type;

The type is a synonym for the template parameter Cont.

front_insert_iterator::front_insert_iterator

explicit front_insert_iterator(Cont& x);

The constructor initializes container with x.

front_insert_iterator::operator*

front_insert_iterator& operator*();

The member function returns *this.

front_insert_iterator::operator++

front_insert_iterator& operator++();
front_insert_iterator operator++(int);

The member functions both return *this.

front_insert_iterator::operator=

front_insert_iterator& operator=(const Cont::value_type& val);

The member function evaluates container. push_front(val), then returns *this.

front_insert_iterator::value_type

typedef Cont::value_type value_type;

The type describes the elements of the sequence controlled by the associated container.

front_inserter

template<class Cont>
 front_insert_iterator<Cont> front_inserter(Cont& x);

The template member function returns front_insert_iterator<Cont>(x).

input_iterator_tag

struct input_iterator_tag {
 };

The type is the same as iterator<It>::iterator_category when It describes an object that can serve as
an input iterator.

insert_iterator

template<class Cont>
 class insert_iterator
 : public iterator<output_iterator_tag, void, void> {
public:
 typedef Cont container_type;
 typedef Cont::value_type value_type;
 explicit insert_iterator(Cont& x, Cont::iterator it);
 insert_iterator& operator=(const Cont::value_type& val);
 insert_iterator& operator*();
 insert_iterator& operator++();
 insert_iterator& operator++(int);
protected:
 Cont& container;
 Cont::iterator iter;
 };

The template class describes an output iterator object. It inserts elements into a container of type Cont, which it
accesses via the protected reference object it stores called container. It also stores the protected iterator object, of
class Cont::iterator, called iter. The container must define:

the member type iterator, which is the type of an iterator for the container●

the member type value_type, which is the type of an element of the sequence controlled by the container●

the member function insert(iterator it, value_type c), which inserts a new element with value
c immediately before the element designated by it in the controlled sequence, then returns an iterator that
designates the inserted element

●

insert_iterator::container_type

typedef Cont container_type;

The type is a synonym for the template parameter Cont.

insert_iterator::insert_iterator

explicit insert_iterator(Cont& x, Cont::iterator it);

The constructor initializes container with x, and iter with it.

insert_iterator::operator*

insert_iterator& operator*();

The member function returns *this.

insert_iterator::operator++

insert_iterator& operator++();
insert_iterator& operator++(int);

The member functions both return *this.

insert_iterator::operator=

insert_iterator& operator=(const Cont::value_type& val);

The member function evaluates iter = container. insert(iter, val), then returns *this.

insert_iterator::value_type

typedef Cont::value_type value_type;

The type describes the elements of the sequence controlled by the associated container.

inserter

template<class Cont, class Iter>
 insert_iterator<Cont> inserter(Cont& x, Iter it);

The template member function returns insert_iterator<Cont>(x, it).

istream_iterator

template<class U, class E = char, class T = char_traits<E> >
 class istream_iterator
 : public iterator<input_iterator_tag, U, ptrdiff_t> {
public:
 typedef U value_type;
 typedef E char_type;
 typedef T traits_type;
 typedef basic_istream<E, T> istream_type;
 istream_iterator();
 istream_iterator(istream_type& is);
 const U& operator*() const;
 const U *operator->() const;
 istream_iterator<U, E, T>& operator++();
 istream_iterator<U, E, T> operator++(int);
 };

The template class describes an input iterator object. It extracts objects of class U from an input stream, which it

accesses via an object it stores, of type pointer to basic_istream<E, T>. After constructing or incrementing an
object of class istream_iterator with a non-null stored pointer, the object attempts to extract and store an object
of type U from the associated input stream. If the extraction fails, the object effectively replaces the stored pointer with
a null pointer (thus making an end-of-sequence indicator).

istream_iterator::char_type

typedef E char_type;

The type is a synonym for the template parameter E.

istream_iterator::istream_iterator

istream_iterator();
istream_iterator(istream_type& is);

The first constructor initializes the input stream pointer with a null pointer. The second constructor initializes the input
stream pointer with &is, then attempts to extract and store an object of type U.

istream_iterator::istream_type

typedef basic_istream<E, T> istream_type;

The type is a synonym for basic_istream<E, T>.

istream_iterator::operator*

const U& operator*() const;

The operator returns the stored object of type U.

istream_iterator::operator->

const U *operator->() const;

The operator returns &**this. In this implementation, if a translator always requires a return value that designates an
object with members, this operator is not available.

istream_iterator::operator++

istream_iterator<U, E, T>& operator++();
istream_iterator<U, E, T> operator++(int);

The first operator attempts to extract and store an object of type U from the associated input stream. The second
operator makes a copy of the object, increments the object, then returns the copy.

istream_iterator::traits_type

typedef T traits_type;

The type is a synonym for the template parameter T.

istream_iterator::value_type

typedef U value_type;

The type is a synonym for the template parameter U.

istreambuf_iterator

template<class E, class T = char_traits<E> >
 class istreambuf_iterator
 : public iterator<input_iterator_tag, T, Dist> {
public:
 typedef E char_type;
 typedef T traits_type;
 typedef T::int_type int_type;
 typedef basic_streambuf<E, T> streambuf_type;

 typedef basic_istream<E, T> istream_type;
 istreambuf_iterator(streambuf_type *sb = 0) throw();
 istreambuf_iterator(istream_type& is) throw();
 const E& operator*() const;
 const E *operator->();
 istreambuf_iterator& operator++();
 istreambuf_iterator operator++(int);
 bool equal(const istreambuf_iterator& rhs);
 };

The template class describes an input iterator object. It extracts elements of class E from an input stream buffer,
which it accesses via an object it stores, of type pointer to basic_streambuf<E, T>. After constructing or
incrementing an object of class istreambuf_iterator with a non-null stored pointer, the object effectively
attempts to extract and store an object of type E from the associated itput stream. (The extraction may be delayed,
however, until the object is actually dereferenced or copied.) If the extraction fails, the object effectively replaces the
stored pointer with a null pointer (thus making an end-of-sequence indicator).

istreambuf_iterator::char_type

typedef E char_type;

The type is a synonym for the template parameter E.

istreambuf_iterator::equal

bool equal(const istreambuf_iterator& rhs);

The member function returns true only if the stored streambbuffer pointers for the object and rhs are both null
pointers or are both non-null pointers.

istreambuf_iterator::int_type

typedef T:int_type int_type;

The type is a synonym for T::int_type">int_type.

istreambuf_iterator::istream_type

typedef basic_istream<E, T> istream_type;

The type is a synonym for basic_istream<E, T>.

istreambuf_iterator::istreambuf_iterator

istreambuf_iterator(streambuf_type *sb = 0) throw();
istreambuf_iterator(istream_type& is) throw();

The first constructor initializes the input stream-buffer pointer with sb. The second constructor initializes the input
stream-buffer pointer with is.rdbuf(), then (eventually) attempts to extract and store an object of type E.

istreambuf_iterator::operator*

const E& operator*() const;

The operator returns the stored object of type E.

istreambuf_iterator::operator++

istreambuf_iterator& operator++();
istreambuf_iterator operator++(int);

The first operator (eventually) attempts to extract and store an object of type E from the associated input stream. The
second operator makes a copy of the object, increments the object, then returns the copy.

istreambuf_iterator::operator->

const E *operator->() const;

The operator returns &**this. In this implementation, if a translator always requires a return value that designates an
object with members, this operator is not available.

istreambuf_iterator::streambuf_type

typedef basic_streambuf<E, T> streambuf_type;

The type is a synonym for basic_streambuf<E, T>.

istreambuf_iterator::traits_type

typedef T traits_type;

The type is a synonym for the template parameter T.

iterator

template<class C, class T, class Dist = ptrdiff_t>
 struct iterator {
 typedef C iterator_category;
 typedef T value_type;
 typedef Dist distance_type;
 };

The template class serves as a base type for all iterators. It defines the member types iterator_category (a
synonym for the template parameter C), value_type (a synonym for the template parameter T), and
distance_type (a synonym for the template parameter Dist).

iterator_traits

template<class It>
 struct iterator_traits {
 typedef It::iterator_category iterator_category;
 typedef It::value_type value_type;
 typedef It::distance_type distance_type;
 };
template<class T>
 struct iterator_traits<T *> {
 typedef random_access_iterator_tag iterator_category;
 typedef T value_type;
 typedef ptrdiff_t distance_type;
 };

The template class determines several critical types associated with the iterator type It. It defines the member types
iterator_category (a synonym for It::iterator_category), value_type (a synonym for
It::value_type), and distance_type (a synonym for It::distance_type).

The partial specialization determines the critical types associated with an object pointer type T *. In this
implementation, if a translator does not support partial specialization of templates, you should use the template
functions:

template<class C, class T, class Dist>
 C _Iter_cat(const iterator<C, T, Dist>&);
template<class T>
 random_access_iterator_tag _Iter_cat(const T *);

template<class C, class T, class Dist>
 T *_Val_type(const iterator<C, T, Dist>&);
template<class T>
 T *_Val_type(const T *);

template<class C, class T, class Dist>
 Dist *_Dist_type(const iterator<C, T, Dist>&);
template<class T>
 ptrdiff_t *_Dist_type(const T *);

which determine the same types a bit more indirectly. You use these functions as arguments on a function call. Their
sole purpose is to supply a useful template class parameter to the called function.

operator!=

template<class BidIt, class T, class Ref, class Ptr, class Dist>
 bool operator!=(
 const reverse_bidirectional_iterator<BidIt, T, Ref,
 Ptr, Dist>& lhs,
 const reverse_bidirectional_iterator<BidIt, T, Ref,
 Ptr, Dist>& rhs);
template<class RanIt, class T, class Ref, class Ptr, class Dist>
 bool operator!=(
 const reverse_iterator<BidIt, T, Ref, Ptr, Dist>& lhs,
 const reverse_iterator<BidIt, T, Ref, Ptr, Dist>& rhs);
template<class T, class Dist>
 bool operator!=(
 const istream_iterator<T, Dist>& lhs,
 const istream_iterator<T, Dist>& rhs);
template<class E, class T>
 bool operator!=(
 const istreambuf_iterator<E, T>& lhs,
 const istreambuf_iterator<E, T>& rhs);

The template operator returns !(lhs == rhs).

operator==

template<class BidIt, class T, class Ref, class Ptr, class Dist>
 bool operator==(
 const reverse_bidirectional_iterator<BidIt, T, Ref,
 Ptr, Dist>& lhs,
 const reverse_bidirectional_iterator<BidIt, T, Ref,
 Ptr, Dist>& rhs);
template<class RanIt, class T, class Ref, class Ptr, class Dist>
 bool operator==(
 const reverse_iterator<BidIt, T, Ref, Ptr, Dist>& lhs,
 const reverse_iterator<BidIt, T, Ref, Ptr, Dist>& rhs);
template<class T, class Dist>
 bool operator==(
 const istream_iterator<T, Dist>& lhs,
 const istream_iterator<T, Dist>& rhs);
template<class E, class T>
 bool operator==(
 const istreambuf_iterator<E, T>& lhs,
 const istreambuf_iterator<E, T>& rhs);

The first two template operators each return true only if lhs.current == rhs.current. The third template
operator returns true only if both lhs and rhs store the same stream pointer. The fourth template operator returns
lhs.equal(rhs).

operator<

template<class RanIt, class T, class Ref, class Ptr, class Dist>
 bool operator<(
 const reverse_iterator<RanIt, T, Ref, Ptr, Dist>& lhs,
 const reverse_iterator<RanIt, T, Ref, Ptr, Dist>& rhs);

The template operator returns rhs.current < lhs.current [sic].

operator<=

template<class RanIt, class T, class Ref, class Ptr, class Dist>
 bool operator<=(
 const reverse_iterator<RanIt, T, Ref, Ptr, Dist>& lhs,
 const reverse_iterator<RanIt, T, Ref, Ptr, Dist>& rhs);

The template operator returns !(rhs < lhs).

operator>

template<class RanIt, class T, class Ref, class Ptr, class Dist>
 bool operator>(
 const reverse_iterator<RanIt, T, Ref, Ptr, Dist>& lhs,
 const reverse_iterator<RanIt, T, Ref, Ptr, Dist>& rhs);

The template operator returns rhs < lhs.

operator>=

template<class RanIt, class T, class Ref, class Ptr, class Dist>
 bool operator>=(
 const reverse_iterator<RanIt, T, Ref, Ptr, Dist>& lhs,
 const reverse_iterator<RanIt, T, Ref, Ptr, Dist>& rhs);

The template operator returns !(lhs < rhs).

operator+

template<class RanIt, class T, class Ref, class Ptr, class Dist>
 reverse_iterator<RanIt, T, Ref, Ptr, Dist> operator+(
 Dist n,
 const reverse_iterator<RanIt, T, Ref, Ptr, Dist>& rhs);

The template operator returns rhs + n.

operator-

template<class RanIt, class T, class Ref, class Ptr, class Dist>
 Dist operator-(
 const reverse_iterator<RanIt, T, Ref, Ptr, Dist>& lhs,

 const reverse_iterator<RanIt, T, Ref, Ptr, Dist>& rhs);

The template operator returns rhs.current - lhs.current [sic].

ostream_iterator

template<class T>
 class ostream_iterator
 : public iterator<output_iterator_tag, void, void> {
public:
 typedef U value_type;
 typedef E char_type;
 typedef T traits_type;
 typedef basic_ostream<E, T> ostream_type;
 ostream_iterator(ostream_type& os);
 ostream_iterator(ostream_type& os, const E *delim);
 ostream_iterator<U, E, T>& operator=(const U& val);
 ostream_iterator<U, E, T>& operator*();
 ostream_iterator<U, E, T>& operator++();
 ostream_iterator<U, E, T> operator++(int);
 };

The template class describes an output iterator object. It inserts objects of class U into an output stream, which it
accesses via an object it stores, of type pointer to basic_ostream<E, T>. It also stores a pointer to a delimiter
string, a null-terminated string of elements of type E, which is appended after each insertion. (Note that the string itself
is not copied by the constructor.

ostream_iterator::char_type

typedef E char_type;

The type is a synonym for the template parameter E.

ostream_iterator::operator*

ostream_iterator<U, E, T>& operator*();

The operator returns *this.

ostream_iterator::operator++

ostream_iterator<U, E, T>& operator++();
ostream_iterator<U, E, T> operator++(int);

The operators both return *this.

ostream_iterator::operator=

ostream_iterator<U, E, T>& operator=(const U& val);

The operator inserts val into the output stream associated with the object, then returns *this.

ostream_iterator::ostream_iterator

ostream_iterator(ostream_type& os);
ostream_iterator(ostream_type& os, const E *delim);

The first constructor initializes the output stream pointer with &os. The delimiter string pointer designates an empty
string. The second constructor initializes the output stream pointer with &os and the delimiter string pointer with
delim.

ostream_iterator::ostream_type

typedef basic_ostream<E, T> ostream_type;

The type is a synonym for basic_ostream<E, T>.

ostream_iterator::traits_type

typedef T traits_type;

The type is a synonym for the template parameter T.

ostream_iterator::value_type

typedef U value_type;

The type is a synonym for the template parameter U.

ostreambuf_iterator

template<class E, class T = char_traits<E> >
 class ostreambuf_iterator
 : public iterator<output_iterator_tag, void, void> {
public:
 typedef E char_type;
 typedef T traits_type;
 typedef basic_streambuf<E, T> streambuf_type;
 typedef basic_ostream<E, T> ostream_type;
 ostreambuf_iterator(streambuf_type *sb) throw();
 ostreambuf_iterator(ostream_type& os) throw();
 ostreambuf_iterator& operator=(E x);
 ostreambuf_iterator& operator*();
 ostreambuf_iterator& operator++();
 T1 operator++(int);
 bool failed() const throw();
 };

The template class describes an output iterator object. It inserts elements of class E into an output stream buffer,
which it accesses via an object it stores, of type pointer to basic_streambuf<E, T>.

ostreambuf_iterator::char_type

typedef E char_type;

The type is a synonym for the template parameter E.

ostreambuf_iterator::failed

bool failed() const throw();

The member function returns true only if no insertion into the output stream buffer has earlier failed.

ostreambuf_iterator::operator*

ostreambuf_iterator& operator*();

The operator returns *this.

ostreambuf_iterator::operator++

ostreambuf_iterator& operator++();
T1 operator++(int);

The first operator returns *this. The second operator returns an object of some type T1 that can be converted to
ostreambuf_iterator<E, T>.

ostreambuf_iterator::operator=

ostreambuf_iterator& operator=(E x);

The operator inserts x into the associated stream buffer, then returns *this.

ostreambuf_iterator::ostream_type

typedef basic_ostream<E, T> ostream_type;

The type is a synonym for basic_ostream<E, T>.

ostreambuf_iterator::ostreambuf_iterator

ostreambuf_iterator(streambuf_type *sb) throw();
ostreambuf_iterator(ostream_type& is) throw();

The first conttructor initializes the output stream-buffer pointer with sb. The second constructor initializes the output
stream-buffer pointer with is.rdbuf(). (The stored pointer must not be a null pointer.)

ostreambuf_iterator::streambuf_type

typedef basic_streambuf<E, T> streambuf_type;

The type is a synonym for basic_streambuf<E, T>.

ostreambuf_iterator::traits_type

typedef T traits_type;

The type is a synonym for the template parameter T.

output_iterator_tag

struct output_iterator_tag {
 };

The type is the same as iterator<It>::iterator_category when It describes an object that can serve as a
output iterator.

random_access_iterator_tag

struct random_access_iterator_tag
 : public bidirectional_iterator_tag {
 };

The type is the same as iterator<It>::iterator_category when It describes an object that can serve as a
random-access iterator.

reverse_bidirectional_iterator

template<class BidIt,
 class T = iterator_traits<BidIt>::value_type,
 class Ref = T&,
 class Ptr = T *, class Dist = ptrdiff_t>
 class reverse_bidirectional_iterator
 : public iterator<bidirectional_iterator_tag, T, Dist> {
public:
 typedef BidIt iter_type;
 typedef T value_type;
 typedef Ref reference_type;
 typedef Ptr pointer_type;
 typedef Dist distance_type;
 reverse_bidirectional_iterator();
 explicit reverse_bidirectional_iterator(BidIt x);
 BidIt base() const;
 Ref operator*() const;
 Ptr operator->() const;
 reverse_bidirectional_iterator& operator++();
 reverse_bidirectional_iterator operator++(int);
 reverse_bidirectional_iterator& operator--();
 reverse_bidirectional_iterator operator--();
protected:
 BidIt current;
 };

The template class describes an object that behaves like a bidirectional iterator of class
iterator<bidirectional_iterator_tag, T, Dist>. It stores a bidirectional iterator of type BidIt in
the protected object current. Incrementing the object x of type reverse_bidirectional_iterator
decrements x.current, and decrementing x increments x.current. Moreover, the expression *x evaluates to
*--(tmp = current) (where tmp is a temporary object of class BidIt), of type Ref. Typically, Ref is type
T&.

Thus, you can use an object of class reverse_bidirectional_iterator to access in reverse order a sequence
that is traversed in order by a bidirectional iterator.

reverse_bidirectional_iterator::base

BidIt base() const;

The member function returns current.

reverse_bidirectional_iterator::distance_type

typedef Dist distance_type;

The type is a synonym for the template parameter Ref.

reverse_bidirectional_iterator::iter_type

typedef BidIt iter_type;

The type is a synonym for the template parameter BidIt.

reverse_bidirectional_iterator::operator*

Ref operator*() const;

The operator assigns current to a temporary object tmp of class BidIt, then returns *--tmp.

reverse_bidirectional_iterator::operator++

reverse_bidirectional_iterator& operator++();
reverse_bidirectional_iterator operator++(int);

The first (preincrement) operator evaluates --current. then returns *this.

The second (postincrement) operator makes a copy of *this, evaluates --current, then returns the copy.

reverse_bidirectional_iterator::operator--

reverse_bidirectional_iterator& operator--();
reverse_bidirectional_iterator operator--();

The first (predecrement) operator evaluates ++current. then returns *this.

The second (postdecrement) operator makes a copy of *this, evaluates ++current, then returns the copy.

reverse_bidirectional_iterator::operator->

Ptr operator->() const;

The operator returns &**this. In this implementation, if a translator always requires a return value that designates an
object with members, this operator is not available.

reverse_bidirectional_iterator::pointer_type

typedef Ptr pointer_type;

The type is a synonym for the template parameter Ref.

reverse_bidirectional_iterator::reference_type

typedef Ref reference_type;

The type is a synonym for the template parameter Ref.

reverse_bidirectional_iterator::reverse_bidirectional_iterator

reverse_bidirectional_iterator();
explicit reverse_bidirectional_iterator(BidIt x);

The first constructor initializes current with its default constructor. The second constructor initializes current
with current(x).

reverse_bidirectional_iterator::value_type

typedef T value_type;

The type is a synonym for the template parameter T.

reverse_iterator

template<class RanIt,
 class T = iterator_traits<RanIt>::value_type,
 class Ref = T&,
 class Ptr = T *, class Dist = ptrdiff_t>
 class reverse_iterator
 : public iterator<random_access_iterator_tag, T, Dist> {
public:
 typedef BidIt iter_type;
 typedef T value_type;
 typedef Ref reference_type;
 typedef Ptr pointer_type;
 typedef Dist distance_type;
 reverse_iterator();
 explicit reverse_iterator(RanIt x);
 RanIt base() const;
 Ref operator*() const;

 Ptr operator->() const;
 reverse_iterator& operator++();
 reverse_iterator operator++(int);
 reverse_iterator& operator--();
 reverse_iterator operator--();
 reverse_iterator& operator+=(Dist n);
 reverse_iterator operator+(Dist n) const;
 reverse_iterator& operator-=(Dist n);
 reverse_iterator operator-(Dist n) const;
 Ref operator[](Dist n) const;
protected:
 RanIt current;
 };

The template class describes an object that behaves like a random-access iterator of class
iterator<random_access_iterator_tag, T, Dist>. It stores a random-access iterator of type RanIt
in the protected object current. Incrementing the object x of type reverse_iterator decrements x.current,
and decrementing x increments x.current. Moreover, the expression *x evaluates to *(current - 1), of type
Ref. Typically, Ref is type T&.

Thus, you can use an object of class reverse_iterator to access in reverse order a sequence that is traversed in
order by a random-access iterator.

reverse_iterator::base

RanIt base() const;

The member function returns current.

reverse_iterator::distance_type

typedef Dist distance_type;

The type is a synonym for the template parameter Ref.

reverse_iterator::iter_type

typedef BidIt iter_type;

The type is a synonym for the template parameter BidIt.

reverse_iterator::operator*

Ref operator*() const;

The operator returns *(current - 1).

reverse_iterator::operator+

reverse_iterator operator+(Dist n) const;

The operator returns reverse_iterator(*this) += n.

reverse_iterator::operator++

reverse_iterator& operator++();
reverse_iterator operator++(int);

The first (preincrement) operator evaluates --current. then returns *this.

The second (postincrement) operator makes a copy of *this, evaluates --current, then returns the copy.

reverse_iterator::operator+=

reverse_iterator& operator+=(Dist n);

The operator evaluates current - n. then returns *this.

reverse_iterator::operator-

reverse_iterator operator-(Dist n) const;

The operator returns reverse_iterator(*this) -= n.

reverse_iterator::operator--

reverse_iterator& operator--();
reverse_iterator operator--();

The first (predecrement) operator evaluates ++current. then returns *this.

The second (postdecrement) operator makes a copy of *this, evaluates ++current, then returns the copy.

reverse_iterator::operator-=

reverse_iterator& operator-=(Dist n);

The operator evaluates current + n. then returns *this.

reverse_iterator::operator->

Ptr operator->() const;

The operator returns &**this. In this implementation, if a translator always requires a return value that designates an
object with members, this operator is not available.

reverse_iterator::operator[]

Ref operator[](Dist n) const;

The operator returns *(*this + n).

reverse_iterator::pointer_type

typedef Ptr pointer_type;

The type is a synonym for the template parameter Ref.

reverse_iterator::reference_type

typedef Ref reference_type;

The type is a synonym for the template parameter Ref.

reverse_iterator::reverse_iterator

reverse_iterator();
explicit reverse_iterator(RanIt x);

The first constructor initializes current with its default constructor. The second constructor initializes current
with current(x).

reverse_iterator::value_type

typedef T value_type;

The type is a synonym for the template parameter T.

See also the Table of Contents and the Index.

Copyright © 1992-1996 by P.J. Plauger. Portions derived from work copyright © 1994 by Hewlett-Packard Company.
All rights reserved.

<limits>

namespace std {
 enum float_round_style;
 template<class T>
 class numeric_limits;
 };

Include the standard header <limits> to define the template class numeric_limits. Explicit
specializations of this class describe many arithmetic properties of the scalar types (other than pointers).

float_round_style
enum float_round_style {
 round_indeterminate = -1,
 round_toward_zero = 0,
 round_to_nearest = 1,
 round_toward_infinity = 2,
 round_toward_neg_infinity = 3
 };

The enumeration describes the various methods that an implementation can choose for rounding a
floating-point value to an integer value:

round_indeterminate -- rounding method cannot be determined●

round_toward_zero -- round toward zero●

round_to_nearest -- round to nearest integer●

round_toward_infinity -- round away from zero●

round_toward_neg_infinity -- round to more negative integer●

numeric_limits
template<class T>
 class numeric_limits {
public:
 static const bool has_denorm = false;
 static const bool has_denorm_loss = false;
 static const bool has_infinity = false;
 static const bool has_quiet_NaN = false;

http://www.dinkumware.com/

 static const bool has_signaling_NaN = false;
 static const bool is_bounded = false;
 static const bool is_exact = false;
 static const bool is_iec559 = false;
 static const bool is_integer = false;
 static const bool is_modulo = false;
 static const bool is_signed = false;
 static const bool is_specialized = false;
 static const bool tinyness_before = false;
 static const bool traps = false;
 static const float_round_style round_style = round_toward_zero;
 static const int digits = 0;
 static const int digits10 = 0;
 static const int max_exponent = 0;
 static const int max_exponent10 = 0;
 static const int min_exponent = 0;
 static const int min_exponent10 = 0;
 static const int radix = 0;
 static T denorm_min() throw();
 static T epsilon() throw();
 static T infinity() throw();
 static T max() throw();
 static T min() throw();
 static T quiet_NaN() throw();
 static T round_error() throw();
 static T signaling_NaN() throw();
 };

The template class describes many arithmetic properties of its parameter type T. The header defines
explicit specializations for the types wchar_t, bool, char, signed char, unsigned char, short, unsigned
short, int, unsigned int, long, unsigned long, float, double, and long double. For all these explicit
specializations, the member is_specialized is true, and all relevant members have meaningful
values. The program can supply additional explicit specializations.

For an arbitrary specialization, no members have meaningful values. A member object that does not have
a meaningful value stores zero (or false) and a member function that does not return a meaningful value
returns T(0).

numeric_limits::denorm_min

static T denorm_min() throw();

The function returns the minimum value for the type (which is the same as min() if has_denorm is

false).

numeric_limits::digits

static const int digits = 0;

The member stores the number of radix digits that the type can represent without change (which is the
number of bits other than any sign bit for a predefined integer type, or the number of mantissa digits for a
predefined floating-point type).

numeric_limits::digits10

static const int digits10 = 0;

The member stores the number of decimal digits that the type can represent without change.

numeric_limits::epsilon

static T epsilon() throw();

The function returns the difference between 1 and the smallest value greater than 1 that is representable
for the type (which is the value FLT_EPSILON for type float).

numeric_limits::has_denorm

static const bool has_denorm = false;

The member stores true for a floating-point type that has denormalized values (effectively a variable
number of exponent bits).

numeric_limits::has_denorm_loss

static const bool has_denorm_loss = false;

The member stores true for a type that determines whether a value has lost accuracy because it is
delivered as a denormalized result (too small to represent as a normalized value) or because it is inexact
(not the same as a result not subject to limitations of exponent range and precision), an option with IEC
559 floating-point representations that can affect some results.

numeric_limits::has_infinity

static const bool has_infinity = false;

The member stores true for a type that has a representation for positive infinity. True if is_iec559 is
true.

numeric_limits::has_quiet_NaN

static const bool has_quiet_NaN = false;

The member stores true for a type that has a representation for a quiet NaN, an encoding that is ``Not a
Number'' which does not signal its presence in an expression. True if is_iec559 is true.

numeric_limits::has_signaling_NaN

static const bool has_signaling_NaN = false;

The member stores tree for a type that has a representation for a signaling NaN, an encoding that is ``Not
a Number'' which signals itd presence in an expression by reporting an exception. True if is_iec559 is
true.

numeric_limits::infinity

static T infinity() throw();

The function returns the representation of positive infinity for the type. The return value is meaningful
only if has_infinity is true.

numeric_limits::is_bounded

static const bool is_bounded = false;

The member stores true for a type that has a bounded set of represtntable values (which is the case for all
predefined types).

numeric_limits::is_exact

static const bool is_exact = false;

The member stores true for a type that has exact representations for all its values (which is the case for all
predefined integer types). A fixed-point or rational representation is also considered exact, but not a
floating-point representation.

numeric_limits::is_iec559

static const bool is_iec559 = false;

The member stores true for a type that has a representation conforming to IEC 559, an international
standard for representing floating-point values (also known as IEEE 754 in the USA).

numeric_limits::is_integer

static const bool is_integer = false;

The member stores true for a type that has an integer representation (which is the case for all predefined
integer types).

numeric_limits::is_modulo

static const bool is_modulo = false;

The member stores true for a type that has a modulo representation, where all results are reduced
modulo some value (which is the case for all predefined unsigned integer types).

numeric_limits::is_signed

static const bool is_signed = false;

The member stores true for a type that has a signed representation (which is the case for all predefined
floating-point and signed integer types.)

numeric_limits::is_specialized

static const bool is_specialized = false;

The member stores true for a type that has an explicit specialization defined for template class
numeric_limits (which is the case for all scalar types other than pointers).

numeric_limits::max

static T max() throw();

The function returns the maximum finite value for the type (which is INT_MAX for type int and
FLT_MAX for type float). The return value is meaningful if is_bounded is true.

numeric_limits::max_exponent

static const int max_exponent = 0;

The member stores the maximum positive integer such that the type can represent as a finite value
radix raised to that power (which is the value FLT_MAX_EXP for type float). Meaningful only for
floating-point types.

numeric_limits::max_exponent10

static const int max_exponent10 = 0;

The member stores the maximum positive integer such that the type can represent as a finite value 10
raised to that power (which is the value FLT_MAX_10_EXP for type float). Meaningful only for
floating-point types.

numeric_limits::min

static T min() throw();

The function returns the minimum normalized value for the type (which is INT_MIN for type int and
FLT_MIN for type float). The return value is meaningful if is_bounded is true or is_signed is
false.

numeric_limits::min_exponent

static const int min_exponent = 0;

The member stores the minimum negative integer such that the type can represent as a normalized value
radix raised to that power (which is the value FLT_MIN_EXP for type float). Meaningful only for
floating-point types.

numeric_limits::min_exponent10

static const int min_exponent10 = 0;

The member stores the minimum negative integer such that the type can represent as a normalized value
10 raised to that power (which is the value FLT_MIN_10_EXP for type float). Meaningful only for
floating-point types.

numeric_limits::quiet_NaN

static T quiet_NaN() throw();

The function returns a representation of a quiet NaN for the type. The return value is meaningful only if
has_quiet_NaN is true.

numeric_limits::radix

static const int radix = 0;

The member stores the base of the representation for the type (which is 2 for the predefined integer types,
and and the base to which the exponent is raised, or FLT_RADIX, for the predefined floating-point
types).

numeric_limits::round_error

static T round_error() throw();

The function returns the maximum rounding error for the type.

numeric_limits::round_style

static const float_round_style round_style = round_toward_zero;

The member stores a value that describes the vaious methods that an implementation can choose for
rounding a floating-point value to an integer value.

numeric_limits::signaling_NaN

static T signaling_NaN() throw();

The function returns a representation of a signaling NaN for the type. The return value is meaningful
only if has_signaling_NaN is true.

numeric_limits::tinyness_before

static const bool tinyness_before = false;

The member stores true for a type that determines whether a value is ``tiny'' (too small to represent as a
normalized value) before rounding, an option with IEC 559 floating-point representations that can affect
some results.

numeric_limits::traps

static const bool traps = false;

The member stores true for a type that generates some kind of signal to report certain arithmetic
exceptions.

See also the Table of Contents and the Index.

Copyright © 1992-1996 by P.J. Plauger. All rights reserved.

<list>

namespace std {
template<class T, class A>
 class list;
// TEMPLATE FUNCTIONS
template<class T, class A>
 bool operator==(
 const list<T, A>& lhs,
 const list<T, A>& rhs);
template<class T, class A>
 bool operator!=(
 const list<T, A>& lhs,
 const list<T, A>& rhs);
template<class T, class A>
 bool operator<(
 const list<T, A>& lhs,
 const list<T, A>& rhs);
template<class T, class A>
 bool operator>(
 const list<T, A>& lhs,
 const list<T, A>& rhs);
template<class T, class A>
 bool operator<=(
 const list<T, A>& lhs,
 const list<T, A>& rhs);
template<class T, class A>
 bool operator>=(
 const list<T, A>& lhs,
 const list<T, A>& rhs);
template<class T, class A>
 void swap(
 const list<T, A>& lhs,
 const list<T, A>& rhs);
 };

Include the STL standard header <list> to define the container template class list and three
supporting templates.

http://www.dinkumware.com/

list

allocator_type · assign · back · begin · clear · const_iterator ·
const_reference · const_reverse_iterator · difference_type · empty ·
end · erase · front · get_allocator · insert · iterator · list ·
max_size · merge · pop_back · pop_front · push_back · push_front ·
rbegin · reference · remove · remove_if · rend · resize · reverse ·
reverse_iterator · size · size_type · sort · splice · swap · unique ·
value_type

template<class T, class A = allocator<T> >
 class list {
public:
 typedef A allocator_type;
 typedef A::size_type size_type;
 typedef A::difference_type difference_type;
 typedef A::reference reference;
 typedef A::const_reference const_reference;
 typedef A::value_type value_type;
 typedef T0 iterator;
 typedef T1 const_iterator;
 typedef reverse_bidirectional_iterator<iterator,
 value_type, reference, A::pointer,
 difference_type> reverse_iterator;
 typedef reverse_bidirectional_iterator<const_iterator,
 value_type, const_reference, A::const_pointer,
 difference_type> const_reverse_iterator;
 explicit list(const A& al = A());
 explicit list(size_type n, const T& v = T(), const A& al = A());
 list(const list& x);
 template<class InIt>
 list(InIt first, InIt last, const A& al = A());
 iterator begin();
 const_iterator begin() const;
 iterator end();
 iterator end() const;
 reverse_iterator rbegin();
 const_reverse_iterator rbegin() const;
 reverse_iterator rend();
 const_reverse_iterator rend() const;

 void resize(size_type n, T x = T());
 size_type size() const;
 size_type max_size() const;
 bool empty() const;
 A get_allocator() const;
 reference front();
 const_reference front() const;
 reference back();
 const_reference back() const;
 void push_front(const T& x);
 void pop_front();
 void push_back(const T& x);
 void pop_back();
 template<class InIt>
 void assign(InIt first, InIt last);
 template<class Size, class T2>
 void assign(Size n, const T2& x = T2());
 iterator insert(iterator it, const T& x = T());
 void insert(iterator it, size_type n, const T& x);
 template<class InIt>
 void insert(iterator it, InIt first, InIt last);
 iterator erase(iterator it);
 iterator erase(iterator first, iterator last);
 void clear();
 void swap(list x);
 void splice(iterator it, list& x);
 void splice(iterator it, list& x, iterator first);
 void splice(iterator it, list& x, iterator first, iterator last);
 void remove(const T& x);
 templace<class Pred>
 void remove_if(Pred pr);
 void unique();
 template<class Pred>
 void unique(Pred pr);
 void merge(list& x);
 template<class Pred>
 void merge(list& x, Pred pr);
 void sort();
 template<class Pred>
 void sort(Pred pr);
 void reverse();

protected:
 A allocator;
 };

The template class describes an object that controls a varying-length sequence of elements of type T. The
sequence is stored as a bidirectional linked list of elements, each containing a member of type T.

The object allocates and frees storage for the sequence it controls through a protected object named
allocator, of class A. Such an allocator object must have the same external interface as an object of
template class allocator. Note that allocator is not copied when the object is assigned.

List reallocation occurs when a member function must insert or erase elements of the controlled
sequence. In all such cases, only iterators or references that point at erased portions of the controlled
sequence become invalid.

list::allocator_type

typedef A allocator_type;

The type is a synonym for the template parameter A.

list::assign

template<class InIt>
 void assign(InIt first, InIt last);
template<class Size, class T2>
 void assign(Size n, const T2& x = T2());

The first member template function replaces the sequence controlled by *this with the sequence
[first, last). The second member template function replaces the sequence controlled by *this
with a repetition of n elements of value x.

In this implementation, if a translator does not support member template functions, the templates are
replaced by:

void assign(const_iterator first, const_iterator last);
void assign(size_type n, const T& x = T());

list::back

reference back();
const_reference back() const;

The member function returns a reference to the last element of the controlled sequence, which must be
non-empty.

list::begin

const_iterator begin() const;
iterator begin();

The member function returns a bidirectional iterator that points at the first element of the sequence (or
just beyond the end of an empty sequence).

list::clear

void clear() const;

The member function calls erase(begin(), end()).

list::const_iterator

typedef T1 const_iterator;

The type describes an object that can serve as a constant bidirectional iterator for the controlled
sequence. It is described here as a synonym for the unspecified type T1.

list::const_reference

typedef A::const_reference const_reference;

The type describes an object that can serve as a constant reference to an element of the controlled
sequence.

list::const_reverse_iterator

typedef reverse_bidirectional_iterator<const_iterator,
 value_type, const_reference, A::const_pointer,
 difference_type> const_reverse_iterator;

The type describes an object that can serve as a constant reverse bidirectional iterator for the controlled
sequence.

list::difference_type

typedef A::difference_type difference_type;

The signed integer type describes an object that can represent the difference between the addresses of any
two elements in the controlled sequence.

list::empty

bool empty() const;

The member function returns true for an empty controlled sequence.

list::end

const_iterator end() const;
iterator end();

The member function returns a bidirectional iterator that points just beyond the end of the sequence.

list::erase

iterator erase(iterator it);
iterator erase(iterator first, iterator last);

The first member function removes the element of the controlled sequence pointed to by it. The second
member function removes the elements of the controlled sequence in the range [first, last). Both
return an iterator that designates the first element remaining beyond any elements removed, or end() if
no such element exists.

Erasing N elements causes N destructor calls. No reallocation occurs, so iterators and references become
invalid only for the erased elements.

list::front

reference front();
const_reference front() const;

The member function returns a reference to the first element of the controlled sequence, which must be
non-empty.

list::get_allocator

A get_allocator() const;

The member function returns allocator.

list::insert

iterator insert(iterator it, const T& x = T());
void insert(iterator it, size_type n, const T& x);
template<class InIt>
 void insert(iterator it, InIt first, InIt last);

Each of the member functions inserts, before the element pointed to by it in the controlled sequence, a
sequence specified by the remaining operands. The first member function inserts a single element with
value x and returns an iterator that points to the newly inserted element. The second member function
inserts a repetition of n elements of value x. The member template function inserts the sequence
[first, last).

In this implementation, if a translator does not support member template functions, the template is
replaced by:

void insert(iterator it, const_iterator first, const_iterator last);
void insert(iterator it, const T *first, const T *last);

Inserting N elements causes N copies. No reallocation occurs, so no iterators or references become
invalid.

list::iterator

typedef T0 iterator;

The type describes an object that can serve as a bidirectional iterator for the controlled sequence. It is
described here as a synonym for the unspecified type T0.

list::list

explicit list(const A& al = A());
explicit list(size_type n, const T& v = T(), const A& al = A());
list(const list& x);
template<class InIt>
 list(InIt first, InIt last, const A& al = A());

All constructors store the allocator object al (or, for the copy constructor, x.get_allocator()) in
allocator and initialize the controlled sequence. The first constructor specifies an empty initial
controlled sequence. The second constructor specifies a repetition of n elements of value x. The third
constructor specifies a copy of the sequence controlled by x. The member template constructor specifies
the sequence [first, last). None of the constructors perform any interim reallocations.

In this implementation, if a translator does not support member template functions, the template is
replaced by:

list(const_iterator first, const_iterator last, const A& al = A());

list::max_size

size_type max_size() const;

The member function returns the length of the longest sequence that the object can control.

list::merge

void merge(list& x);
template<class Pred>
 void merge(list& x, Pred pr);

Both member functions remove all elements from the sequence controlled by x and insert them in the
controlled sequence. Both sequences must be ordered by the same predicate, described below. The
resulting sequence is also ordered by that predicate.

For the iterators Pi and Pj designating elements at positions i and j, the first member function imposes
the order !(*Pj < *Pi) whenever i < j. (The elements are sorted in ascending order.) The
member template function imposes the order !pr(*Pj, *Pi) whenever i < j.

No pairs of elements in the original controlled sequence are reversed in the resulting controlled sequence.
If a pair of elements in the resulting controlled sequence compares equal (!(*Pi < *Pj) && !(*Pj
< *Pi)), an element from the original controlled sequence appears before an element from the
sequence controlled by x.

In this implementation, if a translator does not support member template functions, the template is
replaced by:

void merge(list& x, greater<T> pr);

list::pop_back

void pop_back();

The member function removes the last element of the controlled sequence, which must be non-empty.

list::push_back

void push_back(const T& x);

The member function inserts an element with value x at the end of the controlled sequence.

list::pop_front

void pop_front();

The member function removes the first element of the controlled sequence, which must be non-empty.

list::push_front

void push_front(const T& x);

The member function inserts an element with value x at the beginning of the controlled sequence.

list::rbegin

const_reverse_iterator rbegin() const;
reverse_iterator rbegin();

The member function returns a reverse bidirectional iterator that points just beyond the end of the
controlled sequence. Hence, it designates the beginning of the reverse sequence.

list::reference

typedef A::reference reference;

The type describes an object that can serve as a reference to an element of the controlled sequence.

list::remove

void remove(const T& x);

The member function removes from the controlled sequence all elements, designated by the iterator P,
for which *P == x.

list::remove_if

templace<class Pred>
 void remove_if(Pred pr);

The member template function removes from the controlled sequence all elements, designated by the
iterator P, for which pr(*P) is true.

In this implementation, if a translator does not support member template functions, the template is
replaced by:

void remove_if(binder2nd< not_equal_to<T> > pr);

list::rend

const_reverse_iterator rend() const;
reverse_iterator rend();

The member function returns a reverse bidirectional iterator that points at the first element of the
sequence (or just beyond the end of an empty sequence). Hence, it designates the end of the reverse
sequence.

list::resize

void resize(size_type n, T x = T());

The member function ensures that size() henceforth returns n. If it must make the controlled sequence

longer, it appends elements with value x.

list::reverse

void reverse();

The member function reverses the order in which elements appear in the controlled sequence.

list::reverse_iterator

typedef reverse_bidirectional_iterator<iterator,
 value_type, reference, A::pointer,
 difference_type> reverse_iterator;

The type describes an object that can serve as a reverse bidirectional iterator for the controlled sequence.

list::size

size_type size() const;

The member function returns the length of the controlled sequence.

list::size_type

typedef A::size_type size_type;

The unsigned integer type describes an object that can represent the length of any controlled sequence.

list::sort

void sort();
template<class Pred>
 void sortsort(Pred pr);

Both member functions order the elements in the controlled sequence by a predicate, described below.

For the iterators Pi and Pj designating elements at positions i and j, the first member function imposes
the order !(*Pj < *Pi) whenever i < j. (The elements are sorted in ascending order.) The
member template function imposes the order !pr(*Pj, *Pi) whenever i < j. No pairs of elements
in the original controlled sequence are reversed in the resulting controlled sequence.

In this implementation, if a translator does not support member template functions, the template is
replaced by:

void sort(greater<T> pr);

list::splice

void splice(iterator it, list& x);
void splice(iterator it, list& x, iterator first);
void splice(iterator it, list& x, iterator first, iterator last);

The first member function inserts the sequence controlled by x before the element in the controlled
sequence pointed to by it. It also removes all elements from x. (&x must not equal this.)

The second member function removes the element pointed to by first in the sequence controlled by x
and inserts it before the element in the controlled sequence pointed to by it. (If it == first ||
it == ++first, no change occurs.)

The third member function inserts the subrange designated by [first, last) from the sequence
controlled by x before the element in the controlled sequence pointed to by it. It also removes the
original subrange from the sequence controlled by x. (If &x == this, the range [first, last)
must not include the element pointed to by it.)

If the third member function inserts N elements, and &x != this, an object of class iterator is
incremented N times. For all splice member functions, If allocator != str.allocator, a
copy and a destructor call also occur for each inserted element.

list::swap

void swap(list& str);

The member function swaps the controlled sequences between *this and str. If allocator ==
str.allocator, it does so in constant time. Otherwise, it performs a number of element assignments
and constructor calls proportional to the number of elements in the two controlled sequences.

list::unique

void unique();
template<class Pred>
 void unique(Pred pr);

The first member function removes from the controlled sequence every element that compares equal to
its preceding element. For the iterators Pi and Pj designating elements at positions i and j, the
template member function removes every element for which i + 1 == j && pr(*Pi, *Pj).

In this implementation, if a translator does not support member template functions, the template is
replaced by:

void unique(not_equal_to<T> pr);

For a controlled sequence of length N (> 0), the predicate pr(*Pi, *Pj) is evaluated N - 1 times.

list::value_type

typedef A::value_type value_type;

The type is a synonym for the template parameter T.

operator!=

template<class T, class A>
 bool operator!=(
 const list <T, A>& lhs,
 const list <T, A>& rhs);

The template function returns !(lhs == rhs).

operator==

template<class T, class A>
 bool operator==(
 const list <T, A>& lhs,
 const list <T, A>& rhs);

The template function overloads operator== to compare two objects of template class list. The
function returns lhs.size() == rhs.size() && equal(lhs. begin(), lhs. end(),
rhs.begin()).

operator<

template<class T, class A>
 bool operator<(
 const list <T, A>& lhs,
 const list <T, A>& rhs);

The template function overloads operator< to compare two objects of template class list. The
function returns lexicographical_compare(lhs. begin(), lhs. end(),
rhs.begin(), rhs.end()).

operator<=

template<class T, class A>
 bool operator<=(
 const list <T, A>& lhs,
 const list <T, A>& rhs);

The template function returns !(rhs < lhs).

operator>

template<class T, class A>
 bool operator>(
 const list <T, A>& lhs,
 const list <T, A>& rhs);

The template function returns rhs < lhs.

operator>=

template<class T, class A>
 bool operator>=(
 const list <T, A>& lhs,
 const list <T, A>& rhs);

The template function returns !(rhs < lhs).

swap

template<class T, class A>
 void swap(
 const list <T, A>& lhs,
 const list <T, A>& rhs);

The template function executes lhs.swap(rhs).

See also the Table of Contents and the Index.

Copyright © 1992-1996 by P.J. Plauger. Portions derived from work copyright © 1994 by
Hewlett-Packard Company. All rights reserved.

<locale>

codecvt · codecvt_base · codecvt_byname · collate · collate_byname · ctype
· ctype<char> · ctype_base · ctype_byname · has_facet · locale · messages
· messages_base · messages_byname · money_base · money_get · money_put ·
moneypunct · moneypunct_byname · num_get · num_put · numpunct ·
numpunct_byname · time_base · time_get · time_get_byname · time_put ·
time_put_byname · use_facet

isalnum · isalpha · iscntrl · isdigit · isgraph · islower · isprint ·
ispunct · isspace · isupper · isxdigit · tolower · toupper

namespace std {
 class locale;
 class ctype_base;
 template<class E>
 class ctype;
 class ctype<char>;
 template<class E>
 class ctype_byname;
 class codecvt_base;
 template<class From, class To, class State>
 class codecvt;
 template<class From, class To, class State>
 class codecvt_byname;
 template<class E, class InIt>
 class num_get;
 template<class E, class OutIt>
 class num_put;
 template<class E>
 class numpunct;
 template<class E>
 class numpunct_byname;
 template<class E>
 class collate;
 template<class E>
 class collate_byname;
 class time_base;
 template<class E, class InIt>
 class time_get;

http://www.dinkumware.com/

 template<class E, class InIt>
 class time_get_byname;
 template<class E, class OutIt>
 class time_put;
 template<class E, class OutIt>
 class time_put_byname;
 class money_base;
 template<class E, bool Intl, class InIt>
 class money_get;
 template<class E, bool Intl, class OutIt>
 class money_put;
 template<class E, bool Intl>
 class moneypunct;
 template<class E, bool Intl>
 class moneypunct_byname;
 class messages_base;
 template<class E>
 class messages;
 template<class E>
 class messages_byname;
// TEMPLATE FUNCTIONS
 template<class E>
 bool isspace(E c, const locale& loc) const;
 template<class E>
 bool isprint(E c, const locale& loc) const;
 template<class E>
 bool iscntrl(E c, const locale& loc) const;
 template<class E>
 bool isupper(E c, const locale& loc) const;
 template<class E>
 bool islower(E c, const locale& loc) const;
 template<class E>
 bool isalpha(E c, const locale& loc) const;
 template<class E>
 bool isdigit(E c, const locale& loc) const;
 template<class E>
 bool ispunct(E c, const locale& loc) const;
 template<class E>
 bool isxdigit(E c, const locale& loc) const;
 template<class E>
 bool isalnum(E c, const locale& loc) const;
 template<class E>
 bool isgraph(E c, const locale& loc) const;
 template<class E>
 E toupper(E c, const locale& loc) const;

 template<class E>
 E tolower(E c, const locale& loc) const;
 };

Include the standard header <locale> to define a host of template classes and functions that encapsulate and
manipulate locales.

codecvt

template<class From, class To, class State>
 class codecvt : public locale::facet, public codecvt_base {
public:
 typedef From from_type;
 typedef To to_type;
 typedef State state_type;
 explicit codecvt(size_t refs = 0);
 result in(State& state,
 const To *first1, const To *last1, const To *next1,
 From *first2, From *last2, From *next2);
 result out(State& state,
 const From *first1, const From *last1, const From *next1,
 To *first2, To *last2, To *next2);
 bool always_noconv() const throw();
 int max_length() const throw();
 int length(State& state,
 From *first1, const From *last1, size_t _N2) const throw();
 int encoding() const throw();
 static locale::id id;
protected:
 ~codecvt();
 virtual result do_in(State& state,
 const To *first1, const To *last1, const To *next1,
 From *first2, From *last2, From *next2);
 virtual result do_out(State& state,
 const From *first1, const From *last1, const From *next1,
 To *first2, To *last2, To *next2);
 virtual bool do_always_noconv() const throw();
 virtual int do_max_length() const throw();
 virtual int do_encoding() const throw();
 virtual int do_length(State& state,
 From *first1, const From *last1, size_t len2) const throw();
 };

The template class describes an object that can serve as a locale facet, to control conversions between a
sequence of values of type From and a sequence of values of type To. The class State characterizes the
transformation -- and an object of class State stores any necessary state information during a conversion.

As with any locale facet, the static object id has an initial stored value of zero. The first attempt to access its
stored value stores a unique positive value in id.

The template versions of do_in do_out always return codecvt_base::noconv. The Standard C++
library defines an explicit specialization, however, that is more useful:

codecvt<wchar_t, char, mbstate_t

which converts between wchar_t and char sequences.

codecvt::always_noconv

bool always_noconv() const throw();

The member function returns do_always_noconv().

codecvt::codecvt

explicit codecvt(size_t refs = 0);

The constructor initializes its locale::facet base object with locale::facet(refs).

codecvt::do_always_noconv

virtual bool do_always_noconv() const throw();

The protected virtual member function returns true only if every call to do_in or do_out returns noconv.
The template version always returns true.

codecvt::do_encoding

virtual int do_encoding() const throw();

The protected virtual member function returns:

-1, if the encoding of sequences of type to_type is state dependent●

0, if the encoding involves sequences of varying lengths●

n, if the encoding involves only sequences of length n●

codecvt::do_in

virtual result do_in(State state&,
 const To *first1, const To *last1, const To *next1,
 From *first2, From *last2, From *next2);

The protected virtual member function endeavors to convert the source sequence at [first1, last1) to a
destination sequence that it stores within [first2, last2). It always stores in next1 a pointer to the
first unconverted element in the source sequence, and it always stores in next2 a pointer to the first unaltered
element in the destination sequence.

state must represent the initial conversion state at the beginning of a new source sequence. The function
alters its stored value, as needed, to reflect the current state of a successful conversion. Its stored value is
otherwise unspecified.

The function returns:

codecvt_base::error if the source sequence is ill formed●

codecvt_base::noconv if the function performs no conversion●

codecvt_base::ok if the conversion succeeds●

codecvt_base::partial if the source is insufficient, or if the destination is not large enough, for
the conversion to succeed

●

The template version always returns noconv.

codecvt::do_length

virtual int do_length(State state&,
 From *first1, const From *last1, size_t len2) const throw();

The protected virtual member function effectively calls do_out(state, first1, last1, next1,
buf, buf + len2, next2) for some buffer buf and pointer next2, then returns next2 - buf.
(Thus, it is roughly analogous to the function mbrlen, at least when From is type char.)

The template version always returns the lesser of last1 - first1 and len2.

codecvt::do_max_length

virtual int do_max_length() const throw();

The protected virtual member function returns the largest permissible value that can be returned by
do_length(first1, last1, 1), for arbitrary valid values of first1 and last1. (Thus, it is
roughly analogous to the macro MB_CUR_MAX, at least when From is type char.)

The template version always returns 1.

codecvt::do_out

virtual result do_out(State state&,
 const From *first1, const From *last1, const From *next1,
 To *first2, To *last2, To *next2);

The protected virtual member function endeavors to convert the source sequence at [first1, last1) to a
destination sequence that it stores within [first2, last2). It always stores in next1 a pointer to the
first unconverted element in the source sequence, and it always stores in next2 a pointer to the first unaltered
element in the destination sequence.

state must represent the initial conversion state at the beginning of a new source sequence. The function
alters its stored value, as needed, to reflect the current state of a successful conversion. Its stored value is
otherwise unspecified.

The function returns:

codecvt_base::error if the source sequence is ill formed●

codecvt_base::noconv if the function performs no conversion●

codecvt_base::ok if the conversion succeeds●

codecvt_base::partial if the source is insufficient, or if the destination is not large enough, for
the conversion to succeed

●

The template version always returns noconv.

codecvt::from_type

typedef From from_type;

The type is a synonym for the template parameter From.

codecvt::in

result in(State state&,
 const To *first1, const To *last1, const To *next1,
 From *first2, From *last2, From *next2);

The member function returns do_in(state, first1, last1, next1, first2, last2,
next2).

codecvt::length

int length(State state&,
 From *first1, const From *last1, size_t len2) const throw();

The member function returns do_length(first1, last1, len2).

codecvt::encoding

int encoding() const throw();

The member function returns do_encoding().

codecvt::max_length

int max_length() const throw();

The member function returns do_max_length().

codecvt::out

result out(State state&,
 const From *first1, const From *last1, const From *next1,
 To *first2, To *last2, To *next2);

The member function returns do_out(state, first1, last1, next1, first2, last2,
next2).

codecvt::state_type

typedef State state_type;

The type is a synonym for the template parameter State.

codecvt::to_type

typedef To to_type;

The type is a synonym for the template parameter To.

codecvt_base

class codecvt_base {
public:
 enum result {ok, partial, error, noconv};
 };

The class describes an enumeration common to all specializations of template class codecvt. The
enumeration result describes the possible return values from do_in or do_out:

error if the source sequence is ill formed●

noconv if the function performs no conversion●

ok if the conversion succeeds●

partial if the destination is not large enough for the conversion to succeed●

codecvt_byname

template<class From, class To, class State>
 class codecvt_byname : public codecvt<From, To, State> {
public:
 explicit codecvt_byname(const char *s, size_t refs = 0);
protected:
 ~codecvt_byname();
 };

The template class describes an object that can serve as a locale facet of type codecvt<From, To,
State>. Its behavior is determined by the named locale s. The constructor initializes its base object with
codecvt<From, To, State>(refs).

collate

template<class E>
 class collate : public locale::facet {
public:
 typedef E char_type;
 typedef basic_string<E> string_type;
 explicit collate(size_t refs = 0);
 int compare(const E *first1, const E *last1,
 const E *first2, const E *last2) const;
 string_type transform(const E *first, const E *last) const;
 long hash(const E *first, const E *last) const;
 static locale::id id;
protected:
 ~collate();
 virtual int do_compare(const E *first1, const E *last1,
 const E *first2, const E *last2) const;
 virtual string_type do_transform(const E *first, const E *last) const;
 virtual long do_hash(const E *first, const E *last) const;
 };

The template class describes an object that can serve as a locale facet, to control comparisons of sequences of
type E.

As with any locale facet, the static object id has an initial stored value of zero. The first attempt to access its
stored value stores a unique positive value in id.

collate::char_type

typedef E char_type;

The type is a synonym for the template parameter E.

collate::collate

explicit collate(size_t refs = 0);

The constructor initializes its base object with locale::facet(refs).

collate::compare

int compare(const E *first1, const E *last1,
 const E *first2, const E *last2) const;

The member function returns do_compare(first1, last1, first2, last2).

collate::do_compare

virtual int do_compare(const E *first1, const E *last1,
 const E *first2, const E *last2) const;

The protected virtual member function compares the sequence at [first1, last1) with the sequence at
[first2, last2). It compares values by applying operator< between pairs of corresponding elements
of type E. The first sequence compares less if it has the smaller element in the earliest unequal pair in the
sequences, or if no unequal pairs exist but the first sequence is shorter.

If the first sequence compares less than the second sequence, the function returns -1. If the second sequence
compares less, the function returns +1. Otherwise, the function returns zero.

collate::do_transform

virtual string_type do_transform(const E *first, const E *last) const;

The protected virtual member function returns an object of class string_type whose controlled sequence
is a copy of the sequence [first, last). If a class derived from collate<E> overrides do_compare,
it should also override do_transform to match. Put simply, two transformed strings should yield the same
result, when passed to collate::compare, that you would get from passing the untransformed strings to
compare in the derived class.

collate::do_hash

virtual long do_hash(const E *first, const E *last) const;

The protected virtual member function returns an integer derived from the values of the elements in the
sequence [first, last). Such a hash value can be useful, for example, in distributing sequences pseudo
randomly across an array of lists.

collate::hash

long hash(const E *first, const E *last) const;

The member function returns do_hash(first, last).

collate::string_type

typedef basic_string<E> string_type;

The type describes a specialization of template class basic_string whose objects can store copies of the
source sequence.

collate::transform

string_type transform(const E *first, const E *last) const;

The member function returns do_transform(first, last).

collate_byname

template<class E>
 class collate_byname : public collate<E> {
public:
 explicit collate_byname(const char *s, size_t refs = 0);
protected:
 ~collate_byname();
 };

The template class describes an object that can serve as a locale facet of type collate<E>. Its behavior is
determined by the named locale s. The constructor initializes its base object with collate<E>(refs).

ctype

char_type · ctype · do_is · do_narrow · do_scan_is · do_scan_not ·
do_tolower · do_toupper · do_widen · is · narrow · scan_is · scan_not ·
tolower · toupper · widen

template<class E>
 class ctype : public locale::facet, public ctype_base {
public:
 typedef E char_type;
 explicit ctype(size_t refs = 0);
 bool is(mask msk, E ch) const;
 const E *is(const E *first, const E *last, mask *dst) const;
 const E *scan_is(mask msk, const E *first, const E *last) const;
 const E *scan_not(mask msk, const E *first, const E *last) const;
 E toupper(E ch) const;
 const E *toupper(E *first, E *last) const;
 E tolower(E ch) const;
 const E *tolower(E *first, E *last) const;
 E widen(char ch) const;
 const char *widen(char *first, char *last, E *dst) const;
 char narrow(E ch, char dflt) const;
 const E *narrow(const E *first, const E *last,
 char dflt, char *dst) const;
 static locale::id id;
protected:
 ~ctype();
 virtual bool do_is(mask msk, E ch) const;
 virtual const E *do_is(const E *first, const E *last,
 mask *dst) const;

 virtual const E *do_scan_is(mask msk, const E *first,
 const E *last) const;
 virtual const E *do_scan_not(mask msk, const E *first,
 const E *last) const;
 virtual E do_toupper(E ch) const;
 virtual const E *do_toupper(E *first, E *last) const;
 virtual E do_tolower(E ch) const;
 virtual const E *do_tolower(E *first, E *last) const;
 virtual E do_widen(char ch) const;
 virtual const char *do_widen(char *first, char *last, E *dst) const;
 virtual char do_narrow(E ch, char dflt) const;
 virtual const E *do_narrow(const E *first, const E *last,
 char dflt, char *dst) const;
 };

The template class describes an object that can serve as a locale facet, to characterize various properties of a
``character'' (element) of type E. Such a facet also converts between sequences of E elements and sequences of
char.

An object of class ctype<E> stores a pointer to the first element of a ctype mask table, an array of
UCHAR_MAX + 1 elements of typ ctype_base::mask. It also stores a boolean object that indicates
whether the array should be deleted when the ctype<E> object is destroyed.

As with any locale facet, the static object id has an initial stored value of zero. The first attempt to access its
stored value stores a unique positive value in id.

The Standard C++ library defines two explicit specializations of this template class:

ctype<char>, whose differences are described spparately●

ctype<wchar_t<, which treats elements as wide characters●

In this implementation, other specializations of template class ctype<E>:

convert a value ch of type E to a value of type char with the expression (char)ch●

convert a value c of type char to a value of type E with the expression E(c)●

All other operations are performed on char values the same as for the specialization ctype<char>.

ctype::char_type

typedef E char_type;

The type is a synonym for the template parameter E.

ctype::ctype

explicit ctype(size_t refs = 0);

The type is a synonym for the template parameter E.

ctype::do_is

virtual bool do_is(mask msk, E ch) const;
virtual const E *do_is(const E *first, const E *last,
 mask *dst) const;

The first protected member template function returns true if table[(unsigned char)(char)ch] &
msk is nonzero, where table is the stored pointer to the ctype mask table.

The second protected member template function stores in dst[I] the value table[(unsigned
char)(char)first[I]] & msk, where I ranges over the interval [0, last - first).

ctype::do_narrow

virtual char do_narrow(E ch, char dflt) const;
virtual const E *do_narrow(const E *first, const E *last,
 char dflt, char *dst) const;

The first protected member template function returns (char)ch, or dflt if that expression is undefined.

The second protected mem er template function stores in dst[I] the value do_narrow(first[I],
dflt), for I in the interval [0, last - first).

ctype::do_scan_is

virtual const E *do_scan_is(mask msk, const E *first,
 const E *last) const;

The protected member function returns the smallest pointer p in the range [first, last) for which
do_is(msk, *p) is true. If no such value xxists, the function returns last.

ctype::do_scan_not

virtual const E *do_scan_not(mask msk, const E *first,
 const E *last) const;

The protected member function returns the smallest pointer p in the range [first, last) for which
do_is(msk, *p) is false. If no such value exists, the function returns last.

ctype::do_tolower

virtual E do_tolower(E ch) const;
virtual const E *do_tolower(E *first, E *last) const;

The first protected member template function returns the lowercase character corresponding to ch, if such a
character exists. Otherwise, it returns ch.

The second protected member template function replaces each element first[I], for I in the interval [0,
last - first), with do_tolower(first[I].

ctype::do_toupper

virtual E do_toupper(E ch) const;
virtual const E *do_toupper(E *first, E *last) const;

The first protected member template function returns the uppercase character corresponding to ch, if such a
character exists. Otherwise, it returns ch.

The second protected member template function replaces each element first[I], for I in the interval [0,
last - first), with do_toupper(first[I].

ctype::do_widen

virtual E do_widen(char ch) const;
virtual const char *do_widen(char *first, char *last, E *dst) const;

The first protected member template function returns E(ch).

The second protected member template function stores in dst[I] the value do_widen(first[I]), for I
in the interval [0, last - first).

ctype::is

bool is(mask msk, E ch) const;
const E *is(const E *first, const E *last, mask *dst) const;

The first member function returns do_is(msk, ch). The second member function returns
do_is(first, last, dst).

ctype::narrow

char narrow(E ch, char dflt) const;
const E *narrow(const E *first, const E *last,
 char dflt, char *dst) const;

The first member function returns do_narrow(ch, dflt). The second member function returns
do_narrow(first, last, dflt, dst).

ctype::scan_is

const E *scan_is(mask msk, const E *first, const E *last) const;

The member function returns do_scan_is(msk, first, last).

ctype::scan_not

const E *scan_not(mask msk, const E *first, const E *last) const;

The member function returns do_scan_not(msk, first, last).

ctype::tolower

E tolower(E ch) const;
const E *tolower(E *first, E *last) const;

The member function returns do_tolower(first, last).

ctype::toupper

E toupper(E ch) const;
const E *toupper(E *first, E *last) const;

The member function returns do_toupper(first, last).

ctype::widen

E widen(char ch) const;
const char *widen(char *first, char *last, E *dst) const;

The member function returns do_widen(first, last, dst).

ctype<char>

class ctype<char> : public locale::facet, public ctype_base {
public:
 typedef char char_type;
 explicit ctype(const mask *tab = 0, bool del = false,
 size_t refs = 0);
 bool is(mask msk, char ch) const;
 const char *is(const char *first, const char *last,
 mask *dst) const;
 const char *scan_is(mask msk,
 const char *first, const char *last) const;
 const char *scan_not(mask msk,
 const char *first, const char *last) const;
 char toupper(char ch) const;
 const char *toupper(char *first, char *last) const;
 char tolower(char ch) const;
 const char *tolower(char *first, char *last) const;
 char widen(char ch) const;
 const char *widen(char *first, char *last, char *dst) const;
 char narrow(char ch, char dflt) const;
 const char *narrow(const char *first, const char *last,
 char dflt, char *dst) const;
 static locale::id id;
protected:
 ~ctype();
 virtual char do_toupper(char ch) const;

 virtual const char *do_toupper(char *first, char *last) const;
 virtual char do_tolower(char ch) const;
 virtual const char *do_tolower(char *first, char *last) const;
 const mask *table() const throw();
 static const mask *classic_table() const throw();
 static const size_t table_size;
 };

The class is an explicit specialization of template class ctype for type char. Hence, it describes an object that
can serve as a locale facet, to characterize various properties of a ``character'' (element) of type char. The
explicit specialization differs from the template class in several ways:

Its sole public constructor lets you specify tab, the ctype mask table, and del, the boolean object that
is true if the array should be deleted when the ctype<char> object is destroyed -- as well as the usual
reference-count parameter refs.

●

The protected member function table() returns the stored ctype mask table.●

The static member object table_size specifies the minimum number of elements in a ctype mask
table.

●

The protected static member function classic_table() returns the ctype mask table appropriate to
the "C" locale.

●

There are no protected virtual member functions do_is, do_narrow, do_scan_is,
do_scan_not, or do_widen. The corresponding public member functions perform the equivalent
operations themselves.

●

The member functions narrow and widen simply copy elements unaltered.●

ctype_base

class ctype_base {
public:
 enum mask;
 static const mask space, print, cntrl,
 upper, lower, digit, punct, xdigit,
 alpha, alnum, graph;
 };

The class serves as a base class for facets of template class ctype. It defines just the enumerated type mask
and several constants of this type. Each of the constants characterizes a different way to classify characters, as
defined by the functions with similar names declared in the header <ctype.h>. The constants are:

space (function isspace)●

print (function isprint)●

cntrl (function iscntrl)●

upper (function isupper)●

lower (function islower)●

digit (function isdigit)●

punct (function ispunct)●

xdigit (function isxdigit)●

alpha (function isalpha)●

alnum (function isalnum)●

graph (function isgraph)●

You can charaterize a combination of classifications by ORing these constants. In particular, it is always true
that alnum == (alpha | digit) and graph == (alnum | punct).

ctype_byname

template<class E>
 class ctype_byname : public ctype<E> {
public:
 explicit ctype_byname(const char *s, size_t refs = 0);
protected:
 ~ctype_byname();
 };

The template class describes an object that can serve as a locale facet of type ctype<E>. Its behavior is
determined by the named locale s. The constructor initializes its base object with ctype<E>(refs) (or the
equivalent for base class ctype<char>).

has_facet

template<class Facet>
 bool has_facet(const locale& loc) const;

The template function returns true if a locale facet of class Facet is listed within the locale object loc.

In this implementation, you should write _HAS(loc, Facet) in place of has_facet<Facet>(loc),
which not all translators currently support.

isalnum

template<class E>
 bool isalnum(E c, const locale& loc) const;

The template function returns use_facet< ctype<E> >(loc). is(ctype<E>:: alnum, c).

isalpha

template<class E>
 bool isalpha(E c, const locale& loc) const;

The template function returns use_facet< ctype<E> >(loc). is(ctype<E>:: alpha, c).

iscntrl

template<class E>
 bool iscntrl(E c, const locale& loc) const;

The eemplate function returns use_facet< ctype<E> >(loc). is(ctype<E>:: cntrl, c).

isdigit

template<class E>
 bool isdigit(E c, const locale& loc) const;

The template function returns use_facet< ctype<E> >(loc). is(ctype<E>:: digit, c).

isgraph

template<class E>
 bool isgraph(E c, const locale& loc) const;

The template function returns use_facet< ctype<E> >(loc). is(ctype<E>:: graph, c).

islower

template<class E>
 bool islower(E c, const locale& loc) const;

The template function returns use_facet< ctype<E> >(loc). is(ctype<E>:: lower, c).

isprint

template<class E>
 bool isprint(E c, const locale& loc) const;

The template function returns use_facet< ctype<E> >(loc). is(ctype<E>:: print, c).

ispunct

template<class E>
 bool ispunct(E c, const locale& loc) const;

The template function returns use_facet< ctype<E> >(loc). is(ctype<E>:: punct, c).

isspace

template<class E>
 bool isspace(E c, const locale& loc) const;

The template function returns use_facet< ctype<E> >(loc). is(ctype<E>:: space, c).

isupper

template<class E>
 bool isupper(E c, const locale& loc) const;

The template function returns use_facet< ctype<E> >(loc). is(ctype<E>:: upper, c).

isxdigit

template<class E>
 bool isxdigit(E c, const locale& loc) const;

The template function returns use_facet< ctype<E> >(loc). is(ctype<E>:: xdigit, c).

locale

category · classic · facet · global · id · locale · name · operator!= ·
operator() · operator==

class locale {
public:
 class facet;
 class id;
 typedef int category;
 static const category none, collate, ctype, monetary,
 numeric, time, messages, all;
 locale();
 explicit locale(const char *s);
 locale(const locale& x, const locale& y,

 category cat);
 locale(const locale& x, const char *s, category cat);
 template<class Facet>
 locale(const locale& x, Facet *fac);
 template<class Facet>
 locale(const locale& x, const locale& y);
 string name() const;
 bool operator==(const locale& x) const;
 bool operator!=(const locale& x) const;
 template<class E>
 bool operator()(const basic_string<E> lhs,
 const basic_string<E> rhs) const;
 static locale global(const locale& x);
 static const locale& classic();
 };

The class describes a locale object that encapsulates a locale. It represents culture-specific information as a
list of facets. A facet is a pointer to an object of a class derived from class facet that has a public object of
the form:

static locale::id id;

You can define an open-ended set of these facets. You can also construct a locale object that designates an
arbitrary number of facets.

Predefined groups of these facets represent the locale categories traditionally managed in the Standard C
library by the function setlocale.

Category collate (LC_COLLATE) includes the facets:

collate<char>
collate<wchar_t>

Category ctype (LC_CTYPE) includes the facets:

ctype<char>
ctype<wchar_t>
codecvt<char, char, mbstate_t>
codecvt<wchar_t, char, mbstate_t>

Category monetary (LC_MONETARY) includes the facets:

moneypunct<char, false>
moneypunct<wchar_t, false>
moneypunct<char, true>
moneypunct<wchar_t, true>
money_get<char, istreambuf_iterator<char> >
money_get<wchar_t, istreambuf_iterator<wchar_t> >
money_put<char, ostreambuf_iterator<char> >
money_put<wchar_t, ostreambuf_iterator<wchar_t> >

Category numeric (LC_NUMERIC) includes the facets:

num_get<char, istreambuf_iterator<char> >
num_get<wchar_t, istreambuf_iterator<wchar_t> >
num_put<char, ostreambuf_iterator<char> >
num_put<wchar_t, ostreambuf_iterator<wchar_t> >
numpunct<char>
numpunct<wchar_t>

Category time (LC_TIME) includes the facets:

time_get<char, istreambuf_iterator<char> >
time_get<wchar_t, istreambuf_iterator<wchar_t> >
time_put<char, ostreambuf_iterator<char> >
time_put<wchar_t, ostreambuf_iterator<wchar_t> >

Category messages [sic] (LC_MESSAGE) includes the facets:

messages<char>
messages<wchar_t>

(The last category is required by Posix, but not the C Standard.)

Some of these predefined facets are used by the iostreams classes, to control the conversion of numeric values
to and from text sequences.

An object of class locale also stores a locale name as an object of class string. Using an invalid locale
name to construct a locale facet or a locale object throws an object of class runtime_error. If the stored
locale name is "*", no C-style locale corresponds exactly to that represented by the object. Otherwise, you
can establish a matching locale within the Standard C library by calling setlocale(LC_ALL,
x.name. c_str()).

In this implementation, you can also call the static member function:

static locale empty();

to construct a locale object that has no facets. It is also a transparent locale -- the template function
use_facet consults the global locale if it cannot find the requested facet in a transparent locale. Thus, you
can write:

cout.imbue(locale::empty());

Subsequent insertions to cout are mediated by the current state of the global locale. You can even write:

locale loc(locale::empty(), locale("C"), locale::numeric);
cout.imbue(loc);

Numeric formatting rules remain the same as in the C locale even as the global locale supplies changing rules
for inserting dates and monetary amounts.

locale::category

typedef int category;
static const category none, collate, ctype, monetary,
 numeric, time, messages, all;

The type is a synonym for int, so that it can represent any of the C locale categories. It can also represent a
group of constants local to class locale:

none, corresponding to none of the the C categories●

collate, corresponding to the C category LC_COLLATE●

ctype, corresponding to the C category LC_CTYPE●

monetary, corresponding to the C category LC_MONETARY●

numeric, corresponding to the C category LC_NUMERIC●

time, corresponding to the C category LC_TIME●

messages, corresponding to the Posix category LC_MESSAGE●

all, corresponding to the C union of all categories LC_ALL●

You can represent an arbitrary group of categories by ORing these constants, as in monetary | time.

locale::classic

static const locale& classic();

The static member function returns a locale object that represents the C locale.

locale::facet

class facet {
protected:
 explicit facet(size_t refs = 0);
 virtual ~facet();
private:
 facet(const facet&) // not defined
 void operator=(const facet&) // not defined
 };

The member class serves as the base class for all locale facets. Note that you can neither copy nor assign an
object of class facet. You can construct and destroy objects derived from class locale::facet, but not
objects of the base class proper. Typically, you construct an object myfac derived from facet when you
construct a locale, as in:

locale loc(locale::classic(), new myfac);

In such cases, the constructor for the base class facet should have a zero refs argument. When the object
is no longer needed, it is deleted. Thus, you supply a nonzero refs argument only in those rare cases where
you take responsibility for the lifetime of the object.

locale::global

static locale global(const locale& x);

The static member function stores a copy of x as the global locale. It also calls setlocale(LC_ALL,
x.name. c_str()), to establishing a matching locale within the Standard C library. The function then
returns the previous global locale. At program startup, the global locale represents the C locale.

locale::id

class id {
protected:
 id();
private:
 id(const id&) // not defined
 void operator=(const id&) // not defined
 };

The member class describes the static member object required by each unique locale facet. Note that you can
neither copy nor assign an object of class id.

locale::locale

locale();
explicit locale(const char *s);
locale(const locale& x, const locale& y,
 category cat);
locale(const locale& x, const char *s, category cat);
template<class Facet>
 locale(const locale& x, Facet *fac);
template<class Facet>
 locale(const locale& x, const locale& y);

The first constructor initializes the object to match the global locale. The second constructor initializes all the
locale categories to have behavior consistent with the locale name s. The remaining constructors copy x, with
the exceptions noted:

locale(const locale& x, const locale& y,
 category cat);

replaces from y those facets corresponding to a category c for which c & cat is nonzero.

locale(const locale& x, const char *s, category cat);

replaces from locale(s, all) those facets corresponding to a category c for which c & cat is
nonzero.

template<class Facet>
 locale(const locale& x, Facet *fac);

replaces (or adds) the facet Facet with fac, if fac is not a null pointer.

template<class Facet>
 locale(const locale& x, const locale& y);

replaces (or adds) the facet Facet listed in y.

If a locale name s is a null pointer or otherwise invalid, the function throws runtime_error.

In this implementation, you should write _ADDFAC(loc, Facet) to return a new locale that adds the facet
Facet to the locale loc, since not all translators currently support member templates.

locale::name

string name() const;

The member function returns the stored locale name.

locale::operator!=

bool operator!=(const locale& x) const;

The member function returns !(*this == x).

locale::operator()

template<class E>
 bool operator()(const basic_string<E> lhs,
 const basic_string<E> rhs) const;

The member function effectively executes:

const collate<E>& fac = use_fac<collate<E> >(*this);
return (fac.compare(lhs.begin(), lhs.end(),
 rhs.begin(), rhs.end()) < 0);

Thus, you can use a locale object as a function object.

locale::operator==

bool operator==(const locale& x) const;

The member function returns true only if *this and x are copies of the same locale or have the same name
(other than "*").

messages

template<class E>
 class messages : public locale::facet, public messages_base {
public:
 typedef E char_type;
 typedef basic_string<E> string_type;

 explicit messages(size_t refs = 0);
 catalog open(const string& name,
 const locale& loc) const;
 string_type get(catalog cat, int set, int msg,
 const string_type& dflt) const;
 void close(catalog cat) const;
 static locale::id id;
protected:
 ~messages();
 virtual catalog do_open(const string& name,
 const locale& loc) const;
 virtual string_type do_get(catalog cat, int set, int msg,
 const string_type& dflt) const;
 virtual void do_close(catalog cat) const;
 };

The template class describes an object that can serve as a locale facet, to characterize various properties of a
message catalog that can supply messages represented as sequences of elements of type E.

As with any locale facet, the static object id has an initial stored value of zero. The first attempt to access its
stored value stores a unique positive value in id.

messages::char_type

typedef E char_type;

The type is a synonym for the template parameter E.

messages::close

void close(catalog cat) const;

The member function calls do_close(cat);.

messages::do_close

virtual void do_close(catalog cat) const;

The protected member function closes the message catalog, which must have been opened by an earlier
call to do_open.

messages::do_get

virtual string_type do_get(catalog cat, int set, int msg,
 const string_type& dflt) const;

The protected member function endeavors to obtain a message sequence from the message catalog cat.
It may make use of set, msg, and dflt in doing so. It returns a copy of dflt on failure. Otherwise, it

returns a copy of the specified message sequence.

In this implementation, the function returns a locale-specific version of the sequence no if msg is zero. It
returns a locale-specific version of the sequence yes if msg is one. Otherwise, it returns dflt.

messages::do_open

virtual catalog do_open(const string& name,
 const locale& loc) const;

The protected member function endeavors to open a message catalog whose name is name. It may make
use of the locale loc in doing so. It returns a value that compares less than zero on failure. Otherwise, the
returned value can be used as the first argument on a later call to get. It should in any case be used as the
argument on a later call to close.

In this implementation, the function always returns zero.

messages::get

string_type get(catalog cat, int set, int msg,
 const string_type& dflt) const;

The member function returns do_get(cat, set, msg, dflt);.

messages::messages

explicit messages(size_t refs = 0);

The constructor initializes its base object with locale::facet(refs).

messages::open

catalog open(const string& name,
 const locale& loc) const;

The member function returns do_open(name, loc);.

messages::string_type

typedef basic_string<E> string_type;

The type describes a specialization of template class basic_string whose objects can store copies of the
message sequences.

messages_base

class messages_base {
 typedef int catalog;
 };

The class describes a type common to all specializations of template class messages. The type catalog is
a synonym for type int that describes the possible return values from messages::do_open.

messages_byname

template<class E>
 class messages_byname : public messages<E> {
public:
 explicit messages_byname(const char *s, size_t refs = 0);
protected:
 ~messages_byname();
 };

The template class describes an object that can serve as a locale facet of type messages<E>. Its behavior is
determined by the named locale s. The constructor initializes its base object with messages<E>(refs).

money_base

class money_base {
 enum part {none, sign, space,
 symbol, value};
 struct pattern {
 char field[4];
 };
 };

The class describes an enumeration and a structure common to all specializations of template class
moneypunct. The enumeration part describes the possible values in elements of the array field in the
structure pattern. The values of part are:

none to match zero or more spaces or generate nothing●

sign to match or generate a positive or negative sign●

space to match zero or more spaces or generate a space●

symbol to match or generate a currency symbol●

value to match or generate a monetary value●

money_get

template<class E,
 class InIt = istreambuf_iterator<E> >
 class money_get : public locale::facet {
public:
 typedef E char_type;
 typedef InIt iter_type;
 typedef basic_string<E> string_type;

 explicit money_get(size_t refs = 0);
 iter_type get(iter_type first, iter_type last, bool intl,
 ios_base& x, ios_base::iostate& st, long double& val) const;
 iter_type get(iter_type first, iter_type last, bool intl,
 ios_base& x, ios_base::iostate& st, string_type& val) const;
 static locale::id id;
protected:
 ~money_get();
 virtual iter_type do_get(iter_type first, iter_type last, bool intl,
 ios_base& x, ios_base::iostate& st, string_type& val) const;
 virtual iter_type do_get(iter_type first, iter_type last, bool intl,
 ios_base& x, ios_base::iostate& st, long double& val) const;
 };

The template class describes an object that can serve as a locale facet, to control conversions of sequences of
type E to monetary values.

As with any locale facet, the static object id has an initial stored value of zero. The first attempt to access its
stored value stores a unique positive value in id.

money_get::char_type

typedef E char_type;

The type is a synonym for the template parameter E.

money_get::do_get

virtual iter_type do_get(iter_type first, iter_type last, bool intl,
 ios_base& x, ios_base::iostate& st, string_type& val) const;
virtual iter_type do_get(iter_type first, iter_type last, bool intl,
 ios_base& x, ios_base::iostate& st, long double& val) const;

The first virtual protected member function endeavors to match sequential elements beginning at first in
the sequence [first, last) until it has recognized a complete, nonempty monetary input field. If
successful, it converts this field to a sequence of one or more decimal digits, optionally preceded by a minus
sign (-), to represent the amount and stores the result in the string_type object val. It returns an iterator
designating the first element beyond the monetary input field. Otherwise, the function stores an empty
sequence in val and sets ios_base::failbit in st. It returns an iterator designating the first element
beyond any prefix of a valid monetary input field. In either case, if the return value equals last, the function
sets ios_base::eofbit in st.

The second virtual protected member function behaves the same as the first, except that if successful it
converts the optionally-signed digit sequence to a value of type long double and stores that value in val.

The format of a monetary input field is determined by the locale facet fac returned by the (effective) call
use_facet <moneypunct<E, intl>(x. getloc()). Specifically:

fac.neg_format() determines the order in which components of the field occur●

fac.curr_symbol() determines the sequence of elements that constitutes a currency symbol●

fac.positive_sign() determines the sequence of elements that constitutes a positive sign●

fac.negative_sign() determines the sequence of elements that constitutes a negative sign●

fac.grouping() determines how digits are grouped to the left of any decimal point●

fac.thousands_sep() determines the element that separates groups of digits to the left of any
decimal point

●

fac.decimal_point() determines the element that separates the integer digits from the fraction
digits

●

fac.frac_digits() determines the number of significant fraction digits to the right of any
decimal point

●

If the sign string (fac.negative_sign or fac.positive_sign) has more than one element, only the
first element is matched where the element equal to money_base::sign appears in the format pattern
(fac.neg_format). Any remaining elements are matched at the end of the monetary input field. If neither
string has a first element that matches the next element in the monetary input field, the sign string is taken as
empty and the sign is positive.

If x.flags() & showbase is nonzero, the string fac.curr_symbol must match where the element
equal to money_base::symbol appears in the format pattern. Otherwise, if money_base::symbol
occurs at the end of the format pattern, and if no elements of the sign string remain to be matched, the
currency symbol is not matched. Otherwise, the currency symbol is optionally matched.

If no instances of fac.thousands_sep() occur in the value portion of the monetary input field (where
the element equal to money_base::value appears in the format pattern), no grouping constraint is
imposed. Otherwise, any grouping constraints imposed by fac.grouping() is enforced. Note that the
resulting digit sequence represents an integer whose low-order fac.frac_digits() decimal digits are
considered to the right of the decimal point.

Arbitrary white space is matched where the element equal to money_base::space appears in the format
pattern, if it appears other than at the end of the format pattern. Otherwise, no internal white space is matched.
An element c is considered white space if use_facet <ctype<E>(x. getloc()).
is(ctype_base:: space, c) is true.

money_get::get

iter_type get(iter_type first, iter_type last, bool intl,
 ios_base& x, ios_base::iostate& st, long double& val) const;
iter_type get(iter_type first, iter_type last, bool intl,
 ios_base& x, ios_base::iostate& st, string_type& val) const;

Both member functions return do_get(first, last, intl, x, st, val).

money_get::iter_type

typedef InIt iter_type;

The type is a synonym for the template parameter InIt.

money_get::money_get

explicit money_get(size_t refs = 0);

The constructor initializes its base object with locale::facet(refs).

money_get::string_type

typedef basic_string<E> string_type;

The type describes a specialization of template class basic_string whose objects can store sequences of
elements from the source sequence.

money_put

template<class E,
 class OutIt = ostreambuf_iterator<E> >
 class money_put : public locale::facet {
public:
 typedef E char_type;
 typedef OutIt iter_type;
 typedef basic_string<E> string_type;
 explicit money_put(size_t refs = 0);
 iter_type put(iter_type next, bool intl, ios_base& x,
 E fill, long double& val) const;
 iter_type put(iter_type next, bool intl, ios_base& x,
 E fill, string_type& val) const;
 static locale::id id;
protected:
 ~money_put();
 virtual iter_type do_put(iter_type next, bool intl,
 ios_base& x, E fill, string_type& val) const;
 virtual iter_type do_put(iter_type next, bool intl,
 ios_base& x, E fill, long double& val) const;
 };

The template class describes an object that can serve as a locale facet, to control conversions of monetary
values to sequences of type E.

As with any locale facet, the static object id has an initial stored value of zero. The first attempt to access its
stored value stores a unique positive value in id.

money_put::char_type

typedef E char_type;

The type is a synonym for the template parameter E.

money_put::do_put

virtual iter_type do_put(iter_type next, bool intl,
 ios_base& x, E fill, string_type& val) const;
virtual iter_type do_put(iter_type next, bool intl,
 ios_base& x, E fill, long double& val) const;

The first virtual protected member function generates sequential elements beginning at next to produce a
monetary output field from the string_type object val. The sequence controlled by val must begin
with one or more decimal digits, optionally preceded by a minus sign (-), which represents the amount. The
function returns an iterator designating the first element beyond the generated monetary output field.

The second virtual protected member function behaves the same as the first, except that it effectively first
converts val to a sequence of decimal digits, optionally preceded by a minus sign, then converts that
sequence as above.

The format of a monetary output field is determined by the locale facet fac returned by the (effective) call
use_facet <moneypunct<E, intl>(x. getloc()). Specifically:

fac.pos_format() determines the order in which components of the field are generated for a
non-negative value

●

fac.neg_format() determines the order in which components of the field are generated for a
negative value

●

fac.curr_symbol() determines the sequence of elements to generate for a currency symbol●

fac.positive_sign() determines the sequence of elements to generate for a positive sign●

fac.negative_sign() determines the sequence of elements to generate for a negative sign●

fac.grouping() determines how digits are grouped to the left of any decimal point●

fac.thousands_sep() determines the element that separates groups of digits to the left of any
decimal point

●

fac.decimal_point() determines the element that separates the integer digits from any fraction
digits

●

fac.frac_digits() determines the number of significant fraction digits to the right of any
decimal point

●

If the sign string (fac.negative_sign or fac.positive_sign) has more than one element, only the
first element is generated where the element equal to money_base::sign appears in the format pattern
(fac.neg_format or fac.pos_format). Any remaining elements are generated at the end of the
monetary output field.

If x.flags() & showbase is nonzero, the string fac.curr_symbol is generated where the element
equal to money_base::symbol appears in the format pattern. Otherwise, no currency symbol is generated.

If no grouping constraints are imposed by fac.grouping() (its first element has the value CHAR_MAX)
then no instances of fac.thousands_sep() are generated in the value portion of the monetary output
field (where the element equal to money_base::value appears in the format pattern). If
fac.frac_digits() is zero, then no instance of fac.decimal_point() is generated after the
decimal digits. Otherwise, the resulting monetary output field places the low-order fac.frac_digits()
decimal digits to the right of the decimal point.

Padding occurs as for any numeric output field, except that if x.flags() & x.internal is nonzero, any
internal padding is generated where the element equal to money_base::space appears in the format
pattern, if it does appear. Otherwise, internal padding occurs before the generated sequence. The padding
character is fill.

The function calls x.width(0) to reset the field width to zero.

money_put::put

iter_type put(iter_type next, bool intl, ios_base& x,
 E fill, long double& val) const;
iter_type put(iter_type iter_type next, bool intl, ios_base& x,
 E fill, string_type& val) const;

Both member functions return do_put(next, intl, x, fill, val).

money_put::iter_type

typedef InIt iter_type;

The type is a synonym for the template parameter OutIt.

money_put::money_put

explicit money_put(size_t refs = 0);

The constructor initializes its base object with locale::facet(refs).

money_put::string_type

typedef basic_string<E> string_type;

The type describes a specialization of template class basic_string whose objects can store sequences of
elements from the source sequence.

moneypunct

char_type · curr_symbol · decimal_point · do_curr_symbol ·
do_decimal_point · do_frac_digits · do_grouping · do_neg_format ·
do_negative_sign · do_pos_format · do_positive_sign · do_thousands_sep ·

frac_digits · grouping · moneypunct · neg_format · negative_sign ·
pos_format · positive_sign · string_type · thousands_sep

template<class E, bool Intl>
 class moneypunct : public locale::facet, public money_base {
public:
 typedef E char_type;
 typedef basic_string<E> string_type;
 explicit moneypunct(size_t refs = 0);
 E decimal_point() const;
 E thousands_sep() const;
 string grouping() const;
 string_type curr_symbol() const;
 string_type positive_sign() const;
 string_type negative_sign() const;
 int frac_digits() const;
 pattern pos_format(oonst;
 pattern neg_format() const;
 static const bool intl = Intl;
 static locale::id id;
protected:
 ~moneypunct();
 virtual E do_decimal_point() const;
 virtual E do_thousands_sep() const;
 virtual string do_grouping() const;
 virtual string_type do_curr_symbol() const;
 virtual string_type do_positive_sign() const;
 virtual string_type do_negative_sign() const;
 virtual int do_frac_digits() const;
 virtual pattern do_pos_format() const;
 virtual pattern do_neg_format() const;
 };

The template class describes an object that can serve as a locale facet, to desceibe the sequences of type E used
to represent a monetary input field or a monetary output field. If the template parameter Intl is true,
international conventions are observed.

As with any locale facet, the static object id has an initial stored value of zero. The first attempt to access its
stored value stores a unique positive value in id.

The const static object intl stores the value of the template parameter Intl.

moneypunct::char_type

typedef E char_type;

The type is a synonym for the template parameter E.

moneypunct::curr_symbol

string_type curr_symbol() const;

The member function returns do_curr_symbol().

moneypunct::decimal_point

E decimal_point() const;

The member function returns do_decimal_point().

moneypunct::do_curr_symbol

string_type do_curr_symbol() const;

The protected virtual member function returns a locale-specific sequence of elements to use as a currency
symbol.

moneypunct::do_decimal_point

E do_decimal_point() const;

The protected virtual member function returns a locale-specific element to use as a decimal-point.

moneypunct::do_frac_digits

int do_frac_digits() const;

The protected virtual member function returns a locale-specific count of the number of digits to display to the
right of any decimal point.

moneypunct::do_grouping

string do_grouping() const;

The protected virtual member function returns a locale-specific rule for determining how digits are grouped to
the left of any decimal point. The encoding is the same as for lconv::grouping.

moneypunct::do_neg_format

pattern do_neg_format() const;

The protected virtual member function returns a locale-specific rule for determining how to generate a

monetary output field for a neeative amount. Each of the four elements of pattern::field can have the
values:

none to match zero or more spaces or generate nothing●

sign to match or generate a positive or negative sign●

space to match zero or more spaces or generate a space●

symbol to match or generate a currency symbol●

value to match or generate a monetary value●

Components of a monetary output field are generated (and components of a monetary input field are matched)
in the order in which these elements appear in pattern::field. Each of the values sign, symbol,
value, and either none or space must appear exactly once. The value none must not appear first. The
value space must not appear first or last. If Intl is true, the order is symbol, sign, none, then value.

The template version of moneypunct<E, Intl> returns {money_base::symbol,
money_base::sign, money_base::value, money_base::none}.

moneypunct::do_negative_sign

string_type do_negative_sign() const;

The protected virtual member function returns a locale-specific sequence of elements to use as a negative sign.

moneypunct::do_pos_format

pattern do_pos_format() const;

The protected virtual member function returns a locale-specific rule for determining how to generate a
monetary output field for a positive amount. (It also determines how to match the components of a monetary
input field.) The encoding is the same as for do_neg_format.

The template version of moneypunct<E, Intl> returns {money_base::symbol,
money_base::sign, money_base::value, money_base::none}.

moneypunct::do_positive_sign

string_type do_positive_sign() const;

The protected virtual member function returns a locale-specific sequence of elements to use as a positive sign.

moneypunct::do_thousands_sep

E do_thousands_sep() const;

The protected virtual member function returns a locale-specific element to use as a group separator to the left
of any decimal point.

moneypunct::frac_digits

int frac_digits() const;

The member function returns do_frac_digits().

moneypunct::grouping

string grouping() const;

The member function returns do_grouping().

moneypunct::moneypunct

explicit moneypunct(size_t refs = 0);

The constructor initializes its base object with locale::facet(refs).

moneypunct::neg_format

pattern neg_format() const;

The member function returns do_neg_format().

moneypunct::negative_sign

string_type negative_sign() const;

The member function returns do_negative_sign().

moneypunct::pos_format

pattern pos_format() const;

The member function returns do_pos_format().

moneypunct::positive_sign

string_type positive_sign() const;

The member function returns do_positive_sign().

moneypunct::string_type

typedef basic_string<E> string_type;

The type describes a specialization of template class basic_string whose objects can store copies of the
punctuation sequences.

moneypunct::thousands_sep

E thousands_sep() const;

The member function returns do_thousands_sep().

moneypunct_byname

template<class E, bool Intl>
 class moneypunct_byname : public moneypunct<E, Intl> {
public:
 explicit moneypunct_byname(const char *s, size_t refs = 0);
protected:
 ~moneypunct_byname();
 };

The template class describes an object that can serve as a locale facet of type moneypunct<E, Intl>. Its
behavior is determined by the named locale s. The constructor initializes its base object with
moneypunct<E, Intl>(refs).

num_get

template<class E, class InIt = istreambuf_iterator<E> >
 class num_get : public locale::facet {
public:
 typedef E char_type;
 typedef InIt iter_type;
 explicit num_get(size_t refs = 0);
 iter_type get(iter_type first, iter_type last, ios_base& x,
 ios_base::iostate& st, long& val) const;
 iter_type get(iter_type first, iter_type last, ios_base& x,
 ios_base::iostate& st, unsigned long& val) const;
 iter_type get(iter_type first, iter_type last, ios_base& x,
 ios_base::iostate& st, double& val) const;
 iter_type get(iter_type first, iter_type last, ios_base& x,
 ios_base::iostate& st, long double& val) const;
 iter_type get(iter_type first, iter_type last, ios_base& x,
 ios_base::iostate& st, void *& val) const;
 iter_type get(iter_type first, iter_type last, ios_base& x,
 ios_base::iostate& st, bool& val) const;
 static locale::id id;
protected:
 ~num_get();
 virtual iter_type do_get(iter_type first, iter_type last,
 ios_base& x, ios_base::iostate& st, long& val) const;

 virtual iter_type do_get(iter_type first, iter_type last,
 ios_base& x, ios_base::iostate& st, unsigned long& val) const;
 virtual iter_type do_get(iter_type first, iter_type last,
 ios_base& x, ios_base::iostate& st, double& val) const;
 virtual iter_type do_get(iter_type first, iter_type last,
 ios_base& x, ios_base::iostate& st, long double& val) const;
 virtual iter_type do_get(iter_type first, iter_type last,
 ios_base& x, ios_base::iostate& st, void *& val) const;
 virtual iter_type do_get(iter_type first, iter_type last,
 ios_base& x, ios_base::iostate& st, bool& val) const;
 };

The template class describes an object that can serve as a locale facet, to control conversions of sequences of
type E to numeric values.

As with any locale facet, the static object id has an initial stored value of zero. The first attempt to access its
stored value stores a unique positive value in id.

num_get::char_type

typedef E char_type;

The type is a synonym for the template parameter E.

num_get::do_get

virtual iter_type do_get(iter_type first, iter_type last,
 ios_base& x, ios_base::iostate& st, long& val) const;
virtual iter_type do_get(iter_type first, iter_type last,
 ios_base& x, ios_base::iostate& st, unsigned long& val) const;
virtual iter_type do_get(iter_type first, iter_type last,
 ios_base& x, ios_base::iostate& st, double& val) const;
virtual iter_type do_get(iter_type first, iter_type last,
 ios_base& x, ios_base::iostate& st, long double& val) const;
virtual iter_type do_get(iter_type first, iter_type last,
 ios_base& x, ios_base::iostate& st, void *& val) const;
virtual iter_type do_get(iter_type first, iter_type last,
 ios_base& x, ios_base::iostate& st, bool& val) const;

The first virtual protected member function endeavors to match sequential elements beginning at first in
the sequence [first, last) until it has recognized a complete, nonempty integer input field. If
successful, it converts this field to its equivalent value as type long, and stores the result in val. It returns an
iterator designating the first element beyond the numeric input field. Otherwise, the function stores nothing in
val and sets ios_base::failbit in st. It returns an iterator designating the first element beyond any
prefix of a valid integer input field. In either case, if the return value equals last, the function sets
ios_base::eofbit in st.

The integer input field is converted by the same rules used by the scan functions for matching and converting
a series of char elements from a file. (Each such char element is assumed to map to an equivalent element of

type E by a simple, one-to-one, mapping.) The equivalent scan conversion specification is determined as
follows:

If x.flags() & ios_base::basefield == ios_base::oct, the conversion specification
is lo.

●

If x.flags() & ios_base::basefield == ios_base::hex, the conversion specification
is lx.

●

If x.flags() & ios_base::basefield == 0, the conversion specification
is li.

●

Otherwise, the conversion specification is ld.●

The format of an integer input field is further determined by the locale
facet fac returned by the call use_facet <numpunct<E>(x. getloc()).
Specifically:

fac.grouping() determines how digits are grouped to the left of any
decimal point

●

fac.thousands_sep() determines the sequence that separates groups of
digits to the left of any decimal point

●

If no instances of fac.thousands_sep() occur in the numeric input field,
no grouping constraint is imposed. Otherwise, any grouping constraints
imposed by fac.grouping() is enforced and separators are removed before
the scan conversion occurs.

The second virtual protected member function:

virtual iter_type do_get(iter_type first, iter_type last,
 ios_base& x, ios_base::iostate& st, unsigned long& val) const;

behaves the same as the first, except that it replaces a conversion
specification of ld with lu. If successful it converts the numeric input
field to a value of type unsigned long and stores that value in val.

The third virtual protected member function:

virtual iter_type do_get(iter_type first, iter_type last,
 ios_base& x, ios_base::iostate& st, double& val) const;

behaves the same as the first, except that it endeavors to match a
complete, nonempty floating-point input field. fac.decimal_point()
determines the sequence that separates the integer digits from the
fraction digits. The equivalent scan conversion specifier is lf.

The fourth virtual protected member function:

virtual iter_type do_get(iter_type first, iter_type last,
 ios_base& x, ios_base::iostate& st, long double& val) const;

behaves the same the third, except that the equivalent scan conversion
specifier is Lf.

The fifth virtual protected member function:

virtual iter_type do_get(iter_type first, iter_type last,
 ios_base& x, ios_base::iostate& st, void *& val) const;

behaves the same the first, except that the equivalent scan conversion
specifier is p.

The sixth virtual protected member function:

virtual iter_type do_get(iter_type first, iter_type last, ios_base& x,
 ios_base::iostate& st, bool& val) const;

behaves the same as the first, except that it endeavors to match a
complete, nonempty boolean input field. If successful it converts the
boolean input field to a value of type bool and stores that value in val.

A boolean input field takes one of two forms. If x.flags() &
ios_base::boolalpha is false, it is the same as an integer input field,
except that the converted value must be either 0 (for false) or 1 (for
true). Otherwise, the sequence must match either fac.falsename() (for
false), or fac.truename() (for true).

in this implementation, if bool is not a distinct type, an argument val of
type bool must be replaced by (_Bool&)val.

num_get::get

iter_type get(iter_type first, iter_type last, ios_base& x,
 ios_base::iostate& st, long& val) const;
iter_type get(iter_type first, iter_type last, ios_base& x,
 ios_base::iostate& st, unsigned long& val) const;
iter_type get(iter_type first, iter_type last, ios_base& x,
 ios_base::iostate& st, double& val) const;
iter_type get(iter_type first, iter_type last, ios_base& x,
 ios_base::iostate& st, long double& val) const;
iter_type get(iter_type first, iter_type last, ios_base& x,
 ios_base::iostate& st, void *& val) const;
iter_type get(iter_type first, iter_type last, ios_base& x,
 ios_base::iostate& st, bool& val) const;

All member functions return do_get(first, last, x, st, val).

in this implementation, if bool is not a distinct type, an argument val of
type bool must be replaced by (_Bool&)val.

num_get::iter_type

typedef InIt iter_type;

The type is a synonym for the template parameter InIt.

num_get::num_get

explicit num_get(size_t refs = 0);

The constructor initializes its base object with locale::facet(refs).

num_put

template<class E, class OutIt = ostreambuf_iterator<E> >
 class num_put : public locale::facet {
public:
 typedef E char_type;
 typedef OutIt iter_type;
 explicit num_put(size_t refs = 0);
 iter_type put(iter_type next, ios_base& x,
 E fill, long val) const;
 iter_type put(iter_type next, ios_base& x,
 E fill, unsigned long val) const;
 iter_type put(iter_type next, ios_base& x,
 E fill, double val) const;
 iter_type put(iter_type next, ios_base& x,
 E fill, long double val) const;
 iter_type put(iter_type next, ios_base& x,
 E fill, const void *val) const;
 iter_type put(iter_type next, ios_base& x,
 E fill, bool val) const;
 static locale::id id;
protected:
 ~num_put();
 virtual iter_type do_put(iter_type next, ios_base& x,
 E fill, long val) const;
 virtual iter_type do_put(iter_type next, ios_base& x,
 E fill, unsigned long val) const;
 virtual iter_type do_put(iter_type next, ios_base& x,
 E fill, double val) const;
 virtual iter_type do_put(iter_type next, ios_base& x,
 E fill, long double val) const;
 virtual iter_type do_put(iter_type next, ios_base& x,
 E fill, const void *val) const;
 virtual iter_type do_put(iter_type next, ios_base& x,
 E fill, bool val) const;
 };

The template class describes an object that can serve as a locale facet,
to control conversions of numeric values to sequences of type E.

As with any locale facet, the static object id has an initial stored value
of zero. The first attempt to access its stored value stores a unique
positive value in id.

num_put::char_type

typedef E char_type;

The type is a synonym for the template parameter E.

num_put::do_put

virtual iter_type do_put(iter_type next, ios_base& x,
 E fill, long val) const;
virtual iter_type do_put(iter_type next, ios_base& x,
 E fill, unsigned long val) const;
virtual iter_type do_put(iter_type next, ios_base& x,
 E fill, double val) const;
virtual iter_type do_put(iter_type nextp ios_base& x,
 E fill, long double val) const;
virtual iter_type do_put(iter_type nextp ios_base& x,
 E fill, const void *val) const;
virtual iter_type do_put(iter_type next, ios_base& x,
 E fill, bool val) const;

The first virtual protected member function generates sequential elements
beginning at next to produce an integer output field from the value of
val. The function returns an iterator designating the next place to insert
an element beyond the generated integer output field.

The integer output field is generated by the same rules used by the print
functions for generating a series of char elements to a file. (Each such
char element is assumed to map to an equivalent element of type E by a
simple, one-to-one, mapping.) Where a print function pads a field with
either spaces or the digit 0, however, do_put instead uses fill. The
equivalent print conversion specification is determined as follows:

If x.flags() & ios_base::basefield == ios_base::oct, the conversion
specification is lo.

●

If x.flags() & ios_base::basefield == ios_base::hex, the conversion
specification is lx.

●

Otherwise, the conversion specification is ld.●

If x.width() is nonzero, a field width of this value is prepended. The
function then calls x.width(0) to reset the field width to zero.

Padding occurs only if the minimum number of elements N required to
specify the output field is less than x.width(). Such padding consists of
a sequence of N - width() copies of fill. Padding then occurs as follows:

If x.flags() & ios_base::adjustfield == ios_base::left, the flag - is
prepended. (Padding occurs after the generated text.)

●

If x.flags() & ios_base::adjustfield == ios_base::internal, the flag
0 is prepended. (For a numeric output field, padding occurs where the
print functions pad with 0.)

●

Otherwise, no additional flag is prepended. (Padding occurs before
the generated sequence.)

●

Finally:

If x.flags() & ios_base::showpos is nonzero, the flag + is prepended
to the conversion specification.

●

If x.flags() & ios_base::showbase is nonzero, the flag # is prepended
to the conversion specification.

●

The format of an integer output field is further determined by the locale
facet fac returned by the call use_facet <numpunct<E>(x. getloc()).
Specifically:

fac.grouping() determines how digits are grouped to the left of any
decimal point

●

fac.thousands_sep() determines the sequence that separates groups of
digits to the left of any decimal point

●

If no grouping constraints are imposed by fac.grouping() (its first
element has the value CHAR_MAX) then no instances of fac.thousands_sep()
are generated in the output field. Otherwise, separators are inserted
after the print conversion occurs.

The second virtual protected member function:

virtual iter_type do_put(iter_type next, ios_base& x,
 E fill, unsigned long val) const;

behaves the same as the first, except that it replaces a conversion
specification of ld with lu.

The third virtual protected member function:

virtual iter_type do_put(iter_type next, ios_base& x,
 E fill, double val) const;

behaves the same as the first, except that it produces a floating-point
output field from the value of val. fac.decimal_point() determines the
sequence that separates the integer digits from the fraction digits. The
equivalent print conversion specifier is determined as follows:

If x.flags() & ios_base::floatfield == ios_base::fixed, the
conversion specification is lf.

●

If x.flags() & ios_base::floatfield == ios_base::scientific, the
conversion specification is le. If x.flags() & ios_base::uppercase is

●

nonzero, e is replaced with E.

Otherwise, the conversion specification is lg. If x.flags() &
ios_base::uppercase is nonzero, g is replaced with G.

●

If x.flags() & ios_base::fixed is nonzero, or if x.precision() is greater
than zero, a precision with the value x.precision() is prepended to the
conversion specification. Any padding behaves the same as for an integer
output field. The padding character is fill. Finally:

If x.flags() & ios_base::showpos is nonzero, the flag + is prepended
to the conversion specification.

●

If x.flags() & ios_base::showpoint is nonzero, the flag # is
prepended to the conversion specification.

●

The fourth virtual protected member function:

virtual iter_type do_put(iter_type next, ios_base& x,
 E fill, long double val) const;

behaves the same the third, except that the qualifier l in the conversion
specification is replaced with L.

The fifth virtual protected member function:

virtual iter_type do_put(iter_type next, ios_base& x,
 E fill, const void *val) const;

behaves the same the first, except that the conversion specification is p,
plus any qualifier needed to specify padding.

The sixth virtual protected member function:

virtual iter_type do_put(iter_type next, ios_base& x,
 E fill, bool val) const;

behaves the same as the first, except that it generates a boolean output
field from val.

A boolean output field takes one of two forms. If x.flags() &
ios_base::boolalpha is false, the generated sequence is either 0 (for
false) or 1 (for true). Otherwise, the generated sequence is either
fac.falsename() (for false), or fac.truename() (for true).

in this implementation, if bool is not a distinct type, an argument val of
type bool must be replaced by (_Bool)val.

num_put::put

iter_type put(iter_type next, ios_base& x,
 E fill, long val) const;
iter_type put(iter_type next, ios_base& x,
 E fill, unsigned long val) const;
iter_type put(iter_type iter_type next, ios_base& x,

 E fill, double val) const;
iter_type put(iter_type next, ios_base& x,
 E fill, long double val) const;
iter_type put(iter_type next, ios_base& x,
 E fill, const void *val) const;
iter_type put(iter_type next, ios_base& x,
 E fill, bool val) const;

All member functions return do_put(next, x, fill, val).

in this implementation, if bool is not a dastinct type, an argument val of
type bool must be replaced by (_Bool)val.

num_put::iter_type

typedef InIt iter_type;

The type is a synonym for the template parameter OutIt.

num_put::num_put

explicit num_put(size_t refs = 0);

The constructor initializes its base object with locale::facet(refs).

numpunct

char_type · decimal_point · do_decimal_point · do_falsename · do_grouping
· do_truename · do_thousands_sep · falsename · grouping · numpunct ·
string_type · thousands_sep · truename

template<class E, class numpunct : public locale::facet {
public:
 typedef E char_type;
 typedef basic_string<E> string_type;
 explicit numpunct(size_t refs = 0);
 E decimal_point() const;
 E thousands_sep() const;
 string grouping() const;
 string_type truename() const;
 string_type falsename() const;
 static locale::id id;
protected:
 ~numpunct();
 virtual E do_decimal_point() const;

 virtual E do_thousands_sep() const;
 virtual string do_grouping() const;
 virtual string_type do_truename() const;
 virtual string_type do_falsename() const;
 };

The template class describes an object that can serve as a locale facet,
to desceibe the sequences of type E used to represent the input fields
matched by num_get or the output fields generated by num_get.

As with any locale facet, the static object id has an initial stored value
of zero. The first attempt to access its stored value stores a unique
positive value in id.

numpunct::char_type

typedef E char_type;

The type is a synonym for the template parameter E.

numpunct::decimal_point

E decimal_point() const;

The member function returns do_decimal_point().

numpunct::do_decimal_point

E do_decimal_point() const;

The protected virtual member function returns a locale-specific element to
use as a decimal-point.

numpunct::do_falsename

string_type do_falsename() const;

The protected virtual member function returns a locale-specific sequence
to use as a text representation of the value false.

numpunct::do_grouping

string do_grouping() const;

The protected virtual member function returns a locale-specific rule for
determining how digits are grouped to the left of any decimal point. The
encoding is the same as for lconv::grouping.

numpunct::do_thousands_sep

E do_thousands_sep() const;

The protected virtual member function returns a locale-specific element to
use as a group separator to the left of any decimal point.

numpunct::do_truename

string_type do_truename() const;

The protected virtual member function returns a locale-specific sequence
to use as a text representation of the value true.

numpunct::falsename

string_type falsename() const;

The member function returns do_falsename().

numpunct::grouping

string grouping() const;

The member function returns do_grouping().

numpunct::numpunct

explicit numpunct(size_t refs = 0);

The constructor initializes its base object with locale::facet(refs).

numpunct::string_type

typedef basic_string<E> string_type;

The type describes a specialization of template class basic_string whose
objects can store copies of the punctuation sequences.

numpunct::thousands_sep

E thousands_sep() const;

The mmmber function returns do_thousands_sep().

numpunct::truename

string_type falsename() const;

The member function returns do_truename().

numpunct_byname

template<class E>
 class numpunct_byname : public numpunct<E> {
public:
 explicit numpunct_byname(const char *s, size_t refs = 0);
protected:
 ~numpunct_byname();
 };

The template class describes an object that can serve as a locale facet of
type numpunct<E>. Its behavior is determined by the named locale s. The
constructor initializes its base object with numpunct<E>(refs).

time_base

class time_base {
public:
 enum dateorder {no_order, dmy, mdy, ymd, ydm};
 };

The class serves as a base class for facets of template class time_get. It
defines just the enumerated type dateorder and several constants of this
type. Each of the constants characterizes a different way to order the
components of a date. The constants are:

no_order specifies no particular order.●

dmy specifies the order day, month, then year, as in 2 December 1979.●

mdy specifies the order month, day, then year, as in December 2,
1979.

●

ymd specifies the order year, month, then day, as in 1979/12/2.●

ydm specifies the order year, day, then month, as in 1979: 2 Dec.●

time_get

template<class E, class InIt = istreambuf_iterator<E> >
 class time_get : public locale::facet {
public:
 typedef E char_type;
 typedef InIt iter_type;
 explicit time_get(size_t refs = 0);
 dateorder date_order() const;
 iter_type get_time(iter_type first, iter_type last,
 ios_base& x, ios_base::iostate& st, tm *pt) const;
 iter_type get_date(iter_type first, iter_type last,

 ios_base& x, ios_base::iostate& st, tm *pt) const;
 iter_type get_weekday(iter_type first, iter_type last,
 ios_base& x, ios_base::iostate& st, tm *pt) const;
 iter_type get_month(iter_type first, iter_type last,
 ios_base& x, ios_base::iostate& st, tm *pt) const;
 iter_type get_year(iter_type first, iter_type last,
 ios_base& x, ios_base::iostate& st, tm *pt) const;
 static locale::id id;
protected:
 ~time_get();
 virtual dateorder do_date_order() const;
 virtual iter_type do_get_time(iter_type first, iter_type last,
 ios_base& x, ios_base::iostate& st, tm *pt) const;
 virtual iter_type do_get_date(iter_type first, iter_type last,
 ios_base& x, ios_base::iostate& st, tm *pt) const;
 virtual iter_type do_get_weekday(iter_type first, iter_type last,
 ios_base& x, ios_base::iostate& st, tm *pt) const;
 virtual iter_type do_get_month(iter_type first, iter_type last,
 ios_base& x, ios_base::iostate& st, tm *pt) const;
 virtual iter_type do_get_year(iter_type first, iter_type last,
 ios_base& x, ios_base::iostate& st, tm *pt) const;
 };

The template class describes an object that can serve as a locale facet,
to control conversions of sequences of type E to time values.

As with any locale facet, the static object id has an initial stored value
of zero. The first attempt to access its stored value stores a unique
positive value in id.

time_get::char_type

typedef E char_type;

The type is a synonym for the template parameter E.

time_get::date_order

dateorder date_order() const;

The member function returns date_order().

time_get::do_date_order

virtual dateorder do_date_order() const;

The virtual protected member function returns a value of type
time_base::dateorder, which describes the order in which date components

are matched by do_get_date. In this implementation, the value is
time_base::mdy, corresponding to dates of the form December 2, 1979.

time_get::do_get_date

virtual iter_type do_get_date(iter_type first, iter_type last,
 ios_base& x, ios_base::iostate& st, tm *pt) const;

The virtual protected member function endeavors to match sequential
elements beginning at first in the sequence [first, last) until it has
recognized a complete, nonempty date input field. If successful, it
converts this field to its equivalent value as the components tm::tm_mon,
tm::tm_day, and tm::tm_year, and stores the results in pt->tm_mon,
pt->tm_day and pt->tm_year, respectively. It returns an iterator
designating the first element beyond the date input field. Otherwise, the
function sets ios_base::failbit in st. It returns an iterator designating
the first element beyond any prefix of a valid date input field. In either
case, if the return value equals last, the function sets ios_base::eofbit
in st.

In this implementation, the date input field has the form MMM DD, YYYY,
where:

MMM is matched by calling get_month, giving the month.●

DD is a sequence of decimal digits whose corresponding numeric value
must be in the range [1, 31], giving the day of the month.

●

YYYY is matched by calling get_year, giving the year.●

The literal spaces and commas must match corresponding elements in
the input sequence.

●

time_get::do_get_month

virtual iter_type do_get_month(iter_type first, iter_type last,
 ios_base& x, ios_base::iostate& st, tm *pt) const;

The virtual protected member function endeavors to match sequential
elements beginning at first in the sequence [first, last) until it has
recognized a complete, nonempty month input field. If successful, it
converts this field to its equivalent value as the component tm::tm_mon,
and stores the result in pt->tm_mon. It returns an iterator designating
the first element beyond the month input field. Otherwise, the function
sets ios_base::failbit in st. It returns an iterator designating the first
element beyond any prefix of a valid month input field. In either case, if
the return value equals last, the function sets ios_base::eofbit in st.

The month input field is a sequence that matches the longest of a set of
locale-specific sequences, such as: Jan, January, Feb, February, etc. The
converted value is the number of months since January.

time_get::do_get_time

virtual iter_type do_get_time(iter_type first, iter_type last,
 ios_base& x, ios_base::iostate& st, tm *pt) const;

The virtual protected member function endeavors to match sequential
elements beginning at first in the sequence [first, last) until it has
recognized a complete, nonempty time input field. If successful, it
converts this field to its equivalent value as the components tm::tm_hour,
tm::tm_min, and tm::tm_sec, and stores the results in pt->tm_hour,
pt->tm_min and pt->tm_sec, respectively. It returns an iterator
designating the first element beyond the time input field. Otherwise, the
function sets ios_base::failbit in st. It returns an iterator designating
the first element beyond any prefix of a valid time input field. In either
case, if the return value equals last, the function sets ios_base::eofbit
in st.

In this implementation, the time input field has the form HH:MM:SS, where:

HH is a sequence of decimal digits whose corresponding numeric value
must be in the range [0, 24), giving the hour of the day.

●

MM is a sequence of decimal digits whose corresponding numeric value
must be in the range [0, 60), giving the minutes past the hour.

●

SS is a sequence of decimal digits whose corresponding numeric value
must be in the range [0, 60), giving the seconds past the minute.

●

The literal colons must match corresponding elements in the input
sequence.

●

time_get::do_get_weekday

virtual iter_type do_get_weekday(iter_type first, iter_type last,
 ios_base& x, ios_base::iostate& st, tm *pt) const;

The virtual protected member function endeavors to match sequential
elements beginning at first in the sequence [first, last) until it has
recognized a complete, nonempty weekday input field. If successful, it
converts this field to its equivalent value as the component tm::tm_wday,
and stores the result in pt->tm_wday. It returns an iterator designating
the first element beyond the weekday input field. Otherwise, the function
sets ios_base::failbit in st. It returns an iterator designating the first
element beyond any prefix of a valid weekday input field. In either case,
if the return value equals last, the function sets ios_base::eofbit in st.

The weekday input field is a sequence that matches the longest of a set of
locale-specific sequences, such as: Sun, Sunday, Mon, Monday, etc. The
converted value is the number of days since Sunday.

time_get::do_get_year

virtual iter_type do_get_year(iter_type first, iter_type last,
 ios_base& x, ios_base::iostate& st, tm *pt) const;

The virtual protected member function endeavors to match sequential
elements beginning at first in the sequence [first, last) until it has
recognized a complete, nonempty year input field. If successful, it
converts this field to its equivalent value as the component tm::tm_year,
and stores the result in pt->tm_year. It returns an iterator designating
the first element beyond the year input field. Otherwise, the function
sets ios_base::failbit in st. It returns an iterator designating the first
element beyond any prefix of a valid year input field. In either case, if
the return value equals last, the function sets ios_base::eofbit in st.

The year input field is a sequence of decimal digits whose corresponding
numeric value must be in the range [1900, 2036). The stored value is this
value minus 1900. In this implementation, a numeric value in the range [0,
136) is also permissible. It is stored unchanged.

time_get::get_date

iter_type get_date(iter_type first, iter_type last,
 ios_base& x, ios_base::iostate& st, tm *pt) const;

The member function returns do_get_date(first, last, x, st, pt).

time_get::get_month

iter_type get_month(iter_type first, iter_type last,
 ios_base& x, ios_base::iostate& st, tm *pt) const;

The member function returns do_get_month(first, last, x, st, pt).

time_get::get_time

iter_type get_time(iter_type first, iter_type last,
 ios_base& x, ios_base::iostate& st, tm *pt) const;

The member function returns do_get_time(first, last, x, st, pt).

time_get::get_weekday

iter_type get_weekday(iter_type first, iter_type last,
 ios_base& x, ios_base::iostate& st, tm *pt) const;

The member function returns do_get_weekday(first, last, x, st, pt).

time_get::get_year

iter_type get_year(iter_type first, iter_type last,
 ios_base& x, ios_base::iostate& st, tm *pt) const;

The member function returns do_get_year(first, last, x, st, pt).

time_get::iter_type

typedef InIt iter_type;

The type is a synonym for the template parameter InIt.

time_get::time_get

explicit time_get(size_t refs = 0);

The constructor initializes its base object with locale::facet(refs).

time_get_byname

template<class E, class InIt>
 class time_get_byname : public time_get<E, InIt> {
public:
 explicit time_get_byname(const char *s, size_t refs = 0);
protected:
 ~time_get_byname();
 };

The template class describes an object that can serve as a locale facet of
type time_get<E, InIt>. Its behavior is determined by the named locale s.
The constructor initializes its base object with time_get<E, InIt>(refs).

time_put

template<class E, class OutIt = ostreambuf_iterator<E> >
 class time_put : public locale::facet {
public:
 typedef E char_type;
 typedef OutIt iter_type;
 explicit time_put(size_t refs = 0);
 iter_type put(iter_type next, ios_base& x,
 tm *pt, char fmt, char mod = 0) const;
 iter_type put(iter_type next, ios_base& x,
 tm *pt, const E *first, const E *last) const;
 static locale::id id;
protected:

 ~time_put();
 virtual iter_type do_put(iter_type next, ios_base& x,
 tm *pt, char fmt, char mod = 0) const;
 };

The template class describes an object that can serve as a locale facet,
to control conversions of time values to sequences of type E.

As with any locale facet, the static object id has an initial stored value
of zero. The first attempt to access its stored value stores a unique
positive value in id.

time_put::char_type

typedef E char_type;

The type is a synonym for the template parameter E.

time_put::do_put

virtual iter_type do_put(iter_type next, ios_base& x,
 tm *pt, char fmt, char mod = 0) const;

The virtual protected member function generates sequential elements
beginning at next from time values stored in the object *pt, of type
tm</CODE>. The function returns an iterator designating the next place to
insert an element beyond the generated output.

The output is generated by the same rules used by strftime, with a last
argument of pt, for generating a series of char elements into an array.
(Each such char element is assumed to map to an equivalent element of type
E by a simple, one-to-one, mapping.) If mod equals zero, the effective
format is "%F", where F equals fmt. Otherwise, the effective format is
"%MF", where M equals mod.

time_put::put

iter_type put(iter_type next, ios_base& x,
 tm *pt, char fmt, char mod = 0) const;
iter_type put(iter_type next, ios_base& x,
 tm *pt, const E *first, const E *last) const;

The first member function returns do_put(next, x, pt, fmt, mod). The
second member function copies to *next++ any element in the interval
[first, last) other than a percent (%). For a percent followed by a
character C in the interval [first, last), the function instead evaluates
next = do_put(next, x, pt, C, 0) and skips past C. If, however, C is a
qualifier character from the set EOQ#, followed by a character C2 in the
interval [first, last), the function instead evaluates next = do_put(next,
x, pt, C2, C) and skips past C2.

time_put::iter_type

typedef InIt iter_type;

The type is a synonym for the template parameter OutIt.

time_put::time_put

explicit time_put(size_t refs = 0);

The constructor initializes its base object with locale::facet(refs).

time_put_byname

template<class E, class OutIt>
 class time_put_byname : public time_put<E, OutIt> {
public:
 explicit time_put_byname(const char *s, size_t refs = 0);
protected:
 ~time_put_byname();
 };

The template class describes an object that can serve as a locale facet of
type time_put<E, OutIt>. Its behavior is determined by the named locale s.
The constructor initializes its base object with time_put<E, OutIt>(refs).

tolower

template<class E>
 E tolower(E c, const locale& loc) const;

The template function returns use_facet< ctype<E> >(loc). tolower(c).

toupper

template<class E>
 E toupper(E c, const locale& loc) const;

The template function returns use_facet< ctype<E> >(loc). toupper(c).

use_facet

template<class Facet>
 const Facet& use_facet(const locale& loc) const;

The template function returns a reference to the locale facet of class

Facet listed within the locale object loc. If no such object is listed,
the function throws an object of class bad_cast.

In this implementation, you should write _USE(loc, Facet), or _USEFAC(loc,
Facet). in place of use_facet<Facet>(loc), which not all translators
currently support. The former is strongly preferred when looking up a
facet that should always be present -- it generates the requested facet on
demand, if necessary. The latter will report that the locale initially
constructed by locale() has no facets.

See also the Table of Contents and the Index.

Copyright © 1992-1996 by P.J. Plauger. All rights reserved.

<map>

namespace std {
template<class Key, class T, class Pred, class A>
 class map;
template<class Key, class T, class Pred, class A>
 class multimap;
// TEMPLATE FUNCTIONS
template<class Key, class T, class Pred, class A>
 bool operator==(
 const map<Key, T, Pred, A>& lhs,
 const map<Key, T, Pred, A>& rhs);
template<class Key, class T, class Pred, class A>
 bool operator==(
 const multimap<Key, T, Pred, A>& lhs,
 const multimap<Key, T, Pred, A>& rhs);
template<class Key, class T, class Pred, class A>
 bool operator!=(
 const map<Key, T, Pred, A>& lhs,
 const map<Key, T, Pred, A>& rhs);
template<class Key, class T, class Pred, class A>
 bool operator!=(
 const multimap<Key, T, Pred, A>& lhs,
 const multimap<Key, T, Pred, A>& rhs);
template<class Key, class T, class Pred, class A>
 bool operator<(
 const map<Key, T, Pred, A>& lhs,
 const map<Key, T, Pred, A>& rhs);
template<class Key, class T, class Pred, class A>
 bool operator<(
 const multimap<Key, T, Pred, A>& lhs,
 const multimap<Key, T, Pred, A>& rhs);
template<class Key, class T, class Pred, class A>
 bool operator>(
 const map<Key, T, Pred, A>& lhs,
 const map<Key, T, Pred, A>& rhs);
template<class Key, class T, class Pred, class A>
 bool operator>(
 const multimap<Key, T, Pred, A>& lhs,
 const multimap<Key, T, Pred, A>& rhs);
template<class Key, class T, class Pred, class A>
 bool operator<=(
 const map<Key, T, Pred, A>& lhs,
 const map<Key, T, Pred, A>& rhs);

http://www.dinkumware.com/

template<class Key, class T, class Pred, class A>
 bool operator<=(
 const multimap<Key, T, Pred, A>& lhs,
 const multimap<Key, T, Pred, A>& rhs);
template<class Key, class T, class Pred, class A>
 bool operator>=(
 const map<Key, T, Pred, A>& lhs,
 const map<Key, T, Pred, A>& rhs);
template<class Key, class T, class Pred, class A>
 bool operator>=(
 const multimap<Key, T, Pred, A>& lhs,
 const multimap<Key, T, Pred, A>& rhs);
template<class Key, class T, class Pred, class A>
 void swap(
 const map<Key, T, Pred, A>& lhs,
 const map<Key, T, Pred, A>& rhs);
template<class Key, class T, class Pred, class A>
 void swap(
 const multimap<Key, T, Pred, A>& lhs,
 const multimap<Key, T, Pred, A>& rhs);
 };

Include the STL standard header <map> to define the container template classes map and multimap, and their
supporting templates.

map

allocator_type · begin · clear · const_iterator · const_reference ·
const_reverse_iterator · count · difference_type · empty · end · equal_range
· erase · find · get_allocator · insert · iterator · key_comp · key_compare ·
key_type · lower_bound · map · max_size · operator[] · rbegin · reference ·
referent_type · rend · reverse_iterator · size · size_type · swap ·
upper_bound · value_comp · value_compare · value_type

template<class Key, class T, class Pred = less<Key>, class A = allocator<T> >
 class map {
public:
 typedef Key key_type;
 typedef T referent_type;
 typedef Pred key_compare;
 typedef A allocator_type;
 typedef pair<const Key, T> value_type;
 class value_compare;
 typedef A::size_type size_type;
 typedef A::difference_type difference_type;
 typedef A::rebind<value_type>::other::reference reference;

 typedef A::rebind<value_type>::other::const_reference const_reference;
 typedef T0 iterator;
 typedef T1 const_iterator;
 typedef reverse_bidirectional_iterator<iterator,
 value_type, reference, A::pointer,
 difference_type> reverse_iterator;
 typedef reverse_bidirectional_iterator<const_iterator,
 value_type, const_reference, A::const_pointer,
 difference_type> const_reverse_iterator;
 explicit map(const Pred& comp = Pred(), const A& al = A());
 map(const map& x);
 template<class InIt>
 map(InIt first, InIt last, const Pred& comp = Pred(),
 const A& al = A());
 iterator begin();
 const_iterator begin() const;
 iterator end();
 iterator end() const;
 reverse_iterator rbegin();
 const_reverse_iterator rbegin() const;
 reverse_iterator rend();
 const_reverse_iterator rend() const;
 size_type size() const;
 size_type max_size() const;
 bool empty() const;
 A get_allocator() const;
 A::reference operator[](const Key& key);
 pair<iterator, bool> insert(const value_type& x);
 iterator insert(iterator it, const value_type& x);
 template<class InIt>
 void insert(InIt first, InIt last);
 iterator erase(iterator it);
 iterator erase(iterator first, iterator last);
 size_type erase(const Key& key);
 void clear();
 void swap(map x);
 key_compare key_comp() const;
 value_compare value_comp() const;
 iterator find(const Key& key);
 const_iterator find(const Key& key) const;
 size_type count(const Key& key) const;
 iterator lower_bound(const Key& key);
 const_iterator lower_bound(const Key& key) const;
 iterator upper_bound(const Key& key);
 const_iterator upper_bound(const Key& key) const;

 pair<iterator, iterator> equal_range(const Key& key);
 pair<const_iterator, const_iterator>
 equal_range(const Key& key) const;
protected:
 A allocator;
 };

The template class describes an object that controls a varying-length sequence of elements of type pair<const
Key, T>. The first element of each pair is the sort key and the second is its associated value. The sequence is
represented in a way that permits lookup, insertion, and removal of an arbitrary element with a number of
operations proportional to the logarithm of the number of elements in the sequence (logarithmic time). Moreover,
inserting an element invalidates no iterators, and removing an element invalidates only those iterators which point
at the removed element.

The object orders the sequence it controls by calling a stored function object of type Pred. You access this stored
object by calling the member function key_comp(). Such a function object must impose a total order on sort
keys. For any element x that precedes y in the sequence, key_comp()(y.first, x.first) is false. (For
the default function object less<Key>, sort keys never decrease in value.) Unlike template class multimap, an
object of template class map ensures that key_comp()(x.first, y.first) is true. (Each key is unique.)

The object allocates and frees storage for the sequence it controls through a protected object named allocator,
of class A. Such an allocator object must have the same external interface as an object of template class
allocator. Note that allocator is not copied when the object is assigned.

map::allocator_type

typedef A allocator_type;

The type is a synonym for the template parameter A.

map::begin

const_iterator begin() const;
iterator begin();

The member function returns a bidirectional iterator that points at the first element of the sequence (or just beyond
the end of an empty sequence).

map::clear

void clear() const;

The member function calls erase(begin(), end()).

map::const_iterator

typedef T1 const_iterator;

The type describes an object that can serve as a constant bidirectional iterator for the controlled sequence. It is
described here as a synonym for the unspecified type T1.

map::const_reference

typedef A::rebind<value_type>::other::const_reference const_reference;

The type describes an object that can serve as a constant reference to an element of the controlled sequence.

map::const_reverse_iterator

typedef reverse_bidirectional_iterator<const_iterator,
 value_type, const_reference, A::const_pointer,
 difference_type> const_reverse_iterator;

The type describes an object that can serve as a constant reverse bidirectional iterator for the controlled sequence.

map::count

size_type count(const Key& key) const;

The member function returns the number of elements x in the range [lower_bound(key),
upper_bound(key)).

map::difference_type

typedef A::difference_type difference_type;

The signed integer type describes an object that can represent the difference between the addresses of any two
elements in the controlled sequence.

map::empty

bool empty() const;

The member function returns true for an empty controlled sequence.

map::end

const_iterator end() const;
iterator end();

The member function returns a bidirectional iterator that points just beyond the end of the sequence.

map::equal_range

pair<iterator, iterator> equal_range(const Key& key);
pair<const_iterator, const_iterator>
 equal_range(const Key& key) const;

The member function returns a pair of iterators x such that x.first == lower_bound(key) and
x.second == upper_bound(key).

map::erase

iterator erase(iterator it);
iterator erase(iterator first, iterator last);
size_type erase(const Key& key);

The first member function removes the element of the controlled sequence pointed to by it. The second member
function removes the elements in the interval [first, last). Both return an iterator that designates the first
element remaining beyond any elements removed, or end() if no such element exists.

The third member function removes the elements with sort keys in the range [lower_bound(key),
upper_bound(key)). It returns the number of elements it removes.

map::find

iterator find(const Key& key);
const_iterator find(const Key& key) const;

The member function returns an iterator that designates the earliest element in the controlled sequence whose sort
key equals key. If no such element exists, the iterator equals end().

map::get_allocator

A get_allocator() const;

The member function returns allocator.

map::insert

pair<iterator, bool> insert(const value_type& x);
iterator insert(iterator it, const value_type& x);
template<class InIt>
 void insert(InIt first, InIt last);

The first member function determines whether an element y exists in the sequence whose key matches that of x.
(The keys match if !key_comp()(x. first, y.first) && !key_comp()(y.first, x.first).)
If not, it creates such an element y and initializes it with x. The function then determines the iterator it that
designates y. If an insertion occurred, the function returns pair(it, true). Otherwise, it returns pair(it,
false).

The second member function returns insert(x), using it as a starting place within the controlled sequence to
search for the insertion point. (Insertion can occur in amortized constant time, instead of logarithmic time, if the
insertion point immediately follows it.) The third member function inserts the sequence of element values in the
range [first, last).

In this implementation, if a translator does not support member template functions, the template is replaced by:

void insert(const value_type *first, const value_type *last);

map::iterator

typedef T0 iterator;

The type describes an object that can serve as a bidirectional iterator for the controlled sequence. It is described
here as a synonym for the unspecified type T0.

map::key_comp

key_compare key_comp() const;

The member function returns the stored function object that determines the order of elements in the controlled
sequence. The stored object detines the member function:

bool operator(const Key& x, const Key& y);

which returns true if x strictly precedes y in the sort order.

map::key_compare

typedef Pred key_compare;

The type describes a function object that can compare two sort keys to determine the relative order of any two
elements in the controlled sequence.

map::key_type

typedef Key key_type;

The type describes the sort key object stored in each element of the controlled sequence.

map::lower_bound

iterator lower_bound(const Key& key);
const_iterator lower_bound(const Key& key) const;

The member function returns an iterator that designates the earliest element x in the controlled sequence for which
key_comp()(x. first, key) is false.

If no such element exists, the function returns end().

map::map

explicit map(const Pred& comp = Pred(), const A& al = A());
map(const map& x);
template<class InIt>
 map(InIt first, InIt last, const Pred& comp = Pred(),
 const A& al = A());

The constructors with an argument named comp store the function object so that it can be later returned by calling
key_comp(). All constructors also store the allocator object al (or, for the copy constructor,
x.get_allocator()) in allocator and initialize the controlled sequence. The first constructor specifies an

empty initial controlled sequence. The second constructor specifies a copy of the sequence controlled by x. The
member template constructor specifies the sequence of element values [first, last).

In this implementation, if a translator does not support member template functions, the template is replaced by:

map(const value_type *first, const value_type *last,
 const Pred& comp = Pred(), const A& al = A());

map::max_size

size_type max_size() const;

The member function returns the length of the longest sequence that the object can control.

map::operator[]

A::reference operator[](const Key& key);

The member function determines the iterator it as the return value of insert(value_type(key, T()).
(It inserts an element with the specified key if no such element exists.) It then returns a reference to (*it).
second.

map::rbegin

const_reverse_iterator rbegin() const;
reverse_iterator rbegin();

The member function returns a reverse bidirectional iterator that points just beyond the end of the controlled
sequence. Hence, it designates the beginning of the reverse sequence.

map::reference

typedef A::rebind<value_type>::other::reference reference;

The type describes an object that can serve as a reference to an element of the controlled sequence.

map::referent_type

typedef T referent_type;

The type is a synonym for the template parameter T.

map::rend

const_reverse_iterator rend() const;
reverse_iterator rend();

The member function returns a reverse bidirectional iterator that points at the first element of the sequence (or just
beyond the end of an empty sequence). Hence, it designates the end of the reverse sequence.

map::reverse_iterator

typedef reverse_bidirectional_iterator<iterator,
 value_type, reference, A::pointer,
 difference_type> reverse_iterator;

The type describes an object that can serve as a reverse bidirectional iterator for the controlled sequence.

map::size

size_type size() const;

The member function returns the length of the controlled sequence.

map::size_type

typedef A::size_type size_type;

The unsigned integer type describes an object that can represent the length of any controlled sequence.

map::swap

void swap(map& str);

The member function swaps the controlled sequences between *this and str. If allocator ==
str.allocator, it does so in constant time. Otherwise, it performs a number of element assignments and
constructor calls proportional to the number of elements in the two controlled sequences.

map::upper_bound

iterator upper_bound(const Key& key);
const_iterator upper_bound(const Key& key) const;

The member function returns an iterator that designates the earliest element x in the controlled sequence for which
key_comp()(key, x.first) is true.

If no such element exists, the function returns end().

map::value_comp

value_compare value_comp() const;

The member function returns a function object that determines the order of elements in the controlled sequence.

map::value_compare

class value_compare
 : public binary_function<value_type, value_type, bool> {
public:
 bool operator()(const value_type& x, const value_type& y)
 {return (comp(x.first, x.second)); }
protected:

 value_compare(key_compare pr)
 : comp(pr) {}
 key_compare comp;
 };

The type describes a function object that can compare the sort keys in two elements to determine their relative
order in the controlled sequence. The function object stores an object comp of type key_type. The member
function operator() uses this object to compare the sort-key components of two element.

map::value_type

typedef pair<const Key, T> value_type;

The type describes an element of the controlled sequence.

multimap

allocator_type · begin · clear · const_iterator · const_reference ·
const_reverse_iterator · count · difference_type · empty · end · equal_range
· erase · find · get_allocator · insert · iterator · key_comp · key_compare ·
key_type · lower_bound · max_size · multimap · rbegin · reference ·
referent_type · rend · reverse_iterator · size · size_type · swap ·
upper_bound · value_comp · value_compare · value_type

template<class Key, class T, class Pred = less<Key>, class A = allocator<T> >
 class multimap {
public:
 typedef Key key_type;
 typedef T referent_type;
 typedef Pred key_compare;
 typedef A allocator_type;
 typedef pair<const Key, T> value_type;
 class value_compare;
 typedef A::size_type size_type;
 typedef A::difference_type difference_type;
 typedef A::rebind<value_type>::other::reference reference;
 typedef A::rebind<value_type>::other::const_reference const_reference;
 typedef T0 iterator;
 typedef T1 const_iterator;
 typedef reverse_bidirectional_iterator<iterator,
 value_type, reference, A::pointer,
 difference_type> reverse_iterator;
 typedef reverse_bidirectional_iterator<const_iterator,
 value_type, const_reference, A::const_pointer,
 difference_type> const_reverse_iterator;
 explicit multimap(const Pred& comp = Pred(), const A& al = A());

 multimap(const multimap& x);
 template<class InIt>
 multimap(InIt first, InIt last, const Pred& comp = Pred(),
 const A& al = A());
 iterator begin();
 const_iterator begin() const;
 iterator end();
 iterator end() const;
 reverse_iterator rbegin();
 const_reverse_iterator rbegin() const;
 reverse_iterator rend();
 const_reverse_iterator rend() const;
 size_type size() const;
 size_type max_size() const;
 bool empty() const;
 A get_allocator() const;
 iterator insert(const value_type& x);
 iterator insert(iterator it, const value_type& x);
 template<class InIt>
 void insert(InIt first, InIt last);
 iterator erase(iterator it);
 iterator erase(iterator first, iterator last);
 size_type erase(const Key& key);
 void clear();
 void swap(multimap x);
 key_compare key_comp() const;
 value_compare value_comp() const;
 iterator find(const Key& key);
 const_iterator find(const Key& key) const;
 size_type count(const Key& key) const;
 iterator lower_bound(const Key& key);
 const_iterator lower_bound(const Key& key) const;
 iterator upper_bound(const Key& key);
 const_iterator upper_bound(const Key& key) const;
 pair<iterator, iterator> equal_range(const Key& key);
 pair<const_iterator, const_iterator>
 equal_range(const Key& key) const;
protected:
 A allocator;
 };

The template class describes an object that controls a varying-length sequence of elements of type pair<const
Key, T>. The first element of each pair is the sort key and the second is its associated value. The sequence is
represented in a way that permits lookup, insertion, and removal of an arbitrary element with a number of
operations proportional to the logarithm of the number of elements in the sequence (logarithmic time). Moreover,
inserting an element invalidates no iterators, and removing an element invalidates only those iterators which point

at the removed element.

The object orders the sequence it controls by calling a stored function object of type Pred. You access this stored
object by calling the member function key_comp(). Such a function object must impose a total order on sort
keys. For any element x that precedes y in the sequence, key_comp()(y.first, x.first) is false. (For
the default function object less<Key>, sort keys never decrease in value.) Unlike template class map, an object
of template class multimap does not ensure that key_comp()(x.first, y.first) is true. (Keys need
not be unique.)

The object allocates and frees storage for the sequence it controls through a protected object named allocator,
of class A. Such an allocator object must have the same external interface as an object of template class
allocator. Note that allocator is not copied when the object is assigned.

multimap::allocator_type

typedef A allocator_type;

The type is a synonym for the template parameter A.

multimap::begin

const_iterator begin() const;
iterator begin();

The member function returns a bidirectional iterator that points at the first element of the sequence (or just beyond
the end of an empty sequence).

multimap::clear

void clear() const;

The member function calls erase(begin(), end()).

multimap::const_iterator

typedef T1 const_iterator;

The type describes an object that can serve as a constant bidirectional iterator for the controlled sequence. It is
described here as a synonym for the unspecified type T1.

multimap::const_reference

typedef A::rebind<value_type>::other::const_reference const_reference;

The type describes an object that can serve as a constant reference to an element of the controlled sequence.

multimap::const_reverse_iterator

typedef reverse_bidirectional_iterator<const_iterator,
 value_type, const_reference, A::const_pointer,
 difference_type> const_reverse_iterator;

The type describes an object that can serve as a constant reverse bidirectional iterator for the controlled sequence.

multimap::count

size_type count(const Key& key) const;

The member function returns the number of elements x in the range [lower_bound(key),
upper_bound(key)).

multimap::difference_type

typedef A::difference_type difference_type;

The signed integer type describes an object that can represent the difference between the addresses of any two
elements in the controlled sequence.

multimap::empty

bool empty() const;

The member function returns true for an empty controlled sequence.

multimap::end

const_iterator end() const;
iterator end();

The member function returns a bidirectional iterator that points just beyond the end of the sequence.

multimap::equal_range

pair<iterator, iterator> equal_range(const Key& key);
pair<const_iterator, const_iterator>
 equal_range(const Key& key) const;

The member function returns a pair of iterators x such that x.first == lower_bound(key) and
x.second == upper_bound(key).

multimap::erase

iterator erase(iterator it);
iterator erase(iterator first, iterator last);
size_type erase(const Key& key);

The first member function removes the element of the controlled sequence pointed to by it. The second member
function removes the elements in the range [first, last). Both return an iterator that designates the first
element remaining beyond any elements removed, or end() if no such element exists.

The third member removes the elements with sort keys in the range [lower_bound(key),
upper_bound(key)). It returns the number of elements it removes.

multimap::find

iterator find(const Key& key);
const_iterator find(const Key& key) const;

The member function returns an iterator that designates the earliest element in the controlled sequence whose sort
key equals key. If no such element exists, the iterator equals end().

multimap::get_allocator

A get_allocator() const;

The member function returns allocator.

multimap::insert

iterator insert(const value_type& x);
iterator insert(iterator it, const value_type& x);
template<class InIt>
 void insert(InIt first, InIt last);

The first member function inserts the element x in the controlled sequence, then returns the iterator that designates
the inserted element. The second member function returns insert(x), using it as a starting place within the
controlled sequence to search for the insertion point. (Insertion can occur in amortized constant time, instead of
logarithmic time, if the insertion point immediately follows it.) The third member function inserts the sequence of
element values in the range [first, last).

In this implementation, if a translator does not support member template functions, the template is replaced by:

void insert(const value_type *first, const value_type *last);

multimap::iterator

typedef T0 iterator;

The type describes an object that can serve as a bidirectional iterator for the controlled sequence. It is described
here as a synonym for the unspecified type T0.

multimap::key_comp

key_compare key_comp() const;

The member function returns the stored function object that determines the order of elements in the controlled
sequence. The stored object defines the member function:

bool operator(const Key& x, const Key& y);

which returns true if x strictly precedes y in the sort order.

multimap::key_compare

typedef Pred key_compare;

The type describes a function object that can compare two sort keys to determine the relative order of any two
elements in the controlled sequence.

multimap::key_type

typedef Key key_type;

The type describes the sort key object stored in each element of the controlled sequence.

multimap::lower_bound

iterator lower_bound(const Key& key);
const_iterator lower_bound(const Key& key) const;

The member function returns an iterator that designates the earliest element x in the controlled sequence for which
key_comp()(x. first, key) is false.

If no such element exists, the function returns end().

size_type max_size() const;

The member function returns the length of the longest sequence that the object can control.

multimap::max_size

size_type max_size() const;

The member function returns the length of the longest sequence that the object can control.

multimap::rbegin

const_reverse_iterator rbegin() const;
reverse_iterator rbegin();

The member function returns a reverse bidirectional iterator that points just beyond the end of the controlled
sequence. Hence, it designates the beginning of the reverse sequence.

multimap::multimap

explicit multimap(const Pred& comp = Pred(), const A& al = A());
multimap(const multimap& x);
template<class InIt>
 multimap(InIt first, InIt last, const Pred& comp = Pred(),
 const A& al = A());

The constructors with an argument named comp store the function object so that it can be later returned by calling
key_comp(). All constructors also store the allocator object al (or, for the copy constructor,
x.get_allocator()) in allocator and initialize the controlled sequence. The first constructor specifies an
empty initial controlled sequence. The second constructor specifies a copy of the sequence controlled by x. The

member template constructor specifies the sequence of element values [first, last).

In this implementation, if a translator does not support member template functions, the template is replaced by:

multimap(const value_type *first, const value_type *last,
 const Pred& comp = Pred(), const A& al = A());

multimap::reference

typedef A::rebind<value_type>::other::reference reference;

The type describes an object that can serve as a reference to an element of the controlled sequence.

multimap::referent_type

typedef T referent_type;

The type is a synonym for the template parameter T.

multimap::rend

const_reverse_iterator rend() const;
reverse_iterator rend();

The member function returns a reverse bidirectional iterator that points at the first element of the sequence (or just
beyond the end of an empty sequence). Hence, it designates the end of the reverse sequence.

multimap::reverse_iterator

typedef reverse_bidirectional_iterator<iterator,
 value_type, reference, A::pointer,
 difference_type> reverse_iterator;

The type describes an object that can serve as a reverse bidirectional iterator for the controlled sequence.

multimap::size

size_type size() const;

The member function returns the length of the controlled sequence.

multimap::size_type

typedef A::size_type size_type;

The unsigned integer type describes an object that can represent the length of any controlled sequence.

multimap::swap

void swap(multimap& str);

The member function swaps the controlled sequences between *this and str. If allocator ==

str.allocator, it does so in constant time. Otherwise, it performs a number of element assignments and
constructor calls proportional to the number of elements in the two controlled sequences.

multimap::upper_bound

iterator upper_bound(const Key& key);
const_iterator upper_bound(const Key& key) const;

The member function returns an iterator that designates the earliest element x in the controlled sequence for which
key_comp()(key, x.first) is true.

If no such element exists, the function returns end().

multimap::value_comp

value_compare value_comp() const;

The member function returns a function object that determines the order of elements in the controlled sequence.

multimap::value_compare

class value_compare
 : public binary_function<value_type, value_type, bool> {
public:
 bool operator()(const value_type& x, const value_type& y)
 {return (comp(x.first, x.second)); }
protected:
 value_compare(key_compare pr)
 : comp(pr) {}
 key_compare comp;
 };

The type describes a function object that can compare the sort keys in two elements to determine their relative
order in the controlled sequence. The function object stores an object comp of type key_type. The member
function operator() uses this object to compare the sort-key components of two element.

multimap::value_type

typedef pair<const Key, T> value_type;

The type describes an element of the controlled sequence.

operator!=

template<class Key, class T, class Pred, class A>
 bool operator!=(
 const map <Key, T, Pred, A>& lhs,
 const map <Key, T, Pred, A>& rhs);
template<class Key, class T, class Pred, class A>
 bool operator!=(
 const multimap <Key, T, Pred, A>& lhs,

 const multimap <Key, T, Pred, A>& rhs);

The template function returns !(lhs == rhs).

operator==

template<class Key, class T, class Pred, class A>
 bool operator==(
 const map <Key, T, Pred, A>& lhs,
 const map <Key, T, Pred, A>& rhs);
template<class Key, class T, class Pred, class A>
 bool operator==(
 const multimap <Key, T, Pred, A>& lhs,
 const multimap <Key, T, Pred, A>& rhs);

The first template function overloads operator== to compare two objects of template class multimap. The
second template function overloads operator== to compare two objects of template class multimap. Both
functions return lhs.size() == rhs.size() && equal(lhs. begin(), lhs. end(),
rhs.begin()).

operator<

template<class Key, class T, class Pred, class A>
 bool operator<(
 const map <Key, T, Pred, A>& lhs,
 const map <Key, T, Pred, A>& rhs);
template<class Key, class T, class Pred, class A>
 bool operator<(
 const multimap <Key, T, Pred, A>& lhs,
 const multimap <Key, T, Pred, A>& rhs);

The first template function overloads operator< to compare two objects of template class multimap. The
second template function overloads operator< to compare two objects of template class multimap. Both
functions return lexicographical_compare(lhs. begin(), lhs. end(), rhs.begin(),
rhs.end()).

operator<=

template<class Key, class T, class Pred, class A>
 bool operator<=(
 const map <Key, T, Pred, A>& lhs,
 const map <Key, T, Pred, A>& rhs);
template<class Key, class T, class Pred, class A>
 bool operator<=(
 const multimap <Key, T, Pred, A>& lhs,
 const multimap <Key, T, Pred, A>& rhs);

The template function returns !(rhs < lhs).

operator>

template<class Key, class T, class Pred, class A>
 bool operator>(
 const map <Key, T, Pred, A>& lhs,
 const map <Key, T, Pred, A>& rhs);
template<class Key, class T, class Pred, class A>
 bool operator>(
 const multimap <Key, T, Pred, A>& lhs,
 const multimap <Key, T, Pred, A>& rhs);

The template function returns rhs < lhs.

operator>=

template<class Key, class T, class Pred, class A>
 bool operator>=(
 const map <Key, T, Pred, A>& lhs,
 const map <Key, T, Pred, A>& rhs);
template<class Key, class T, class Pred, class A>
 bool operator!=(
 const multimap <Key, T, Pred, A>& lhs,
 const multimap <Key, T, Pred, A>& rhs);

The template function returns !(lhs < rhs).

swap

template<class Key, class T, class Pred, class A>
 void swap(
 const map <Key, T, Pred, A>& lhs,
 const map <Key, T, Pred, A>& rhs);
template<class Key, class T, class Pred, class A>
 void swap(
 const multimap <Key, T, Pred, A>& lhs,
 const multimap <Key, T, Pred, A>& rhs);

The template function executes lhs.swap(rhs).

See also the Table of Contents and the Index.

Copyright © 1992-1996 by P.J. Plauger. Portions derived from work copyright © 1994 by Hewlett-Packard
Company. All rights reserved.

<memory>

namespace std {
// TEMPLATE CLASSES
template<class T>
 class allocator;
class allocator<void>;
template<class FwdIt, class T>
 class raw_storage_iterator;
template<class T>
 class auto_ptr;
// TEMPLATE OPERATORS
template<class T>
 bool operator==(allocator<T>& lhs,
 allocator<T>& rhs);
template<class T>
 bool operator!=(allocator<T>& lhs,
 allocator<T>& rhs);
template<class T>
 void operator delete(void *p, size_t n, allocator& al);
template<class T>
 void operator delete[](void *p, size_t n, allocator& al);
template<class T>
 void *operator new(size_t n, allocator& al);
template<class T>
 void *operator new[](size_t n, allocator& al);
// TEMPLATE FUNCTIONS
template<class T>
 pair<T *, ptrdiff_t> get_temporary_buffer(ptrdiff_t n);
template<class T>
 void return_temporary_buffer(T *p);
template<class InIt, class FwdIt>
 FwdIt uninitialized_copy(InIt first, InIt last, FwdIt result);
template<class FwdIt, class T>
 void uninitialized_fill(FwdIt first, FwdIt last, const T& x);
template<class FwdIt, class Size, class T>
 void uninitialized_fill_n(FwdIt first, Size n, const T& x);
 };

http://www.dinkumware.com/

Include the STL standard header <memory> to define a class, an operator, and several templates that
help allocate and free objects.

allocator

template<class T>
 class allocator {
 typedef size_t size_type;
 typedef ptrdiff_t difference_type;
 typedef T *pointer;
 typedef const T *const_pointer;
 typedef T& reference;
 typedef const T& const_reference;
 typedef T value_type;
 pointer address(reference x) const;
 const_pointer address(const_reference x) const;
 template<class U>
 struct rebind;
 allocator();
 template<class U>
 allocator(const allocator<U>);
 template<class U>
 operator=(const allocator<U>);
 template<class U>
 pointer allocate(size_type n, const U *hint);
 void deallocate(pointer p, size_type n);
 void construct(pointer p, const T& val);
 void destroy(pointer p);
 size_type max_size() const;
 };

The template class describes an object that manages storage allocation and freeing for arrays of objects of
type T. An object of class allocator is the default allocator object specified in the constructors for
several container template classes in the Standard C++ library.

Template class allocator supplies several type definitions that are rather pedestrian. They hardly
seem worth defining. But another class with the same members might choose more interesting
alternatives. Constructing a container with an allocator object of such a class gives individual control
over allocation and freeing of elements controlled by that container.

For example, an allocator object might allocate storage on a private heap. Or it might allocate storage on
a far heap, requiring nonstandard pointers to access the allocated objects. Or it might specify, through
the type definitions it supplies, that elements be accessed through special accessor objects that manage
shared memory, or perform automatic garbage collection. Hence, a class that allocates storage using an

allocator object should use these types religiously for declaring pointer and reference objects (as do the
containers in the Standard C++ library).

Thus, an allocator defines the types (among others):

pointer -- behaves like a pointer to T●

const_pointer -- behaves like a const pointer to T●

reference -- behaves like a reference to T●

const_reference -- behaves like a const reference to T●

These types specify the form that pointers and references must take for allocated elements.
(allocator::types<T>::pointer is not necessarily the same as T * for all allocator objects,
even though it has this obvious definition for class allocator.)

allocator::address

pointer address(reference x) const;
const_pointer address(const_reference x) const;

The member functions return the address of x, in the form that pointers must take for allocated elements.

allocator::allocate

template<class U>
 pointer allocate(size_type n, const U *hint);

The member template function allocates storage for an array of n elements of type T, by calling
operator new(n). It returns a pointer to the allocated object. The hint argument helps some
allocators in improving locality of reference -- a valid choice is the address of an object earlier allocated
by the same allocator object, and not yet deallocated. To supply no hint, use a null pointer argument
instead.

allocator::allocator

allocator();
template<class U>
 allocator(const allocator<U>);

The constructors do nothing. In general, however, an allocator object constructed from another allocator
object should compare equal to it (and hence permit intermixing of object allocation and freeing between
the two allocator objects).

In this implementation, if a translator does not support member template functions, the template
constructor is replaced by:

allocator(const allocator<T>);

allocator::const_pointer

typedef const T *pointer;

The pointer type describes an object p that can designate, via the expression *p, any const object that an
object of template class allocator can allocate.

allocator::const_reference

typedef const T& const_reference;

The reference type describes an object x that can designate any const object that an object of template
class allocator can allocate.

allocator::construct

void construct(pointer p, const T& val);

The member function constructs an object of type T at p by evaluating the placement new expression
new ((void *)p) T(val).

allocator::deallocate

void deallocate(pointer p, size_type n);

The member function frees storage for the array of n objects of type T beginning at p, by calling
operator delete(p). The pointer p must have been earlier returned by a call to allocate for an
allocator object that compares equal to *this, allocating an array object of the same size and type.

allocator::destroy

void destroy(pointer p);

The member function destroys the object designated by p, by calling p->T::~T().

allocator::difference_type

typedef ptrdiff_t difference_type;

The signed integer type describes an object that can represent the difference between the addresses of any
two elements in a sequence that an object of template class allocator can allocate.

allocator::max_size

size_type max_size() const;

The member function returns the length of the longest sequence of elements of type T that an object of
class allocator might be able to allocate.

allocator::operator=

template<class U>
 allocator<T> operator=(const allocator<U>);

The template assignment operator does nothing. In general, however, an allocator object assigned to
another allocator object should compare equal to it (and hence permit intermixing of object allocation
and freeing between the two allocator objects).

In this implementation, if a translator does not support member template functions, the template
assignment operator is replaced by:

allocator<T> operator=(const allocator<U>);

allocator::pointer

typedef T *pointer;

The pointer type describes an object p that can designate, via the expression *p, any object that an object
of template class allocator can allocate.

allocator::rebind

template<class U>
 struct rebind {
 typedef allocator<U> other;
 };

The member template class defines the type other. Its sole purpose is to provide the type name
allocator<U> given the type name allocator<U>.

For example, given al allocator object al of type A, you can allocate an object of type U with the
expression:

A::rebind<U>::other(al).allocate(1, 0)

Or, you can simply name its pointer type by writing the type:

A::rebind<U>::other::pointer

In this implementation, if a translator does not support member template functions, how you write an
allocator is constrained. A container may need to allocate and free objects other than type T, but cannot
use the rebind mechanism to derive a suitable allocator object. Thus, you cannot write an allocator that
uses any pointer or reference types that differ from those used by allocator, and you must supply the
member function:

char *_Charalloc(size_type n);

which allocates an object of size n bytes and returns a pointer to its first byte.

allocator::reference

typedef T& reference;

The reference type describes an object x that can designate any object that an object of template class
allocator can allocate.

allocator::size_type

typedef size_t size_type;

The unsigned integer type describes an object that can represent the length of any sequence that an object
of template class allocator can allocate.

allocator::value_type

typedef T value_type;

The type is a synonym for the template parameter T.

allocator<void>

class allocator<void> {
 typedef void *pointer;
 typedef const void *const_pointer;
 typedef void value_type;
 template<class U>
 struct rebind;
 allocator();
 template<class U>
 allocator(const allocator<U>);
 template<class U>
 operator=(const allocator<U>);
 };

The class explicitly specializes template class allocator for type void. It defines only the types
const_pointer, pointer, value_type, and the nested template class rebind.

auto_ptr

template<class T>
 class auto_ptr {
public:
 typedef T element_type;
 explicit auto_ptr(T *p = 0) throw();

 template<class U>
 auto_ptr(const auto_ptr<U>& rhs) throw();
 template<class U>
 auto_ptr<T>& operator=(auto_ptr<U>& rhs) throw();
 ~auto_ptr();
 T& operator*() const throw();
 T *operator->() const throw();
 T *get() const throw();
 T *release() const throw();
 };

The class describes an object that stores a pointer to an allocated object of type T. The stored pointer
must either be null or designate an object allocated by a new expression. The object also stores an
ownership indicator. An object constructed with a non-null pointer owns the pointer. It transfers
ownership if its stored value is assigned to another object. The destructor for auto_ptr<T> deletes the
allocated object if it owns it. Hence, an object of class auto_ptr<T> ensures that an allocated object is
automatically deleted when control leaves a block, even via a thrown excepiton.

auto_ptr::auto_ptr

explicit auto_ptr(T *p = 0) throw();
template<class U>
 auto_ptr(const auto_ptr(auto_ptr<U>& rhs) throw();

The first constructor stores p as the pointer to the allocated object. It stores true as the ownership
indicator only if p != 0. The second (template) constructor transfers ownership of the pointer stored in
rhs, by storing both the pointer value and the ownership indicator from rhs in the constructed object. It
effectively releases the pointer by calling rhs.release().

In this implementation, if a translator does not support member template functions, the template is
replaced by:

auto_ptr(const auto_ptr(auto_ptr<T>& rhs);

auto_ptr::~auto_ptr

~auto_ptr();

If the ownership indicator is true, the destructor deletes the object designated by the stored pointer p by
evaluating the delete expression delete p.

auto_ptr::element_type

typedef T element_type;

The type is a synonym for the template parameter T.

auto_ptr::get

T *get() const throw();

The member function returns the stored pointer.

auto_ptr::operator=

template<class U>
 auto_ptr<T>& operator=(auto_ptr<U>& rhs) throw();

The template assignment operator deletes any pointer p that it owns, by evaluating the delete
expression delete p. It then transfers ownership of the pointer stored in rhs, by storing both the
pointer value and the ownership indicator from rhs in *this. It effectively releases the pointer by
calling rhs.release(). The function returns *this.

In this implementation, if a translator does not support member template functions, the template is
replaced by:

auto_ptr<T>& operator=(auto_ptr<T>& rhs);

auto_ptr::operator*

T& operator*() const throw();

The indirection operator effectively returns *get(). Hence, the stored pointer must not be null.

auto_ptr::operator->

T *operator->() const throw();

The selection operator effectively returns get(), so that the expression al->m behaves the same as
(al.get())->m, where al is an object of class auto_ptr<T>. Hence, the stored pointer must not
be null, and T must be a class, structure, or union type.

auto_ptr::release

T *release() throw();

The member function sets the ownership indicator to false, then returns the stored pointer.

get_temporary_buffer

template<class T>
 pair<T *, ptrdiff_t> get_temporary_buffer(ptrdiff_t n);

The template function allocates storage for a sequence of at most n elements of type T, from an
unspecified source (which may well be the standard heap used by operator new). It returns a value
pr, of type pair<T *, ptrdiff_t>. If the function allocates storage, pr.first designates the
allocated storage and pr.second is the number of elements in the longest sequence the storage can
hold. Otherwise, pr.first is a null pointer.

In this implementation, you should write get_temporary_buffer(n, (T *)0) in place of
get_temporary_buffer<T>(n), which not all translators currently support.

operator!=

template<class T>
 bool operator!=(allocator<T>& lhs,
 allocator<T>& rhs);

The template operator returns false.

operator==

template<class T>
 bool operator==(allocator<T>& lhs,
 allocator<T>& rhs);

The template operator returns true. (Two allocator objects should compare equal only if an object
allocated through one can be deallocated through the other. If the value of one object is determined from
another by assignment or by construction, the two object should compare equal.)

operator delete

template<class T>
 void operator delete(void *p, size_t n, allocator<T>& al);

The template operator function lets you write a placement delete expression that deallocates storage
under control of the allocator object al, as in delete (n, al) p. The function effectively calls
al.deallocate(p, n).

operator delete[]

template<class T>
 void operator delete[](void *p, size_t n, allocator<T>& al);

The template operator function lets you write a placement delete[] expression that deallocates
storage under control of the allocator object al, as in delete[] (n, al) p. The function
effectively calls al.deallocate(p, n).

operator new

template<class T>
 void *operator new(size_t n, allocator<T>& al);

The template operator function lets you write a placement new expression that allocates storage under
control of the allocator object al, as in new(al) U to allocate and construct a new object of type U.
The function effectively returns
allocator<T>::rebind<char>::other(al).allocate(n, 0).

operator new[]

template<class T>
 void *operator new[](size_t n, allocator<T>& al);

The template operator function lets you write a placement new[] expression that allocates storage under
control of the allocator object al, as in new(al) T[N] to allocate and construct a new object of type
T. The function effectively returns operator new(n, al).

raw_storage_iterator

template<class FwdIt, class T>
 class raw_storage_iterator
 : public iterator<output_iterator_tag, void, void> {
public:
 typedef FwdIt iterator_type;
 typedef T element_type;
 explicit raw_storage_iterator(FwdIt it);
 raw_storage_iterator<FwdIt, T>& operator*();
 raw_storage_iterator<FwdIt, T>& operator=(const T& val);
 raw_storage_iterator<FwdIt, T>& operator++();
 raw_storage_iterator<FwdIt, T> operator++(int);
 };

The class describes an output iterator that constructs objects of type T in the sequence it generates. An
object of class raw_storage_iterator<FwdIt, T> accesses storage through a forward iterator
object, of class FwdIt, that you specify when you construct the object. For an object it of class
FwdIt, the expression &*it must designate unconstructed storage for the next object (of type T) in the
generated sequence.

raw_storage_iterator::element_type

typedef T element_type;

The type is a synonym for the template parameter T.

raw_storage_iterator::iterator_type

typedef FwdIt iterator_type;

The type is a synonym for the template parameter FwdIt.

raw_storage_iterator::operator*

raw_storage_iterator<FwdIt, T>& operator*();

The indirection operator returns *this (so that operator=(const T&) can perform the actual store
in an expression such as *x = val).

raw_storage_iterator::operator=

raw_storage_iterator<FwdIt, T>& operator=(const T& val);

The assignment operator constructs the next object in the output sequence using the stored iterator value
it, by evaluating the placement new expression new ((void *)&*it) T(val). The function
returns *this.

raw_storage_iterator::operator++

raw_storage_iterator<FwdIt, T>& operator++();
raw_storage_iterator<FwdIt, T> operator++(int);

The first (preincrement) operator increments the stored output iterator object, then returns *this.

The second (postincrement) operator makes a copy of *this, increments the stored output iterator
object, then returns the copy.

raw_storage_iterator::raw_storage_iterator

explicit raw_storage_iterator(FwdIt it);

The constructor stores it as the output iterator object.

return_temporary_buffer

template<class T>
 void return_temporary_buffer(T *p);

The template function frees the storage designated by p, which must be earlier allocated by a call to
get_temporary_buffer.

uninitialized_copy

template<class InIt, class FwdIt>
 FwdIt uninitialized_copy(InIt first, InIt last, FwdIt result);

The template function effectively executes:

while (first != last)
 new ((void *)&*result++) T(*first++);

where T is the type of *first.

uninitialized fill

template<class FwdIt, class T>
 void uninitialized_fill(FwdIt first, FwdIt last, const T& x);

The template function effectively executes:

while (first != last)
 new ((void *)&*first++) T(x);

uninitialized_fill_n

template<class FwdIt, class Size, class T>
 void uninitialized_fill_n(FwdIt first, Size n, const T& x);

The template function effectively executes:

while (0 < n--)
 new ((void *)&*first++) T(x);

See also the Table of Contents and the Index.

Copyright © 1992-1996 by P.J. Plauger. Portions derived from work copyright © 1994 by
Hewlett-Packard Company. All rights reserved.

<new>

namespace std {
 typedef void (*new_handler)();
 class bad_alloc;
 class nothrow_t;
 extern const nothrow_t nothrow;
 // FUNCTIONS
 new_handler set_new_handler(new_handler ph) throw();
 void operator delete(void *p) throw();
 void operator delete(void *, void *) throw();
 void operator delete(void *p, const nothrow_t&) throw();
 void operator delete[](void *p) throw();
 void operator delete[](void *, void *) throw();
 void operator delete[](void *p, const nothrow_t&) throw();
 void *operator new(size_t n) throw(bad_alloc);
 void *operator new(size_t n, const nothrow_t&) throw();
 void *operator new(size_t n, void *p) throw();
 void *operator new[](size_t n) throw(bad_alloc);
 void *operator new[](size_t n, const nothrow_t&) throw();
 void *operator new[](size_t n, void *p) throw();
 };

Include the standard header <new> to define several types and functions that control allocation and
freeing of storage under program control.

Some of the functions declared in this header are replaceable. The implementation supplies a default
version, whose behavior is described in this document. A program can, however, define a function with
the same signature to replace the default version at link time. The replacement version must satisfy the
requirements described in this document.

bad_alloc

class bad_alloc : public exception {
 };

The class describes an exception thrown to indicate that an allocation request did not succeed. The value
returned by what() is implementation-defined. None of the member functions throw any exceptions.

new_handler

typedef void (*new_handler)();

The type points to a function suitable for use as a new handler.

nothrow

extern const nothrow_t nothrow;

The object is used as a function argument to match the parameter type nothrow_t.

nothrow_t

class nothrow_t {};

The class is used as a function parameter to indicate that the function should never throw an exception.

operator delete

void operator delete(void *p) throw();
void operator delete(void *, void *);
void operator delete(void *p, const nothrow_t&) throw();

The first function is called by a delete expression to render the value of p invalid. The program can
define a function with this function signature that replaces the default version defined by the Standard
C++ library. The required behavior is to accept a value of p that is null or that was returned by an earlier
call to operator new(size_t).

The default behavior for a null value of p is to do nothing. Any other value of p must be a value returned
earlier by a call as described above. The default behavior for such a non-null value of p is to reclaim
storage allocated by the earlier call. It is unspecified under what conditions part or all of such reclaimed
storage is allocated by a subsequent call to operator new(size_t), or to any of
calloc(size_t), malloc(size_t), or realloc(void*, size_t).

The second function is called by a placement delete expression corresponding to a new expression of
the form new(void *). It does nothing.

The third function is called by a placement delete expression corresponding to a new expression of
the form new(void *, const nothrow_t&). It calls delete(p).

operator delete[]

void operator delete[](void *p) throw();
void operator delete[](void *, void *);

The first function is called by a delete[] expression to render the value of p invalid. The program
can define a function with this function signature that replaces the default version defined by the
Standard C++ library.

The required behavior is to accept a value of p that is null or that was returned by an earlier call to
operator new[](size_t).

The default behavior for a null value of p is to do nothing. Any other value of ptr must be a value
returned earlier by a call as described above. The default behavior for such a non-null value of p is to
reclaim storage allocated by the earlier call. It is unspecified under what conditions part or all of such
reclaimed storage is allocated by a subsequent call to operator new(size_t), or to any of
calloc(size_t), malloc(size_t), or realloc(void*, size_t).

The second function is called by a placement delete[] expression corresponding to a new[]
expression of the form new[](void *). It does nothing.

The third function is called by a placement delete expression corresponding to a new[] expression of
the form new[](void *, const nothrow_t&). It calls delete[](p).

operator new

void *operator new(size_t n) throw(bad_alloc);
void *operator new(size_t n, const nothrow_t&) throw();
void *operator new(size_t n, void *p);

The first function is called by a new expression to allocate n bytes of storage suitably aligned to
represent any object of that size. The program can define a function with this function signature that
replaces the default version defined by the Standard C++ library.

The required behavior is to return a non-null pointer only if storage can be allocated as requested. Each
such allocation yields a pointer to storage disjoint from any other allocated storage. The order and
contiguity of storage allocated by successive calls is unspecified. The initial stored value is unspecified.
The returned pointer points to the start (lowest byte address) of the allocated storage. If n is zero, the
value returned does not compare equal to any other value returned by the function.

The default behavior is to execute a loop. Within the loop, the function first attempts to allocate the
requested storage. Whether the attempt involves a call to malloc(size_t) is unspecified. If the
attempt is successful, the function returns a pointer to the allocated storage. Otherwise if the stored new
handler pointer is null, the result is implementation-defined. Otherwise, the function calls the designated

new handler. If the called function returns, the loop repeats. The loop terminates when an attempt to
allocate the requested storage is successful or when a called function does not return.

The required behavior of a new handler is to perform one of the following operations:

make more storage available for allocation and then return●

throw an object of type bad_alloc●

call either abort() or exit(int)●

The default behavior of a new handler is to throw an object of type bad_alloc

The order and contiguity of storage allocated by successive calls to operator new(size_t) is
unspecified, as are the initial values stored there.

The second function:

void *operator new(size_t n, const nothrow_t&) throw();

is called by a placement new expression to allocate n bytes of storage suitably aligned to represent any
object of that size. The program can define a function with this function signature that replaces the
default version defined by the Standard C++ library.

The default behavior is to return operator new(n) if that function succeeds. Otherwise, it returns a
null pointer.

The third function:

void *operator new(size_t n, void *p);

is called by a placement new expression, of the form new (args) T. Here, args consists of a
single object pointer. The function returns p.

operator new[]

void *operator new[](size_t n) throw(bad_alloc);
void *operator new[](size_t n, const nothrow_t&) throw();
void *operator new[](size_t n, void *p);

The first function is called by a new[] expression to allocate n bytes of storage suitably aligned to
represent any array object of that size or smaller. The program can define a function with this function
signature that replaces the default version defined by the Standard C++ library.

The required behavior is the same as for operator new(size_t). The default behavior is to return
operator new(n).

The second function is called by a placement new[] expression to allocate n bytes of storage suitably
aligned to represent any array object of that size. The program can define a function with this function
signature that replaces the default version defined by the Standard C++ library.

The default behavior is to return operator new(n) if that function succeeds. Otherwise, it returns a
null pointer.

The third function is called by a placement new[] expression, of the form new (args) T[N].
Here, args consists of a single object pointer. The function returns p.

set_new_handler

new_handler set_new_handler(new_handler ph) throw();

The function stores ph in a static new handler pointer that it maintains, then returns the value previously
stored in the pointer. The new handler is used by operator new(size_t).

See also the Table of Contents and the Index.

Copyright © 1992-1996 by P.J. Plauger. All rights reserved.

<numeric>

namespace std {
template<class InIt, class T>
 T accumulate(InIt first, InIt last, T val);
template<class InIt, class T, class Pred>
 T accumulate(InIt first, InIt last, T val, Pred pr);
template<class InIt1, class InIt2, class T>
 T product(InIt1 first1, InIt1 last1,
 Init2 first2, T val);
template<class InIt1, class InIt2, class T,
 class Pred1, class Pred2>
 T product(InIt1 first1, InIt1 last1,
 Init2 first2, T val, Pred1 pr1, Pred2 pr2);
template<class InIt, class OutIt>
 OutIt partial_sum(InIt first, InIt last,
 OutIt result);
template<class InIt, class OutIt, class Pred>
 OutIt partial_sum(InIt first, InIt last,
 OutIt result, Pred pr);
template<class InIt, class OutIt>
 OutIt adjacent_difference(InIt first, InIt last,
 OutIt result);
template<class InIt, class OutIt, class Pred>
 OutIt adjacent_difference(InIt first, InIt last,
 OutIt result, Pred pr);
 };

Include the STL standard header <numeric> to define several template functions useful for computing
numeric values. The descriptions of these templates employ a number of conventions common to all
algorithms.

accumulate

template<class InIt, class T>
 T accumulate(InIt first, InIt last, T val);
template<class InIt, class T, class Pred>
 T accumulate(InIt first, InIt last, T val, Pred pr);

http://www.dinkumware.com/

The first template function repeatedly replaces val with val + *I, for each value of the InIt iterator
I in the interval [first, last). It then returns val.

The second template function repeatedly replaces val with pr(val, *I), for each value of the InIt
iterator I in the interval [first, last). It then returns val.

adjacent_difference

template<class InIt, class OutIt>
 OutIt adjacent_difference(InIt first, InIt last,
 OutIt result);
template<class InIt, class OutIt, class Pred>
 OutIt adjacent_difference(InIt first, InIt last,
 OutIt result, Pred pr);

The first template function stores successive values beginning at result, for each value of the InIt
iterator I in the interval [first, last). The first value val stored (if any) is *I. Each subsequent
value stored is *I - val, and val is replaced by *I. The function returns result incremented
last - first times.

The second template function stores successive values beginning at result, for each value of the InIt
iterator I in the interval [first, last). The first value val stored (if any) is *I. Each subsequent
value stored is pr(*I, val), and val is replaced by *I. The function returns result incremented
last - first times.

inner_product

template<class InIt1, class InIt2, class T>
 T product(InIt1 first1, InIt1 last1,
 Init2 first2, T val);
template<class InIt1, class InIt2, class T,
 class Pred1, class Pred2>
 T product(InIt1 first1, InIt1 last1,
 Init2 first2, T val, Pred1 pr1, Pred2 pr2);

The first template function repeatedly replaces val with val + (*I1 * *I2), for each value of the
InIt1 iterator I1 in the interval [first1, last2). In each case, the InIt2 iterator I2 equals
first2 + (I1 - first1). The function returns val.

The first template function repeatedly replaces val with pr1(val, pr2(*I1, *I2)), for each
value of the InIt1 iterator I1 in the interval [first1, last2). In each case, the InIt2 iterator
I2 equals first2 + (I1 - first1). The function returns val.

partial_sum

template<class InIt, class OutIt>
 OutIt partial_sum(InIt first, InIt last,
 OutIt result);
template<class InIt, class OutIt, class Pred>
 OutIt partial_sum(InIt first, InIt last,
 OutIt result, Pred pr);

The first template function stores successive values beginning at result, for each value of the InIt
iterator I in the interval [first, last). The first value val stored (if any) is *I. Each subsequent
value val stored is val + *I. The function returns result incremented last - first times.

The second template function stores successive values beginning at result, for each value of the InIt
iterator I in the interval [first, last). The first value val stored (if any) is *I. Each subsequent
value val stored is pr(val, *I). The function returns result incremented last - first
times.

See also the Table of Contents and the Index.

Copyright © 1992-1996 by P.J. Plauger. Portions derived from work copyright © 1994 by
Hewlett-Packard Company. All rights reserved.

<ostream>

namespace std {
 template<class E, class T = char_traits<E> >
 class basic_ostream;
 typedef basic_ostream<char, char_traits<char> > ostream;
 typedef basic_ostream<wchar_t, char_traits<wchar_t> > wostream;
// INSERTERS
 template<class E, class T>
 basic_ostream<E, T>& operator<<(basic_ostream<E, T> os, const E *s);
 template<class E, class T>
 basic_ostream<E, T>& operator<<(basic_ostream<E, T> os, E c);
 template<class T>
 basic_ostream<char, T>& operator<<(basic_ostream<char, T> os, const signed
char *s);
 template<class T>
 basic_ostream<char, T>& operator<<(basic_ostream<char, T> os, signed char c);
 template<class T>
 basic_ostream<char, T>& operator<<(basic_ostream<char, T> os, const unsigned
char *s);
 template<class T>
 basic_ostream<char, T>& operator<<(basic_ostream<char, T> os, unsigned char
c);
// MANIPULATORS
 template class<E, T>
 basic_ostream<E, T>& endl(basic_ostream<E, T> os);
 template class<E, T>
 basic_ostream<E, T>& ends(basic_ostream<E, T> os);
 template class<E, T>
 basic_ostream<E, T>& flush(basic_ostream<E, T> os);
 };

Include the iostreams standard header <ostream> to define template class basic_ostream, which mediates extractions
for the iostreams classes. The header also defines several related manipulators. (This header is typically included for you by
another of the iostreams headers. You seldom have occasion to include it directly.)

basic_ostream

basic_ostream · char_type · flush · int_type · off_type · operator<< · opfx · osfx ·
pos_type · put · seekp · sentry · tellp · traits_type · write

template <class E, class T = char_traits<E> >
 class basic_ostream {
public:
 typedef T traits_type;
 typedef T::char_type char_type;

http://www.dinkumware.com/

 typedef T::int_type int_type;
 typedef T::pos_type pos_type;
 typedef T::off_type off_type;
 class sentry;
 explicit basic_ostream(basic_streambuf<E, T> *sb);
 virtual ~ostream();
 bool opfx();
 void osfx();
 basic_ostream& operator<<(basic_ostream& (*pf)(basic_ostream&));
 basic_ostream& operator<<(basic_ios<E, T>& (*pf)(basic_ios<E, T>&));
 basic_ostream& operator<<(ios_base<E, T>& (*pf)(ios_base<E, T>&));
 basic_ostream& operator<<(basic_streambuf<E, T> *sb);
 basic_ostream& operator<<(const char *s);
 basic_ostream& operator<<(char c);
 basic_ostream& operator<<(bool n);
 basic_ostream& operator<<(short n);
 basic_ostream& operator<<(unsigned short n);
 basic_ostream& operator<<(int n);
 basic_ostream& operator<<(unsigned int n);
 basic_ostream& operator<<(long n);
 basic_ostream& operator<<(unsigned long n);
 basic_ostream& operator<<(float n);
 basic_ostream& operator<<(double n);
 basic_ostream& operator<<(long double n);
 basic_ostream& operator<<(void * n);
 basic_ostream& put(E c);
 basic_ostream& write(E *s, streamsize n);
 basic_ostream& flush();
 basic_ostream& tellp();
 basic_ostream& seekp(pos_type pos);
 basic_ostream& seekp(off_type off, ios_base::seek_dir way);
 };

The template class describes an object that controls insertion of elements and encoded objects into a stream buffer with
elements of type E, whose character traits are determined by the class T.

Most of the member functions that overload operator<< are formatted output functions. They follow the pattern:

 iostate state = goodbit;
 const sentry ok(*this);
 if (ok)
 {try
 {convert and insert elements
 accumulate flags in state}
 catch (...)
 {if (exceptions() & badbit)
 throw;
 setstate(badbit); }}
 width(0); // except for operator<<(E)
 setstate(state);
 return (*this);

Two other member functions are unformatted output functions. They follow the pattern:

 iostate state = goodbit;
 const sentry ok(*this);
 if (!ok)
 state |= badbit;
 else
 {try
 {obtain and insert elements
 accumulate flags in state}
 catch (...)
 {if (rdstate() & badbit)
 throw;
 setstate(badbit); }}
 setstate(state);
 return (*this);

Both groups of functions call setstate(badbit) if they encounter a failure while inserting elements.

An object of class basic_ostream<E, T> stores only a virtual public base object of class basic_ios<E, T>.

basic_ostream::basic_ostream

explicit basic_ostream(basic_streambuf<E, T> *sb);

The constructor initializes the base class by calling init(sb).

basic_ostream::char_type

typedef T::char_type char_type;

The type describes an element of the controlled sequence. Typically, it is the same as the template parameter E. In this
implementation, however, if wchar_t is not a unique type, then char_type is defined as an encapsulated wchar_t, so that
operator<<: can be overloaded on char_type&.

basic_ostream::flush

basic_ostream& flush();

If rdbuf() is not a null pointer, the function calls rdbuf()->pubsync(). If that returns -1, the function calls
setstate(badbit). It returns *this.

basic_ostream::int_type

typedef T::int_type int_type;

The type is a synonym for T::int_type.

basic_ostream::off_type

typedef T::off_type off_type;

The type is a synonym for T::off_type.

basic_ostream::operator<<

basic_ostream& operator<<(
 basic_ostream& (*pf)(basic_ostream&));
basic_ostream& operator<<(

 basic_ios<E, T>& (*pf)(basic_ios<E, T>&));
basic_ostream& operator<<(
 ios_base<E, T>& (*pf)(ios_base<E, T>&));
basic_ostream& operator<<(
 basic_streambuf<E, T> *sb);
basic_ostream& operator<<(const char *s);
basic_ostream& operator<<(char c);
basic_ostream& operator<<(bool n);
basic_ostream& operator<<(short n);
basic_ostream& operator<<(unsigned short n);
basic_ostream& operator<<(int n);
basic_ostream& operator<<(unsigned int n);
basic_ostream& operator<<(long n);
basic_ostream& operator<<(unsigned long n);
basic_ostream& operator<<(float n);
basic_ostream& operator<<(double n);
basic_ostream& operator<<(long double n);
basic_ostream& operator<<(void *n);

The first member function ensures that an expression of the form ostr <<: endl calls endl(ostr), then returns
*this. The second and third functions ensure that other manipulators, such as hex behave similarly. The remaining functions
are all formatted output functions.

The function:

basic_ostream& operator<<(
 basic_streambuf<E, T> *sb);

extracts elements from sb, if sb is not a null pointer, and inserts them. Extraction stops on end-of-file, or if an extraction
throws an exception (which is rethrown). It also stops, without extracting the element in question, if an insertion fails. If the
function inserts no elements, or if an extraction throws an exception, the function calls setstate(failbit). In any case,
the function returns *this.

The function:

basic_ostream& operator<<(const char *s);

determines the length n = strlen(s) of the sequence beginning at s, and inserts the widened sequence. Each element c of
the sequence is widened by calling use_facet< ctype<E> >(getloc()). widen(c). If n < width(), then
the function also inserts a repetition of width() - n fill characters. The repetition precedes the sequence if (flags() &
adjustfield != left. Otherwise, the repetition follows the sequence.

The function:

basic_ostream& operator<<(char c);

inserts the widened element use_facet< ctype<E> >(getloc()). widen(c). It returns *this.

The function:

basic_ostream& operator<<(bool n);

converts n to a boolean field and inserts it by calling use_facet<num_put<E, OutIt>(getloc()). put(OutIt(
rdbuf()), *this, getloc(), n). Here, OutIt is defined as ostreambuf_iterator<E, T>. The function
returns *this.

The functions:

basic_ostream& operator<<(short n);
basic_ostream& operator<<(unsigned short n);
basic_ostream& operator<<(int n);

basic_ostream& operator<<(unsigned int n);
basic_ostream& operator<<(long n);
basic_ostream& operator<<(unsigned long n);
basic_ostream& operator<<(void *n);

each convert n to a numberic field and insert it by calling use_facet<num_put<E, OutIt>(getloc()).
put(OutIt(rdbuf()), *this, getloc(), n). Here, OutIt is defined as ostreambuf_iterator<E, T>.
The function returns *this.

The functions:

basic_ostream& operator<<(float n);
basic_ostream& operator<<(double n);
basic_ostream& operator<<(long double n);

each convert n to a numberic field and insert it by calling use_facet<num_put<E, OutIt>(getloc()).
put(OutIt(rdbuf()), *this, getloc(), n). Here, OutIt is defined as ostreambuf_iterator<E, T>.
The function returns *this.

basic_ostream::opfx

bool opfx();

If good() is true, and tie() is not a null pointer, the member function calls tie->flush(). It returns good().

You should not call opfx directly. It is called as needed by an object of class sentry.

basic_ostream::osfx

void osfx();

If flags() & unitbuf is nonzero, the member function calls flush(). You should not call osfx directly. It is called as
needed by an object of class sentry.

basic_ostream::pos_type

typedef T::pos_type pos_type;

The type is a synonym for T::pos_type.

basic_ostream::put

basic_ostream& put(E c);

The unformatted output function inserts the element c. It returns *this.

basic_ostream::seekp

basic_ostream& seekp(pos_type pos);
basic_ostream& seekp(off_type off, ios_base::seek_dir way);

If fail() is false, the first member function calls rdbuf()-> pubseekpos(pos). If fail() is false, the second
function calls rdbuf()-> pubseekoff(off, way). Both functions return *this.

basic_ostream::sentry

class sentry {
public:
 explicit sentry(basic_ostream<E, T>& os);
 operator bool() const;
 };

The nested class describes an object whose declaration structures the formatted output functions and the unformatted output
functions. The constructor effectively calls os.opfx() and stores the return value. operator bool() delivers this return
value. The destructor effectively calls os.osfx(), but only if uncaught_exception() returns false.

basic_ostream::tellp

basic_ostream& tellp();

If fail() is false, the member function returns rdbuf()-> pubseekoff(0, cur, in). Otherwise, it returns
streampos(-1).

basic_ostream::traits_type

typedef T traits_type;

The type is a synonym for the template parameter T.

basic_ostream::write

basic_ostream& write(const E *s, streamsize n);

The unformatted output function inserts the sequence of n elements beginning at s.

endl

template class<E, T>
 basic_ostream<E, T>& endl(basic_ostream<E, T> os);

The manipulator calls os.put(os. widen('\n')), then calls os.flush(). It returns os.

ends

template class<E, T>
 basic_ostream<E, T>& ends(basic_ostream<E, T> os);

The manipulator calls os.put(E('\0')). It returns os.

flush

template class<E, T>
 basic_ostream<E, T>& flush(basic_ostream<E, T> os);

The manipulator calls os.flush(). It returns os.

operator<<

template<class E, class T>
 basic_ostream<E, T>& operator<<(basic_ostream<E, T> os, const E *s);
template<class E, class T>
 basic_ostream<E, T>& operator<<(basic_ostream<E, T> os, E c);
template<class T>
 basic_ostream<char, T>& operator<<(basic_ostream<char, T> os, const signed char
*s);
template<class T>
 basic_ostream<char, T>& operator<<(basic_ostream<char, T> os, signed char c);
template<class T>
 basic_ostream<char, T>& operator<<(basic_ostream<char, T> os, const unsigned char
*s);
template<class T>
 basic_ostream<char, T>& operator<<(basic_ostream<char, T> os, unsigned char c);

The template function:

template<class E, class T>
 basic_ostream<E, T>& operator<<(basic_ostream<E, T> os, const E *s);

determines the length n = T::length(s) of the sequence beginning at s, and inserts the sequence. If n <
os.width(), then the function also inserts a repetition of width() - n fill characters. The repetition precedes the
sequence if (os.flags() & adjustfield != left. Otherwise, the repetition follows the sequence. The function
returns os.

The template function:

template<class E, class T>
 basic_ostream<E, T>& operator<<(basic_ostream<E, T> os, E c);

is an formatted output functions that inserts the element c. It returns os.

The template function:

template<class T>
 basic_ostream<char, T>& operator<<(basic_ostream<char, T> os, const signed char
*s);

returns os << (const char *)s.

The template function:

template<class T>
 basic_ostream<char, T>& operator<<(basic_ostream<char, T> os, signed char c);

returns os << (char)c.

The template function:

template<class T>
 basic_ostream<char, T>& operator<<(basic_ostream<char, T> os, const unsigned char
*s);

returns os << (const char *)s.

The template function:

template<class T>
 basic_ostream<char, T>& operator<<(basic_ostream<char, T> os, unsigned char c);

returns os << (char)c.

ostream

typedef basic_ostream<char, char_traits<char> > ostream;

The type is a synonym for template class basic_ostream, specialized for elements of type char with default character
traits.

wostream

typedef basic_ostream<wchar_t, char_traits<wchar_t> > wostream;

The type is a synonym for template class basic_ostream, specialized for elements of type wchar_t with default
character traits.

See also the Table of Contents and the Index.

Copyright © 1992-1996 by P.J. Plauger. All rights reserved.

<queue>

namespace std {
template<class T, class Cont>
 class queue;
template<class T, class Cont, class Pred>
 class priority_queue;
// TEMPLATE FUNCTIONS
template<class T, class Cont>
 bool operator==(const queue<T, Cont>& lhs,
 const queue<T, Cont>&);
template<class T, class Cont>
 bool operator!=(const queue<T, Cont>& lhs,
 const queue<T, Cont>&);
template<class T, class Cont>
 bool operator<(const queue<T, Cont>& lhs,
 const queue<T, Cont>&);
template<class T, class Cont>
 bool operator>(const queue<T, Cont>& lhs,
 const queue<T, Cont>&);
template<class T, class Cont>
 bool operator<=(const queue<T, Cont>& lhs,
 const queue<T, Cont>&);
template<class T, class Cont>
 bool operator>=(const queue<T, Cont>& lhs,
 const queue<T, Cont>&);
 };

Include the STL standard header <queue> to define the template classes priority_queue and queue, and two
supporting templates.

operator!=

template<class T, class Cont>
 bool operator!=(const queue <T, Cont>& lhs,
 const queue <T, Cont>& rhs);

The template function returns !(lhs == rhs).

operator==

template<class T, class Cont>
 bool operator==(const queue <T, Cont>& lhs,
 const queue <T, Cont>& rhs);

The template function overloads operator== to compare two objects of template class queue. The function returns
lhs.c == rhs.c.

http://www.dinkumware.com/

operator<

template<class T, class Cont>
 bool operator<(const queue <T, Cont>& lhs,
 const queue <T, Cont>& rhs);

The template function overloads operator< to compare two objects of template class queue. The function returns
lhs.c < rhs.c.

operator<=

template<class T, class Cont>
 bool operator<=(const queue <T, Cont>& lhs,
 const queue <T, Cont>& rhs);

The template function returns !(rhs < lhs).

operator>

template<class T, class Cont>
 bool operator>(const queue <T, Cont>& lhs,
 const queue <T, Cont>& rhs);

The template function returns rhs < lhs.

operator>=

template<class T, class Cont>
 bool operator>=(const queue <T, Cont>& lhs,
 const queue <T, Cont>& rhs);

The template function returns !(lhs < rhs).

priority_queue

template<class T,
 class Cont = vector<T>,
 class Pred = less<Cont::value_type> >
 class priority_queue {
public:
 typedef Cont::allocator_type allocator_type;
 typedef Cont::value_type value_type;
 typedef Cont::size_type size_type;
 explicit priority_queue(const Pred& pr = Pred(),
 const allocator_type& al = allocator_type());
 template<class InIt>
 priority_queue(InIt first, InIt last,
 const Pred& pr = Pred(), const allocator_type& al = allocator_type());
 bool empty() const;
 size_type size() const;

 allocator_type get_allocator() const;
 value_type& top();
 const value_type& top() const;
 void push(const value_type& x);
 void pop();
protected:
 Cont c;
 Pred comp;
 };

The template class describes an object that controls a varying-length sequence of elements. The object allocates and frees
storage for the sequence it controls through a protected object named c, of class Cont. The type T of elements in the
controlled sequence must match value_type.

The sequence is ordered using a protected object named comp. After each insertion or removal of the top element (at
position zero), for the iterators P0 and Pi designating elements at positions 0 and i, comp(*P0, *Pi) is false. (For
the default template parameter less<Cont::value_type> the top element of the sequence compares largest, or
highest priority.)

An object of class Cont must supply random-access iterators and several public members defined the same as for deque
and vector (both of which are suitable candidates for class Cont). The required members are:

 typedef T value_type;
 typedef T0 size_type;
 Cont(const A& al);
 Cont(InIt first, InIt last, const allocator_type& al);
 bool empty() const;
 size_type size() const;
 allocator_type get_allocator() const;
 const value_type& front() const;
 value_type& front();
 void push_back(const value_type& x);
 void pop_back();

Here, T0 is an unspecified type that meets the stated requirements.

priority_queue::allocator_type

typedef Cont::allocator_type allocator_type;

The type is a synonym for Cont::allocator_type.

priority_queue::empty

bool empty() const;

The member function returns true for an empty controlled sequence.

priority_queue::get_allocator

allocator_type get_allocator() const;

The member function returns c.get_allocator().

priority_queue::pop

void pop();

The member function removes the first element of the controlled sequence, which must be non-empty, then reorders it.

priority_queue::priority_queue

explicit priority_queue(const Pred& pr = Pred(),
 const allocator_type& al = allocator_type());
template<class InIt>
 priority_queue(InIt first, InIt last,
 const Pred& pr = Pred(), const allocator_type& al = allocator_type());

Both constructors store pr in comp and effectively initialize the stored object with c(al), to specify an empty initial
controlled sequence. The template constructor then calls push(x) for x an iterator of class InIt in the range [first,
last).

In this implementation, if a translator does not support member template functions, the template is replaced by:

priority_queue(const value_type *first, const value_type *last, const Pred& pr =
Pred(), const allocator_type& al = allocator_type());

priority_queue::push

void push(const T& x);

The member function inserts an element with value x at the end of the controlled sequence, then reorders it.

priority_queue::size

size_type size() const;

The member function returns the length of the controlled sequence.

priority_queue::size_type

typedef Cont::size_type size_type;

The type is a synonym for Cont::size_type.

priority_queue::top

value_type& top();
const value_type& top() const;

The member function returns a reference to the first (highest priority) element of the controlled sequence, which must be
non-empty.

priority_queue::value_type

typedef Cont::value_type value_type;

The type is a synonym for Cont::value_type.

queue

template<class T,
 class Cont = deque<T> >
 class queue {
public:
 typedef Cont::allocator_type allocator_type;
 typedef Cont::value_type value_type;
 typedef Cont::size_type size_type;
 explicit queue(const allocator_type& al = allocator_type()) const;
 bool empty() const;
 size_type size() const;
 allocator_type get_allocator() const;
 value_type& top();
 const value_type& top() const;
 void push(const value_type& x);
 void pop();
protected:
 Cont c;
 };

The template class describes an object that controls a varying-length sequence of elements. The object allocates and frees
storage for the sequence it controls through a protected object named c, of class Cont. The type T of elements in the
controlled sequence must match value_type.

An object of class Cont must supply several public members defined the same as for deque and list (both of which
are suitable candidates for class Cont). The required members are:

 typedef T value_type;
 typedef T0 size_type;
 Cont(const allocator_type& al);
 bool empty() const;
 size_type size() const;
 allocator_type get_allocator() const;
 value_type& front();
 const value_type& front() const;
 value_type& back();
 const value_type& back() const;
 void push_back(const value_type& x);
 void pop_front();

Here, T0 is an unspecified type that meets the stated requirements.

queue::allocator_type

typedef Cont::allocator_type allocator_type;

The type is a synonym for Cont::allocator_type.

queue::back

value_type& back();
const value_type& back() const;

The member function returns a reference to the last element of the controlled sequence, which must be non-empty.

queue::empty

bool empty() const;

The member function returns true for an empty controlled sequence.

queue::front

value_type& front();
const value_type& front() const;

The member function returns a reference to the first element of the controlled sequence, which must be non-empty.

queue::get_allocator

allocator_type get_allocator() const;

The member function returns c.get_allocator().

queue::pop

void pop();

The member function removes the last element of the controlled sequence, which must be non-empty.

queue::push

void push(const T& x);

The member function inserts an element with value x at the end of the controlled sequence.

queue::queue

explicit queue(const allocator_type& al = allocator_type());

The constructor initializes the stored object with c(al), to specify an empty initial controlled sequence.

queue::size

size_type size() const;

The member function returns the length of the controlled sequence.

queue::size_type

typedef Cont::size_type size_type;

The type is a synonym for Cont::size_type.

queue::top

value_type& top();
const value_type& top() const;

The member function returns a reference to the first element of the controlled sequence, which must be non-empty.

queue::value_type

typedef Cont::value_type value_type;

The type is a synonym for Cont::value_type.

See also the Table of Contents and the Index.

Copyright © 1992-1996 by P.J. Plauger. Portions derived from work copyright © 1994 by Hewlett-Packard Company. All
rights reserved.

<set>

namespace std {
template<class Key, class Pred, class A>
 class set;
template<class Key, class Pred, class A>
 class multiset;
// TEMPLATE FUNCTIONS
template<class Key, class Pred, class A>
 bool operator==(
 const set<Key, Pred, A>& lhs,
 const set<Key, Pred, A>& rhs);
template<class Key, class Pred, class A>
 bool operator==(
 const multiset<Key, Pred, A>& lhs,
 const multiset<Key, Pred, A>& rhs);
template<class Key, class Pred, class A>
 bool operator!=(
 const set<Key, Pred, A>& lhs,
 const set<Key, Pred, A>& rhs);
template<class Key, class Pred, class A>
 bool operator!=(
 const multiset<Key, Pred, A>& lhs,
 const multiset<Key, Pred, A>& rhs);
template<class Key, class Pred, class A>
 bool operator<(
 const set<Key, Pred, A>& lhs,
 const set<Key, Pred, A>& rhs);
template<class Key, class Pred, class A>
 bool operator<(
 const multiset<Key, Pred, A>& lhs,
 const multiset<Key, Pred, A>& rhs);
template<class Key, class Pred, class A>
 bool operator>(
 const set<Key, Pred, A>& lhs,
 const set<Key, Pred, A>& rhs);
template<class Key, class Pred, class A>
 bool operator>(
 const multiset<Key, Pred, A>& lhs,
 const multiset<Key, Pred, A>& rhs);
template<class Key, class Pred, class A>
 bool operator<=(

http://www.dinkumware.com/

 const set<Key, Pred, A>& lhs,
 const set<Key, Pred, A>& rhs);
template<class Key, class Pred, class A>
 bool operator<=(
 const multiset<Key, Pred, A>& lhs,
 const multiset<Key, Pred, A>& rhs);
template<class Key, class Pred, class A>
 bool operator>=(
 const set<Key, Pred, A>& lhs,
 const set<Key, Pred, A>& rhs);
template<class Key, class Pred, class A>
 bool operator>=(
 const multiset<Key, Pred, A>& lhs,
 const multiset<Key, Pred, A>& rhs);
template<class Key, class Pred, class A>
 void swap(
 const set<Key, Pred, A>& lhs,
 const set<Key, Pred, A>& rhs);
template<class Key, class Pred, class A>
 void swap(
 const multiset<Key, Pred, A>& lhs,
 const multiset<Key, Pred, A>& rhs);
 };

Include the STL standard header <set> to define the container template classes set and multiset, and
their supporting templates.

multiset

allocator_type · begin · clear · const_iterator · const_reference ·
const_reverse_iterator · count · difference_type · empty · end ·
equal_range · erase · find · get_allocator · insert · iterator · key_comp
· key_compare · key_type · lower_bound · max_size · multiset · rbegin ·
reference · rend · reverse_iterator · size · size_type · swap ·
upper_bound · value_comp · value_compare · value_type

template<class Key, class Pred = less<Key>, class A = allocator<T> >
 class multiset {
public:
 typedef Key key_type;
 typedef Pred key_compare;
 typedef Key value_type;
 typedef Pred value_compare;
 typedef A allocator_type;

 typedef A::size_type size_type;
 typedef A::difference_type difference_type;
 typedef A::rebind<value_type>::other::const_reference reference;
 typedef A::rebind<value_type>::other::const_reference const_reference;
 typedef T0 iterator;
 typedef T1 const_iterator;
 typedef reverse_bidirectional_iterator<iterator,
 value_type, reference, A::const_pointer,
 difference_type> reverse_iterator;
 typedef reverse_bidirectional_iterator<const_iterator,
 value_type, const_reference, A::pointer,
 difference_type> const_reverse_iterator;
 explicit multiset(const Pred& comp = Pred(), const A& al = A());
 multiset(const multiset& x);
 template<class InIt>
 multiset(InIt first, InIt last, const Pred& comp = Pred(),
 const A& al = A());
 const_iterator begin() const;
 iterator end() const;
 const_reverse_iterator rbegin() const;
 const_reverse_iterator rend() const;
 size_type size() const;
 size_type max_size() const;
 bool empty() const;
 A get_allocator() const;
 iterator insert(const value_type& x);
 iterator insert(iterator it, const value_type& x);
 template<class InIt>
 void insert(InIt first, InIt last);
 iterator erase(iterator it);
 iterator erase(iterator first, iterator last);
 size_type erase(const Key& key);
 void clear();
 void swap(multiset x);
 key_compare key_comp() const;
 value_compare value_comp() const;
 const_iterator find(const Key& key) const;
 size_type count(const Key& key) const;
 const_iterator lower_bound(const Key& key) const;
 const_iterator upper_bound(const Key& key) const;
 pair<const_iterator, const_iterator>
 equal_range(const Key& key) const;
protected:
 A allocator;

 };

The template class describes an object that controls a varying-length sequence of elements of type const
Key. Each element serves as both a sort key and a value. The sequence is represented in a way that permits
lookup, insertion, and removal of an arbitrary element with a number of operations proportional to the
logarithm of the number of elements in the sequence (logarithmic time). Moreover, inserting an element
invalidates no iterators, and removing an element invalidates only those iterators which point at the removed
element.

The object orders the sequence it controls by calling a stored function object of type Pred. You access this
stored object by calling the member function key_comp(). Such a function object must impose a total order
on sort keys. For any element x that precedes y in the sequence, key_comp()(y, x) is false. (For the
default function object less<Key>, sort keys never decrease in value.) Unlike template class set, an object
of template class multiset does not ensure that key_comp()(x, y) is true. (Keys need not be unique.)

The object allocates and frees storage for the sequence it controls through a protected object named
allocator, of class A. Such an allocator object must have the same external interface as an object of
template class allocator. Note that allocator is not copied when the object is assigned.

multiset::allocator_type

yypedef A allocator_type;

The type is a synonym for the template parameter A.

multiset::begin

const_iterator begin() const;

The member function returns a bidirectional iterator that points at the first element of the sequence (or just
beyond the end of an empty sequence).

multiset::clear

void clear() const;

The member function calls erase(begin(), end()).

multiset::const_iterator

typedef T1 const_iterator;

The type describes an object that can serve as a constant bidirectional iterator for the controlled sequence. It is
described here as a synonym for the unspecified type T1.

multiset::const_reference

typedef A::rebind<value_type>::other::const_reference const_reference;

The type describes an object that can serve as a constant reference to an element of the controlled sequence.

multiset::const_reverse_iterator

typedef reverse_bidirectional_iterator<const_iterator,
 value_type, const_reference, A::const_pointer,
 difference_type> const_reverse_iterator;

The type describes an object that can serve as a constant reverse bidirectional iterator for the controlled
sequence.

multiset::count

size_type count(const Key& key) const;

The member function returns the number of elements x in the range [lower_bound(key),
upper_b3und(key)).

multiset::difference_type

typedef A::difference_type difference_type;

The signed integer type describes an object that can represent the difference between the addresses of any two
elements in the controlled sequence.

multiset::empty

bool empty() const;

The member function returns true for an empty controlled sequence.

multiset::end

const_iterator end() const;

The member function returns a bidirectional iterator that points just beyond the end of the sequence.

multiset::equal_range

pair<const_iterator, const_iterator>
 equal_range(const Key& key) const;

The member function returns a pair of iterators x such that x.first == lower_bound(key) and
x.second == upper_bound(key).

multiset::erase

iterator erase(iterator it);
iterator erase(iterator first, iterator last);
size_type erase(const Key& key);

The first member function removes the element of the controlled sequence pointed to by it. The second

member function removes the elements in the range [first, last). Both return an iterator that designates
the first element remaining beyond any elements removed, or end() if no such element exists.

The third member removes the elements with sort keys in the range [lower_bound(key),
upper_bound(key)). It returns the number of elements it removes.

multiset::find

const_iterator find(const Key& key) const;

The member function returns an iterator that designates the earliest element in the controlled sequence whose
sort key equals key. If no such element exists, the iterator equals end().

multiset::get_allocator

A get_allocator() const;

The member function returns allocator.

multiset::insert

iterator insert(const value_type& x);
iterator insert(iterator it, const value_type& x);
template<class InIt>
 void insert(InIt first, InIt last);

The first member function inserts the element x in the controlled sequence, then returns the iterator that
designates the inserted element. The second member function returns insert(x), using it as a starting
place within the controlled sequence to search for the insertion point. (Insertion can occur in amortized
constant time, instead of logarithmic time, if the insertion point immediately follows it.) The third member
function inserts the sequence of element values in the range [first, last).

In this implementation, if a translator does not support member template functions, the template is replaced
by:

void insert(const value_type *first, const value_type *last);

multiset::iterator

typedef T0 iterator;

The type describes an object that can serve as a bidirectional iterator for the controlled sequence. It is
described here as a synonym for the unspecified type T0.

multiset::key_comp

key_compare key_comp() const;

The member function returns the stored function object that determines the order of elements in the controlled
sequence. The stored object defines the member function:

bool operator(const Key& x, const Key& y);

which returns true if x strictly precedes y in the sort order.

multiset::key_compare

typedef Pred key_compare;

The type describes a function object that can compare two sort keys to determine the relative order of any two
elements in the controlled sequence.

multiset::key_type

typedef Key key_type;

The type describes the sort key object which constitutes each element of the controlled sequence.

multiset::lower_bound

const_iterator lower_bound(const Key& key) const;

The member function returns an iterator that designates the earliest element x in the controlled sequence for
which key_comp()(x, key) is false.

If no such element exists, the function returns end().

size_type max_size() const;

The member function returns the length of the longest sequence that the object can control.

multiset::multiset

explicit multiset(const Pred& comp = Pred(), const A& al = A());
multiset(const multiset& x);
template<class InIt>
 multiset(InIt first, InIt last, const Pred& comp = Pred(),
 const A& al = A());

The constructors with an argument named comp store the function object so that it can be later returned by
calling key_comp(). All constructors also store the allocator object al (or, for the copy constructor,
x.get_allocator()) in allocator and initialize the controlled sequence. The first constructor
specifies an empty initial controlled sequence. The second constructor specifies a copy of the sequence
controlled by x. The member template constructor specifies the sequence of element values [first,
last).

In this implementation, if a translator does not support member template functions, the template is replaced
by:

multiset(const value_type *first, const value_type *last,
 const Pred& comp = Pred(), const A& al = A());

multiset::max_size

multiset::rbegin

const_reverse_iterator rbegin() const;

The member function returns a reverse bidirectional iterator that points just beyond the end of the controlled
sequence. Hence, it designates the beginning of the reverse sequence.

multiset::reference

typedef A::rebind<value_type>::other::const_reference reference;

The type describes an object that can serve as a reference to an element of the controlled sequence.

multiset::rend

const_reverse_iterator rend() const;

The member function returns a reverse bidirectional iterator that points at the first element of the sequence (or
just beyond the end of an empty sequence). Hence, it designates the end of the reverse sequence.

multiset::reverse_iterator

typedef reverse_bidirectional_iterator<iterator,
 value_type, reference, A::pointer,
 difference_type> reverse_iterator;

The type describes an object that can serve as a reverse bidirectional iterator for the controlled sequence.

multiset::size

size_type size() const;

The member function returns the length of the controlled sequence.

multiset::size_type

typedef A::size_type size_type;

The unsigned integer type describes an object that can represent the length of any controlled sequence.

multiset::swap

void swap(multiset& str);

The member function swaps the controlled sequences between *this and str. If allocator ==
str.allocator, it does so in constant time. Otherwise, it performs a number of element assignments and
constructor calls proportional to the number of elements in the two controlled sequences.

multiset::upper_bound

const_iterator upper_bound(const Key& key) const;

The member function returns an iterator that designates the earliest element x in the controlled sequence for
which key_comp()(key, x) is true.

If no such element exists, the function returns end().

multiset::value_comp

value_compare value_comp() const;

The member function returns a function object that determines the order of elements in the controlled
sequence.

multiset::value_compare

typedef Pred value_compare;

The type describes a function object that can compare two elements as sort keys to determine their relative
order in the controlled sequence.

multiset::value_type

typedef Key value_type;

The type describes an element of the controlled sequence.

operator!=

template<class Key, class Pred, class A>
 bool operator!=(
 const set <Key, Pred, A>& lhs,
 const set <Key, Pred, A>& rhs);
template<class Key, class Pred, class A>
 bool operator!=(
 const multiset <Key, Pred, A>& lhs,
 const multiset <Key, Pred, A>& rhs);

The template function returns !(lhs == rhs).

operator==

template<class Key, class Pred, class A>
 bool operator==(
 const set <Key, Pred, A>& lhs,
 const set <Key, Pred, A>& rhs);
template<class Key, class Pred, class A>

 bool operator==(
 const multiset <Key, Pred, A>& lhs,
 const multiset <Key, Pred, A>& rhs);

The first template function overloads operator== to compare two objects of template class multiset.
The second template function overloads operator== to compare two objects of template class multiset.
Both functions return lhs.size() == rhs.size() && equal(lhs. begin(), lhs. end(),
rhs.begin()).

operator<

template<class Key, class Pred, class A>
 bool operator<(
 const set <Key, Pred, A>& lhs,
 const set <Key, Pred, A>& rhs);
template<class Key, class Pred, class A>
 bool operator<(
 const multiset <Key, Pred, A>& lhs,
 const multiset <Key, Pred, A>& rhs);

The first template function overloads operator< to compare two objects of template class multiset. The
second template function overloads operator< to compare two objects of template class multiset. Both
functions return lexicographical_compare(lhs. begin(), lhs. end(), rhs.begin(),
rhs.end()).

operator<=

template<class Key, class Pred, class A>
 bool operator<=(
 const set <Key, Pred, A>& lhs,
 const set <Key, Pred, A>& rhs);
template<class Key, class Pred, class A>
 bool operator<=(
 const multiset <Key, Pred, A>& lhs,
 const multiset <Key, Pred, A>& rhs);

The template function returns !(rhs < lhs).

operator>

template<class Key, class Pred, class A>
 bool operator>(
 const set <Key, Pred, A>& lhs,
 const set <Key, Pred, A>& rhs);
template<class Key, class Pred, class A>
 bool operator>(

 const multiset <Key, Pred, A>& lhs,
 const multiset <Key, Pred, A>& rhs);

The template function returns rhs < lhs.

operator>=

template<class Key, class Pred, class A>
 bool operator>=(
 const set <Key, Pred, A>& lhs,
 const set <Key, Pred, A>& rhs);
template<class Key, class Pred, class A>
 bool operator>=(
 const multiset <Key, Pred, A>& lhs,
 const multiset <Key, Pred, A>& rhs);

The template function returns !(lhs < rhs).

set

allocator_type · begin · clear · const_iterator · const_reference ·
const_reverse_iterator · count · difference_type · empty · end ·
equal_range · erase · find · get_allocator · insert · iterator · key_comp
· key_compare · key_type · lower_bound · set · max_size · rbegin ·
reference · rend · reverse_iterator · size · size_type · swap ·
upper_bound · value_comp · value_compare · value_type

template<class Key, class Pred = less<Key>, class A = allocator<T> >
 class set {
public:
 typedef Key key_type;
 typedef Pred key_compare;
 typedef Key value_type;
 typedef Pred value_compare;
 typedef A allocator_type;
 typedef A::size_type size_type;
 typedef A::difference_type difference_type;
 typedef A::rebind<value_type>::other::const_reference reference;
 typedef A::rebind<value_type>::other::const_reference const_reference;
 typedef T0 iterator;
 typedef T1 const_iterator;
 typedef reverse_bidirectional_iterator<iterator,
 value_type, reference, A::pointer,
 difference_type> reverse_iterator;

 typedef reverse_bidirectional_iterator<const_iterator,
 value_type, const_reference, A::const_pointer,
 difference_type> const_reverse_iterator;
 explicit set(const Pred& comp = Pred(), const A& al = A());
 set(const set& x);
 template<class InIt>
 set(InIt first, InIt last, const Pred& comp = Pred(),
 const A& al = A());
 const_iterator begin() const;
 iterator end() const;
 const_reverse_iterator rbegin() const;
 const_reverse_iterator rend() const;
 size_type size() const;
 size_type max_size() const;
 bool empty() const;
 A get_allocator() const;
 pair<iterator, bool> insert(const value_type& x);
 iterator insert(iterator it, const value_type& x);
 template<class InIt>
 void insert(InIt first, InIt last);
 iterator erase(iterator it);
 iterator erase(iterator first, iterator last);
 size_type erase(const Key& key);
 void clear();
 void swap(set x);
 key_compare key_comp() const;
 value_compare value_comp() const;
 const_iterator find(const Key& key) const;
 size_type count(const Key& key) const;
 const_iterator lower_bound(const Key& key) const;
 const_iterator upper_bound(const Key& key) const;
 pair<const_iterator, const_iterator>
 equal_range(const Key& key) const;
protected:
 A allocator;
 };

The template class describes an object that controls a varying-length sequence of elements of type const
Key. Each element serves as both a sort key and a value. The sequence is represented in a way that permits
lookup, insertion, and removal of an arbitrary element with a number of operations proportional to the
logarithm of the number of elements in the sequence (logarithmic time). Moreover, inserting an element
invalidates no iterators, and removing an element invalidates only those iterators which point at the removed
element.

The object orders the sequence it controls by calling a stored function object of type Pred. You access this

stored object by calling the member function key_comp(). Such a function object must impose a total order
on sort keys. For any element x that precedes y in the sequence, key_comp()(y, x) is false. (For the
default function object less<Key>, sort keys never decrease in value.) Unlike template class multiset, an
object of template class set ensures that key_comp()(x, y) is true. (Each key is unique.)

The object allocates and frees storage for the sequence it controls through a protected object named
allocator, of class A. Such an allocator object must have the same external interface as an object of
template class allocator. Note that allocator is not copied when the object is assigned.

set::allocator_type

typedef A allocator_type;

The type is a synonym for the template parameter A.

set::begin

const_iterator begin() const;

The member function returns a bidirectional iterator that points at the first element of the sequence (or just
beyond the end of an empty sequence).

set::clear

void clear() const;

The member function calls erase(begin(), end()).

set::const_iterator

typedef T1 const_iterator;

The type describes an object that can serve as a constant bidirectional iterator for the controlled sequence. It is
desciibed here as a synonym for the unspecified type T1.

set::const_reference

typedef A::rebind<value_type>::other::const_reference const_reference;

The type describes an object that can serve as a constant reference to an element of the controlled sequence.

set::const_reverse_iterator

typedef reverse_bidirectional_iterator<const_iterator,
 value_type, const_reference, A::const_pointer,
 difference_type> const_reverse_iterator;

The type describes an object that can serve as a constant reverse bidirectional iterator for the controlled
sequence.

set::count

size_type count(const Key& key) const;

The member function returns the number of elements x in the range [lower_bound(key),
upper_bound(key)).

set::difference_type

typedef A::difference_type difference_type;

The signed integer type describes an object that can represent the difference between the addresses of any two
elements in the controlled sequence.

set::empty

bool empty() const;

The member function returns true for an empty controlled sequence.

set::end

const_iterator end() const;

The member function returns a bidirectional iterator that points just beyond the end of the sequence.

set::equal_range

pair<const_iterator, const_iterator>
 equal_range(const Key& key) const;

The member function returns a pair of iterators x such that x.first == lower_bound(key) and
x.second == upper_bound(key).

set::erase

iterator erase(iterator it);
iterator erase(iterator first, iterator last);
size_type erase(const Key& key);

The first member function removes the element of the controlled sequence pointed to by it. The second
member function removes the elements in the range [first, last). Both return an iterator that designates
the first element remaining beyond any elements removed, or end() if no such element exists.

The third member removes the elements with sort keys in the range [lower_bound(key),
upper_bound(key)). It returns the number of elements it removes.

set::find

const_iterator find(const Key& key) const;

The member function returns an iterator that designates the earliest element in the controlled sequence whose
sort key equals key. If no such element exists, the iterator equals end().

set::get_allocator

A get_allocator() const;

The member function returns allocator.

set::insert

pair<iterator, bool> insert(const value_type& x);
iterator insert(iterator it, const value_type& x);
template<class InIt>
 void insert(InIt first, InIt last);

The first member function determines whether an element y exists in the sequence whose key matches that of
x. (The keys match if !key_comp()(x, y) && !key_comp()(y, x).) If not, it creates such an
element y and initializes it with x. The function then determines the iterator it that designates y. If an
insertion occurred, the function returns pair(it, true). Otherwise, it returns pair(it, false).

The second member function returns insert(x), using it as a starting place within the controlled sequence
to search for the insertion point. (Insertion can occur in amortized constant time, instead of logarithmic time, if
the insertion point immediately follows it.) The third member function inserts the sequence of element
values in the range [first, last).

In this implementation, if a translator does not support member template functions, the template is replaced
by:

void insert(const value_type *first, const value_type *last);

set::iterator

typedef T0 iterator;

The type describes an object that can serve as a bidirectional iterator for the controlled sequence. It is
described here as a synonym for the unspecified type T0.

set::key_comp

key_compare key_comp() const;

The member function returns the stored function object that determines the order of elements in the controlled
sequence. The stored object defines the member function:

bool operator(const Key& x, const Key& y);

which returns true if x strictly precedes y in the sort order.

set::key_compare

typedef Pred key_compare;

The type describes a function object that can compare two sort keys to determine the relative order of any two
elements in the controlled sequence.

set::key_type

typedef Key key_type;

The type describes the sort key object which constitutes each element of the controlled sequence.

set::lower_bound

const_iterator lower_bound(const Key& key) const;

The member function returns an iterator that designates the earliest element x in the controlled sequence for
which key_comp()(x, key) is false.

If no such element exists, the function returns end().

set::max_size

size_type max_size() const;

The member function returns the length of the longest sequence that the object can control.

set::rbegin

const_reverse_iterator rbegin() const;

The member function returns a reverse bidirectional iterator that points just beyond the end of the controlled
sequence. Hence, it designates the beginning of the reverse sequence.

set::reference

typedef A::rebind<value_type>::other::const_reference reference;

The type describes an object that can serve as a reference to an element of the controlled sequence.

set::rend

const_reverse_iterator rend() const;

The member function returns a reverse bidirectional iterator that points at the first element of the sequence (or
just beyond the end of an empty sequence). Hence, it designates the end of the reverse sequence.

set::reverse_iterator

typedef reverse_bidirectional_iterator<iterator,
 value_type, reference, A::pointer,
 difference_type> reverse_iterator;

The type describes an object that can serve as a reverse bidirectional iterator for the controlled sequence.

set::set

explicit set(const Pred& comp = Pred(), const A& al = A());
set(const set& x);
template<class InIt>
 set(InIt first, InIt last, const Pred& comp = Pred(),
 const A& al = A());

The constructors with an argument named comp store the function object so that it can be later returned by
calling key_comp(). All constructors also store the allocator object al (or, for the copy constructor,
x.get_allocator()) in allocator and initialize the controlled sequence. The first constructor
specifies an empty initial controlled sequence. The second constructor specifies a copy of the sequence
controlled by x. The member template constructor specifies the sequence of element values [first,
last).

In this implementation, if a translator does not support member template functions, the template is replaced
by:

set(const value_type *first, const value_type *last,
 const Pred& comp = Pred(), const A& al = A());

set::size

size_type size() const;

The member function returns the length of the controlled sequence.

set::size_type

typedef A::size_type size_type;

The unsigned integer type describes an object that can represent the length of any controlled sequence.

set::swap

void swap(set& str);

The member function swaps the controlled sequences between *this and str. If allocator ==
str.allocator, it does so in constant time. Otherwise, it performs a number of element assignments and
constructor calls proportional to the number of elements in the two controlled sequences.

set::upper_bound

const_iterator upper_bound(const Key& key) const;

The member function returns an iterator that designates the earliest element x in the controlled sequence for
which key_comp()(key, x) is true.

If no such element exists, the function returns end().

set::value_comp

value_compare value_comp() const;

The member function returns a function object that determines the order of elements in the controlled
sequence.

set::value_compare

typedef Pred value_compare;

The type describes a function object that can compare two elements as sort keys to determine their relative
order in the controlled sequence.

set::value_type

typedef Key value_type;

The type describes an element of the controlled sequence.

swap

template<class Key, class Pred, class A>
 void swap(
 const multiset <Key, Pred, A>& lhs,
 const multiset <Key, Pred, A>& rhs);
template<class Key, class Pred, class A>
 void swap(
 const set <Key, Pred, A>& lhs,
 const set <Key, Pred, A>& rhs);

The template function executes lhs.swap(rhs).

See also the Table of Contents and the Index.

Copyright © 1992-1996 by P.J. Plauger. Portions derived from work copyright © 1994 by Hewlett-Packard
Company. All rights reserved.

<sstream>

namespace std {
 template<class E,
 class T = char_traits<E>,
 class A = allocator<E> >
 class basic_stringbuf;
 typedef basic_stringbuf<char> stringbuf;
 typedef basic_stringbuf<wchar_t> wstringbuf;
 template<class E,
 class T = char_traits<E>,
 class A = allocator<E> >
 class basic_istringstream;
 typedef basic_istringstream<char> istringstream;
 typedef basic_istringstream<wchar_t> wistringstream;
 template<class E,
 class T = char_traits<E>,
 class A = allocator<E> >
 class basic_ostringstream;
 typedef basic_ostringstream<char> ostringstream;
 typedef basic_ostringstream<wchar_t> wostringstream;
 template<class E,
 class T = char_traits<E>,
 class A = allocator<E> >
 class basic_stringstream;
 typedef basic_stringstream<char> stringstream;
 typedef basic_stringstream<wchar_t> wstringstream;
 };

Include the iostreams standard header <sstream> to define several template classes that support iostreams operations on
sequences stored in an allocated array object. Such sequences are easily converted to and from objects of template class
basic_string.

basic_stringbuf

template <class E,
 class T = char_traits<E>,
 class A = allocator<E> >
 class basic_stringbuf {
public:
 typedef T traits_type;
 typedef E char_type;
 typedef T::int_type int_type;
 typedef T::pos_type pos_type;
 typedef T::off_type off_type;
 basic_stringbuf(ios_base::openmode mode =
 ios_base::in | ios_base::out);

http://www.dinkumware.com/

 basic_stringbuf(basic_string<E, T, A>& x,
 ios_base::openmode mode = ios_base::in | ios_base::out);
 basic_string<E, T, A> str() const;
 void str(basic_string<E, T, A>& x);
protected:
 virtual pos_type seekoff(off_type off, ios_base::seekdir way,
 ios_base::openmode mode = ios_base::in | ios_base::out);
 virtual pos_type seekpos(pos_type sp,
 ios_base::openmode mode = ios_base::in | ios_base::out);
 virtual int_type underflow();
 virtual int_type pbackfail(int_type c = T::eof());
 virtual int_type overflow(int_type c = T::eof());
 };

The template class describes a stream buffer that controls the transmission of elements to and from a sequence of elements
stored in an array object. The object is allocated, extended, and freed as necessary to accommodate changes in the sequence.

An object of class basic_stringbuf<E, T, A> stores a copy of the ios_base::openmode argument from its
constructor as its stringbuf mode mode:

If mode & ios_base::in is nonzero, the input buffer is accessible.●

If mode & ios_base::out is nonzero, the output buffer is accessible.●

basic_stringbuf::basic_stringbuf

basic_stringbuf(ios_base::openmode mode =
 ios_base::in | ios_base::out);
basic_stringbuf(basic_string<E, T, A>& x,
 ios_base::openmode mode = ios_base::in | ios_base::out);

The first constructor stores a null pointer in all the pointers controlling the input buffer and the output buffer. It also stores
mode as the stringbuf mode.

The second constructor allocates a copy of the sequence controlled by x, an object of class basic_string<E, T, A>. If
mode & ios_base::in is nonzero, it sets the input buffer to begin reading at the start of the sequence. If mode &
ios_base::out is nonzero, it sets the output buffer to begin writing at the start of the sequence. It also stores mode as the
stringbuf mode.

basic_stringbuf::char_type

typedef E char_type;

The type is a synonym for the template parameter E.

basic_stringbuf::int_type

typedef T::int_type int_type;

The type is a synonym for T::int_type.

basic_stringbuf::off_type

typedef T::off_type off_type;

The type is a synonym for T::off_type.

basic_stringbuf::overflow

virtual int_type overflow(int_type c = T::eof());

If c does not compare equal to T::eof(), the protected virtual member function endeavors to insert the element
T::to_char_type(c) into the output buffer. It can do so in various ways:

If a write position is available, it can store the element into the write position and increment the next pointer for the
output buffer.

●

It can make a write position available by allocating new or additional storage for the output buffer. (Extending the
output buffer this way also extends any associated input buffer.)

●

If the function cannot succeed, it returns T::eof(). Otherwise, it returns T::not_eof(c).

basic_stringbuf::pbackfail

virtual int_type pbackfail(int_type c = T::eof());

The protected virtual member function endeavors to put back an element into the input buffer, then make it the current
element (pointed to by the next pointer). If c compares equal to T::eof(), the element to push back is effectively the one
already in the stream before the current element. Otherwise, that element is replaced by x = T::to_char_type(c).
The function can put back an element in various ways:

If a putback position is available, and the element stored there compares equal to x, it can simply decrement the next
pointer for the input buffer.

●

If a putback position is available, and if the stringbuf mode permits the sequence to be altered (mode &
ios_base::out is nonzero), it can store x into the putback position and decrement the next pointer for the input
buffer.

●

If the function cannot succeed, it returns T::eof(). Otherwise, it returns T::not_eof(c).

basic_stringbuf::pos_type

typedef T::pos_type pos_type;

The type is a synonym for T::pos_type.

basic_stringbuf::seekoff

virtual pos_type seekoff(off_type off, ios_base::seekdir way,
 ios_base::openmode mode = ios_base::in | ios_base::out);

The protected virtual member function endeavors to alter the current positions for the controlled streams. For an object of
class basic_stringbuf<E, T, A>, a stream position consists purely of a stream offset. Offset zero designates the first
element of the controlled sequence.

The new position is determined as follows:

If way == ios_base::beg, the new position is the beginning of the stream plus off.●

If way == ios_base::cur, the new position is the current stream position plus off.●

If way == ios_base::end, the new position is the end of the stream plus off.●

If mode & ios_base::in is nonzero, the function alters the next position to read in the input buffer. If mode &
ios_base::out is nonzero, the function alters the next position to write in the output buffer. For a stream to be affected,
its buffer must exist. For a positioning operation to succeed, the resulting stream position must lie within the controlled
sequence. If the function affects both stream positions, way must be ios_base::beg or ios_base::end and both
streams are positioned at the same element. Otherwise (or if neither position is affected) the positioning operation fails.

If the function succeeds in altering the stream position(s), it returns the resultant stream position. Otherwise, it fails and
returns an invalid stream position.

basic_stringbuf::seekpos

virtual pos_type seekpos(pos_type sp,
 ios_base::openmode mode = ios_base::in | ios_base::out);

The protected virtual member function endeavors to alter the current positions for the controlled streams. For an object of
class basic_stringbuf<E, T, A>, a stream position consists purely of a stream offset. Offset zero designates the first
element of the controlled sequence. The new position is determined by sp.

If mode & ios_base::in is nonzero, the function alters the next position to read in the input buffer. If mode &
ios_base::out is nonzero, the function alters the next position to write in the output buffer. For a stream to be affected,
its buffer must exist. For a positioning operation to succeed, the resulting stream position must lie within the controlled
sequence. Otherwise (or if neither position is affected) the positioning operation fails.

If the function succeeds in altering the stream position(s), it returns the resultant stream position. Otherwise, it fails and
returns an invalid stream position.

basic_stringbuf::str

basic_string<E, T, A> str() const;
void str(basic_string<E, T, A>& x);

The first member function returns an object of class basic_string<E, T, allocator>, whose controlled sequence
is a copy of the sequence controlled by *this. The sequence copied depends on the stored stringbuf mode mode:

If mode & ios_base::out is nonzero and an output buffer exists, the sequence is the entire output buffer
(epptr() - pbase() elements beginning with pbase()).

●

Otherwise, if mode & ios_base::in is nonzero and an input buffer exists, the sequence is the entire input buffer
(egptr() - eback() elements beginning with eback()).

●

Otherwise, the copied sequence is empty.●

The second member function deallocates any sequence currently controlled by *this. It then allocates a copy of the
sequence controlled by x. If mode & ios_base::in is nonzero, it sets the input buffer to begin reading at the beginning
of the sequence. If mode & ios_base::out is nonzero, it sets the output buffer to begin writing at the beginning of the
sequence.

basic_stringbuf::traits_type

typedef T traits_type;

basic_stringbuf::underflow

virtual int_type underflow();

The protected virtual member function endeavors to extract the current element c from the input buffer, then advance the
current stream position, and return the element as T::to_int_type(c). It can do so in only one way: If a read position is
available, it takes c as the element stored in the read position and advances the next pointer for the input buffer.

If the function cannot succeed, it returns T::eof(). Otherwise, it returns the current element in the input stream, converted
as described above.

basic_istringstream

template <class E,
 class T = char_traits<E>,
 class A = allocator<E> >
 class basic_istringstream : public basic_istream<E, T> {
public:
 typedef E char_type;
 typedef T traits_type;
 typedef T::int_type int_type;
 typedef T::pos_type pos_type;
 typedef T::off_type off_type;
 explicit basic_istringstream(ios_base::openmode mode = ios_base::in);
 explicit basic_istringstream(const basic_string<E, T, A>& x,
 ios_base::openmode mode = ios_base::in);
 basic_stringbuf<E, T, A> *rdbuf() const;
 basic_string<E, T, A>& str();
 void str(const basic_string<E, T, A>& x);
 };

The template class describes an object that controls extraction of elements and encoded objects from a stream buffer of class
basic_stringbuf<E, T, A>, with elements of type E, whose character traits are determined by the class T, and whose
elements are allocated by an allocator of class A. The object stores an object of class basic_stringbuf<E, T, A>.

basic_istringstream::basic_istringstream

explicit basic_istringstream(ios_base::openmode mode = ios_base::in);
explicit basic_istringstream(const basic_string<E, T, A>& x,
 ios_base::openmode mode = ios_base::in);

The first constructor initializes the base class by calling basic_istream(sb), where sb is the stored object of class
basic_stringbuf<E, T, A>. It also initializes sb by calling basic_stringbuf<E, T, A>(mode |
ios_base::in).

The second constructor initializes the base class by calling basic_istream(sb). It also initializes sb by calling
basic_stringbuf<E, T, A>(x, mode | ios_base::in).

basic_istringstream::char_type

typedef E char_type;

The type is a synonym for the template parameter E.

basic_istringstream::int_type

typedef T::int_type int_type;

The type is a synonym for T::int_type.

basic_istringstream::off_type

typedef T::off_type off_type;

The type is a synonym for T::off_type.

basic_istringstream::pos_type

typedef T::pos_type pos_type;

The type is a synonym for T::pos_type.

basic_istringstream::rdbuf

basic_stringbuf<E, T, A> *rdbuf() const

The member function returns the address of the stored stream buffer, of type pointer to basic_stringbuf<E, T, A>.

basic_istringstream::str

basic_string<E, T, A> str() const;
void str(basic_string<E, T, A>& x);

The first member function returns rdbuf()-> str(). The second member function calls rdbuf()-> str(x).

basic_istringstream::traits_type

typedef T traits_type;

basic_ostringstream

template <class E,
 class T = char_traits<E>,
 class A = allocator<E> >
 class basic_ostringstream : public basic_ostream<E, T> {
public:
 typedef E char_type;
 typedef T traits_type;
 typedef T::int_type int_type;
 typedef T::pos_type pos_type;
 typedef T::off_type off_type;
 explicit basic_ostringstream(ios_base::openmode mode = ios_base::out);
 explicit basic_ostringstream(const basic_string<E, T, A>& x,
 ios_base::openmode mode = ios_base::out);
 basic_stringbuf<E, T, A> *rdbuf() const;
 basic_string<E, T, A>& str();
 void str(const basic_string<E, T, A>& x);
 };

The template class describes an object that controls insertion of elements and encoded objects into a stream buffer of class
basic_stringbuf<E, T, A>, with elements of type E, whose character traits are determined by the class T, and whose
elements are allocated by an allocator of class A. The object stores an object of class basic_stringbuf<E, T, A>.

basic_ostringstream::basic_ostringstream

explicit basic_ostringstream(ios_base::openmode mode = ios_base::out);
explicit basic_ostringstream(const basic_string<E, T, A>& x,
 ios_base::openmode mode = ios_base::out);

The first constructor initializes the base class by calling basic_ostream(sb), where sb is the stored object of class
basic_stringbuf<E, T, A>. It also initializes sb by calling basic_stringbuf<E, T, A>(mode |
ios_base::out).

The second constructor initializes the base class by calling basic_ostream(sb). It also initializes sb by calling
basic_stringbuf<E, T, A>(x, mode | ios_base::out).

basic_ostringstream::char_type

typedef E char_type;

The type is a synonym for the template parameter E.

basic_ostringstream::int_type

typedef T::int_type int_type;

The type is a synonym for T::int_type.

basic_ostringstream::off_type

typedef T::off_type off_type;

The type is a synonym for T::off_type.

basic_ostringstream::pos_type

typedef T::pos_type pos_type;

The type is a synonym for T::pos_type.

basic_ostringstream::rdbuf

basic_stringbuf<E, T, A> *rdbuf() const

The member function returns the address of the stored stream buffer, of type pointer to basic_stringbuf<E, T, A>.

basic_ostringstream::str

basic_string<E, T, A> str() const;
void str(basic_string<E, T, A>& x);

The first member function returns rdbuf()-> str(). The second member function calls rdbuf()-> str(x).

basic_ostringstream::traits_type

typedef T traits_type;

The type is a synonym for the template parameter T.

basic_stringstream

template <class E,
 class T = char_traits<E>,
 class A = allocator<E> >
 class basic_stringstream : public basic_iostream<E, T> {

public:
 typedef E char_type;
 typedef T traits_type;
 typedef T::int_type int_type;
 typedef T::pos_type pos_type;
 typedef T::off_type off_type;
 explicit basic_stringstream(ios_base::openmode mode = ios_base::in |
ios_base::out);
 explicit basic_stringstream(const basic_string<E, T, A>& x,
 ios_base::openmode mode = ios_base::in | ios_base::out);
 basic_stringbuf<E, T, A> *rdbuf() const;
 basic_string<E, T, A>& str();
 void str(const basic_string<E, T, A>& x);
 };

The template class describes an object that controls insertion and extraction of elements and encoded objects using a stream
buffer of class basic_stringbuf<E, T, A>, with elements of type E, whose character traits are determined by the
class T, and whose elements are allocated by an allocator of class A. The object stores an object of class
basic_stringbuf<E, T, A>.

basic_stringstream::basic_stringstream

explicit basic_stringstream(ios_base::openmode mode = ios_base::in | ios_base::out);
explicit basic_stringstream(const basic_string<E, T, A>& x,
 ios_base::openmode mode = ios_base::in | ios_base::out);

The first constructor initializes the base class by calling basic_iostream(sb), where sb is the stored object of class
basic_stringbuf<E, T, A>. It also initializes sb by calling basic_stringbuf<E, T, A>(mode).

The second constructor initializes the base class by calling basic_ostream(sb). It also initializes sb by calling
basic_stringbuf<E, T, A>(x, mode).

basic_stringstream::char_type

typedef E char_type;

The type is a synonym for the template parameter E.

basic_stringstream::int_type

typedef T::int_type int_type;

The type is a synonym for T::int_type.

basic_stringstream::off_type

typedef T::off_type off_type;

The type is a synonym for T::off_type.

basic_stringstream::pos_type

typedef T::pos_type pos_type;

The type is a synonym for T::pos_type.

basic_stringstream::rdbuf

basic_stringbuf<E, T, A> *rdbuf() const

The member function returns the address of the stored stream buffer, of type pointer to basic_stringbuf<E, T, A>.

basic_stringstream::str

basic_string<E, T, A> str() const;
void str(basic_string<E, T, A>& x);

The first member function returns rdbuf()-> str(). The second member function calls rdbuf()-> str(x).

basic_stringstream::traits_type

typedef T traits_type;

istringstream

typedef basic_istringstream<char> istringstream;

The type is a synonym for template class basic_istringstream, specialized for elements of type char.

ostringstream

typedef basic_ostringstream<char> ostringstream;

The type is a synonym for template class basic_ostringstream, specialized for elements of type char.

stringbuf

typedef basic_stringbuf<char> stringbuf;

The type is a synonym for template class basic_stringbuf, specialized for elements of type char.

stringstream

typedef basic_stringstream<char> stringstream;

The type is a synonym for template class basic_stringstream, specialized for elements of type char.

wistringstream

typedef basic_istringstream<wchar_t> wistringstream;

The type is a synonym for template class basic_istringstream, specialized for elements of type wchar_t.

wostringstream

typedef basic_ostringstream<wchar_t> wostringstream;

The type is a synonym for template class basic_ostringstream, specialized for elements of type wchar_t.

wstringbuf

typedef basic_stringbuf<wchar_t> wstringbuf;

The type is a synonym for template class basic_stringbuf, specialized for elements of type wchar_t.

wstringstream

typedef basic_stringstream<wchar_t> wstringstream;

The type is a synonym for template class basic_stringstream, specialized for elements of type wchar_t.

See also the Table of Contents and the Index.

Copyright © 1992-1996 by P.J. Plauger. All rights reserved.

<stack>

namespace std {
template<class T, class Cont>
 class stack;
// TEMPLATE FUNCTIONS
template<class T, class Cont>
 bool operator==(const stack<T, Cont>& lhs,
 const stack<T, Cont>&);
template<class T, class Cont>
 bool operator!=(const stack<T, Cont>& lhs,
 const stack<T, Cont>&);
template<class T, class Cont>
 bool operator<(const stack<T, Cont>& lhs,
 const stack<T, Cont>&);
template<class T, class Cont>
 bool operator>(const stack<T, Cont>& lhs,
 const stack<T, Cont>&);
template<class T, class Cont>
 bool operator<=(const stack<T, Cont>& lhs,
 const stack<T, Cont>&);
template<class T, class Cont>
 bool operator>=(const stack<T, Cont>& lhs,
 const stack<T, Cont>&);
 };

Include the STL standard header <stack> to define the template class stack and two supporting
templates.

operator!=

template<class T, class Cont>
 bool operator!=(const stack <T, Cont>& lhs,
 const stack <T, Cont>& rhs);

The template function returns !(lhs == rhs).

http://www.dinkumware.com/

operator==

template<class T, class Cont>
 bool operator==(const stack <T, Cont>& lhs,
 const stack <T, Cont>& rhs);

The template function overloads operator== to compare two objects of template class stack. The
function returns lhs.c == rhs.c.

operator<

template<class T, class Cont>
 bool operator<(const stack <T, Cont>& lhs,
 const stack <T, Cont>& rhs);

The template function overloads operator< to compare two objects of template class stack. The
function returns lhs.c < rhs.c.

operator<=

template<class T, class Cont>
 bool operator<=(const stack <T, Cont>& lhs,
 const stack <T, Cont>& rhs);

The template function returns !(rhs < lhs).

operator>

template<class T, class Cont>
 bool operator>(const stack <T, Cont>& lhs,
 const stack <T, Cont>& rhs);

The template function returns rhs < lhs.

operator>=

template<class T, class Cont>
 bool operator>=(const stack <T, Cont>& lhs,
 const stack <T, Cont>& rhs);

The template function returns !(lhs < rhs).

stack

template<class T,
 class Cont = deque<T> >
 class stack {
public:
 typedef Cont::allocator_type allocator_type;
 typedef Cont::value_type value_type;
 typedef Cont::size_type size_type;
 explicit stack(const allocator_type& al = allocator_type()) const;
 bool empty() const;
 size_type size() const;
 allocator_type get_allocator() const;
 value_type& top();
 const value_type& top() const;
 void push(const value_type& x);
 void pop();
protected:
 Cont c;
 };

The template class describes an object that controls a varying-length sequence of elements. The object
allocates and frees storage for the sequence it controls through a protected object named c, of class
Cont. The type T of elements in the controlled sequence must match value_type.

An object of class Cont must supply several public members defined the same as for deque, list,
and vector (all of which are suitable candidates for class Cont). The required members are:

 typedef T value_type;
 typedef T0 size_type;
 Cont(const allocator_type& al);
 bool empty() const;
 size_type size() const;
 allocator_type get_allocator() const;
 value_type& back();
 const value_type& back() const;
 void push_back(const value_type& x);
 void pop_back();

Here, T0 is an unspecified type that meets the stated requirements.

stack::allocator_type

typedef Cont::allocator_type allocator_type;

The type is a synonym for Cont::allocator_type.

stack::empty

bool empty() const;

The member function returns true for an empty controlled sequence.

stack::get_allocator

allocator_type get_allocator() const;

The member function returns c.get_allocator().

stack::pop

void pop();

The member function removes the last element of the controlled sequence, which must be non-empty.

stack::push

void push(const T& x);

The member function inserts an element with value x at the end of the controlled sequence.

stack::size

size_type size() const;

The member function returns the length of the controlled sequence.

stack::size_type

typedef Cont::size_type size_type;

The type is a synonym for Cont::size_type.

stack::stack

explicit stack(const allocator_type& al = allocator_type());

The constructor initializes the stored object with c(al), to specify an empty initial controlled sequence.

stack::top

value_type& top();
const value_type& top() const;

The member function returns a reference to the last element of the controlled sequence, which must be
non-empty.

stack::value_type

typedef Cont::value_type value_type;

The type is a synonym for Cont::value_type.

See also the Table of Contents and the Index.

Copyright © 1992-1996 by P.J. Plauger. Portions derived from work copyright © 1994 by
Hewlett-Packard Company. All rights reserved.

<stdexcept>

namespace std {
class logic_error;
 class domain_error;
 class invalid_argument;
 class length_error;
 class out_of_range;
class runtime_error;
 class range_error;
 class overflow_error;
 class underflow_error;
 };

Include the standard header <stdexcept> to define several classes used for reporting exceptions. The
classes form a derivation hierarchy, as indicated by the indenting above, all derived from class
exception.

domain_error

class domain_error : public logic_error {
public:
 domain_error(const string& what_arg);
 };

The class serves as the base class for all exceptions thrown to report a domain error. The value returned
by what() is what_arg.data().

invalid_argument

class invalid_argument : public logic_error {
public:
 invalid_argument(const string& what_arg);
 };

The class serves as the base class for all exceptions thrown to report an invalid argument. The value
returned by what() is what_arg.data().

http://www.dinkumware.com/

length_error

class length_error : public logic_error {
public:
 length_error(const string& what_arg);
 };

The class serves as the base class for all exceptions thrown to report an attempt to generate an object too
long to be specified. The value returned by what() is what_arg.data().

logic_error

class logic_error : public exception {
public:
 logic_error(const string& what_arg);
 };

The class serves as the base class for all exceptions thrown to report errors presumably detectable before
the program executes, such as violations of logical preconditions. The value returned by what() is
what_arg.data().

out_of_range

class out_of_range : public logic_error {
public:
 out_of_range(const string& what_arg);
 };

The class serves as the base class for all exceptions thrown to report an argument that is out of its valid
range. The value returned by what() is what_arg.data().

overflow_error

class overflow_error : public runtime_error {
public:
 overflow_error(const string& what_arg);
 };

The class serves as the base class for all exceptions thrown to report an arithmetic overflow. The value
returned by what() is what_arg.data().

range_error

class range_error : public runtime_error {
public:
 range_error(const string& what_arg);
 };

The class serves as the base class for all exceptions thrown to report a range error. The value returned by
what() is what_arg.data().

runtime_error

class runtime_error : public exception {
public:
 runtime_error(const string& what_arg);
 };

The class serves as the base class for all exceptions thrown to report errors presumably detectable only
when the program executes. The value returned by what() is what_arg.data().

underflow_error

class underflow_error : public runtime_error {
public:
 underflow_error(const string& what_arg);
 };

The class serves as the base class for all exceptions thrown to report an arithmetic underflow. The value
returned by what() is what_arg.data().

See also the Table of Contents and the Index.

Copyright © 1992-1996 by P.J. Plauger. All rights reserved.

<streambuf>

namespace std {
 template<class E, class T = char_traits<E> >
 class basic_streambuf;
 typedef basic_streambuf<char, char_traits<char> > streambuf;
 typedef basic_streambuf<wchar_t, char_traits<wchar_t> > wstreambuf;
 };

Include the iostreams standard header <streambuf> to define template class basic_streambuf,
which is basic to the operation of the iostreams classes. (This header is typically included for you by
another of the iostreams headers. You seldom have occasion to include it directly.)

basic_streambuf

char_type · eback · egptr · epptr · gbump · getloc · gptr · imbue ·
in_avail · int_type · off_type · overflow · pbackfail · pbase · pbump ·
pos_type · pptr · pubimbue · pubseekoff · pubseekpos · pubsetbuf ·
pubsync · sbumpc · seekoff · seekpos · setbuf · setg · setp · sgetc ·
sgetn · showmanyc · snextc · sputbackc · sputc · sputn · sungetc · sync
· traits_type · uflow · underflow · xsgetn · xsputn

template <class E, class T = char_traits<E> >
 class basic_streambuf {
public:
 typedef E char_type;
 typedef T traits_type;
 typedef T::int_type int_type;
 typedef T::pos_type pos_type;
 typedef T::off_type off_type;
 virtual ~streambuf();
 locale pubimbue(const locale& loc);
 locale getloc() const;
 basic_streambuf *pubsetbuf(E *s, streamsize n);
 pos_type pubseekoff(off_type off, ios_base::seekdir way,
 ios_base::openmode which = ios_base::in | ios_base::out);
 pos_type pubseekpos(pos_type sp,

http://www.dinkumware.com/

 ios_base::openmode which = ios_base::in | ios_base::out);
 int pubsync();
 streamsize in_avail();
 int_type snextc();
 int_type sbumpc();
 int_type sgetc();
 streamsize sgetn(E *s, streamsize n);
 int_type sputbackc(E c);
 int_type sungetc();
 int_type sputc(E c);
 streamsize sputn(const E *s, streamsize n);
protected:
 basic_streambuf();
 E *eback() const;
 E *gptr() const;
 E *egptr() const;
 void gbump(int n);
 void setg(E *gbeg, E *gnext, E *gend);
 E *pbase() const;
 E *pptr() const;
 E *epptr() const;
 void pbump(int n);
 void setp(E *pbeg, E *pend);
 virtual void imbue(const locale &loc);
 virtual basic_streambuf *setbuf(E *s, streamsize n);
 virtual pos_type seekoff(off_type off, ios_base::seekdir way,
 ios_base::openmode which = ios_base::in | ios_base::out);
 virtual pos_type seekpos(pos_type sp,
 ios_base::openmode which = ios_base::in | ios_base::out);
 virtual int sync();
 virtual int showmanyc();
 virtual streamsize xsgetn(E *s, streamsize n);
 virtual int_type underflow();
 virtual int_type uflow();
 virtual int_type pbackfail(int_type c = T::eof());
 virtual streamsize xsputn(const E *s, streamsize n);
 virtual int_type overflow(int_type c = T::eof());
 };

The template class describes an abstract base class for deriving a stream buffer, which controls the
transmission of elements to and from a specific representation of a stream. An object of class
basic_streambuf<E, T> helps control a stream with elements of type E, whose character traits are

determined by the class T.

Every stream buffer conceptually controls two independent streams, in fact, one for extractions (input)
and one for insertions (output). A specific representation may, however, make either or both of these
streams inaccessible. It typically maintains some relationship between the two streams. What you insert
into the output stream of a basic_stringbuf<E, T> object, for example, is what you later extract
from its input stream. And when you position one stream of a basic_filebuf<E, T> object, you
position the other stream in tandem.

The public interface to template class basic_streambuf supplies the operations common to all stream
buffers, however specialized. The protected interface supplies the operations needed for a specific
representation of a stream to do its work. The protected virtual member functions let you tailor the
behavior of a derived stream buffer for a specific representation of a stream. Each of the derived stream
buffers in the Standard C++ library describes how it specializes the behavior of its protected virtual
member functions. Documented here is the default behavior for the base class, which is often to do
nothing.

The remaining protected member functions control copying to and from any storage supplied to buffer
transmissions to and from streams. An input buffer, for example, is characterized by:

eback(), a pointer to the beginning of the buffer●

gptr(), a pointer to the next element to read●

egptr(), a pointer just past the end of the buffer●

Similarly, an output buffer is characterized by:

pbase(), a pointer to the beginning of the buffer●

pptr(), a pointer to the next element to write●

epptr(), a pointer just past the end of the buffer●

For any buffer, the protocol is:

If the next pointer is null, no buffer exists. Otherwise, all three pointers point into the same
sequence. (They can be safely compared for order.)

●

For an output buffer, if the next pointer compares less than the end pointer, you can store an
element at the write position designated by the next pointer.

●

For an input buffer, if the next pointer compares less than the end pointer, you can read an element
at the read position designated by the next pointer.

●

For an input buffer, if the beginning pointer compares less than the next pointer, you can put back
an element at the putback position designated by the decremented next pointer.

●

Any protected virtual member functions you write for a class derived from basic_streambuf<E,
T> must cooperate in maintaining this protocol.

An object of class basic_streambuf<E, T> stores the six pointers described above. It also stores a
locale object in an object of type locale for potential use by a derived stream buffer.

basic_streambuf::basic_streambuf

basic_streambuf();

The protected constructor stores a null pointer in all the pointers controlling the input buffer and the
output buffer. It also stores locale::classic() in the locale object.

basic_streambuf::char_type

typedef E char_type;

The type is a synonym for the template parameter E.

basic_streambuf::eback

E *eback() const;

The member function returns a pointer to the beginning of the input buffer.

basic_streambuf::egptr

E *egptr() const;

The member function returns a pointer just past the end of the input buffer.

basic_streambuf::epptr

E *epptr() const;

The member function returns a pointer just past the end of the output buffer.

basic_streambuf::gbump

void gbump(int n);

The member function adds n to the next pointer for the input buffer.

basic_streambuf::getloc

locale getloc() const;

The member function returns the stored locale object.

basic_streambuf::gptr

E *gptr() const;

The member function returns a pointer to the next element of the input buffer.

basic_streambuf::imbue

virtual void imbue(const locale &loc);

The default behavior is to do nothing.

basic_streambuf::in_avail

streamsize in_avail();

If a read position is available, the member function returns egptr() - gptr(). Otherwise, it returns
showmanyc().

basic_streambuf::int_type

typedef T::int_type int_type;

The type is a synonym for T::int_type.

basic_streambuf::off_type

typedef T::off_type off_type;

The type is a synonym for T::off_type.

basic_streambuf::overflow

virtual int_type overflow(int_type c = T::eof());

If c does not compare equal to T::eof(), the protected virtual member function endeavors to insert the
element T::to_char_type(c) into the output stream. It can do so in various ways:

If a write position is available, it can store the element into the write position and increment the
next pointer for the output buffer.

●

It can make a write position available by allocating new or additional storage for the output buffer.●

It can make a write position available by writing out, to some external destination, some or all of
the elements between the beginning and next pointers for the output buffer.

●

If the function cannot succeed, it returns T::eof() or throws an exception. Otherwise, it returns
Otherwise, it returns T::not_eof(c). The default behavior is to return T::eof().

basic_streambuf::pbackfail

virtual int_type pbackfail(int_type c = T::eof());

The protected virtual member function endeavors to put back an element into the input stream, then make
it the current element (pointed to by the next pointer). If c compares equal to T::eof(), the element to

push back is effectively the one already in the stream before the current element. Otherwise, that element
is replaced by T::to_char_type(c). The function can put back an element in various ways:

If a putback position is available, it can store the element into the putback position and decrement
the next pointer for the input buffer.

●

It can make a putback position available by allocating new or additional storage for the input
buffer.

●

For a stream buffer with common input and output streams, it can make a putback position
available by writing out, to some external destination, some or all of the elements between the
beginning and next pointers for the output buffer.

●

If the function cannot succeed, it returns T::eof() or throws an exception. Otherwise, it returns some
other value. The default behavior is to return T::eof().

basic_streambuf::pbase

E *pbase() const;

The member function returns a pointer to the beginning of the output buffer.

basic_streambuf::pbump

void pbump(int n);

The member function adds n to the next pointer for the output buffer.

basic_streambuf::pos_type

typedef T::pos_type pos_type;

The type is a synonym for T::pos_type.

basic_streambuf::pptr

E *pptr() const;

The member function returns a pointer to the next element of the output buffer.

basic_streambuf::pubimbue

locale pubimbue(const locale& loc);

The member function stores loc in the locale object, calls imbue(), then returns the previous value
stored in the locale object.

basic_streambuf::pubseekoff

pos_type pubseekoff(off_type off, ios_base::seekdir way,
 ios_base::openmode which = ios_base::in | ios_base::out);

The member function returns seekoff(off, way, which).

basic_streambuf::pubseekpos

pos_type pubseekpos(pos_type sp,
 ios_base::openmode which = ios_base::in | ios_base::out);

The member function returns seekpos(sp, which).

basic_streambuf::pubsetbuf

basic_streambuf *pubsetbuf(E *s, streamsize n);

The member function returns stbuf(s, n).

basic_streambuf::pubsync

int pubsync();

The member function returns sync().

basic_streambuf::sbumpc

int_type sbumpc();

If a read position is available, the member function returns T::to_int_type(*gptr()) and
increments the next pointer for the input buffer. Otherwise, it returns uflow().

basic_streambuf::seekoff

virtual pos_type seekoff(off_type off, ios_base::seekdir way,
 ios_base::openmode which = ios_base::in | ios_base::out);

The protected virtual member function endeavors to alter the current positions for the controlled streams.
The new position is determined as follows:

If way == ios_base::beg, the new position is the beginning of the stream plus off.●

If way == ios_base::cur, the new position is the current stream position plus off.●

If way == ios_base::end, the new position is the end of the stream plus off.●

Typically, if which & ios_base::in is nonzero, the input stream is affected, and if which &
ios_base::out is nonzero, the output stream is affected. Actual use of this parameter varies among

derived stream buffers, however.

If the function succeeds in altering the stream position(s), it returns the resultant stream position (or one
of them). Otherwise, it returns an invalid stream position. The default behavior is to return an invalid
stream position.

basic_streambuf::seekpos

virtual pos_type seekpos(pos_type sp,
 ios_base::openmode which = ios_base::in | ios_base::out);

The protected virtual member function endeavors to alter the current positions for the controlled streams.
The new position is sp.

Typically, if which & ios_base::in is nonzero, the input stream is affected, and if which &
ios_base::out is nonzero, the output stream is affected. Actual use of this parameter varies among
derived stream buffers, however.

If the function succeeds in altering the stream position(s), it returns the resultant stream position (or one
of them). Otherwise, it returns an invalid stream position. The default behavior is to return an invalid
stream position.

basic_streambuf::setbuf

virtual basic_streambuf *setbuf(E *s, streamsize n);

The protected virtual member function performs an operation peculiar to each derived stream buffer. (See,
for example, basic_filebuf.) The default behavior is to return this.

basic_streambuf::setg

void setg(E *gbeg, E *gnext, E *gend);

The member function stores gbeg in the beginning pointer, gnext in the next pointer, and gend in the
end pointer for the input buffer.

basic_streambuf::setp

void setp(E *pbeg, E *pend);

The member function stores pbeg in the beginning pointer, pnext in the next pointer, and pend in the
end pointer for the output buffer.

basic_streambuf::sgetc

int_type sgetc();

If a read position is available, the member function returns T::to_int_type(*gptr())

Otherwise, it returns underflow().

basic_streambuf::sgetn

streamsize sgetn(E *s, streamsize n);

The member function returns sgetn(s, n).

basic_streambuf::showmanyc

virtual int showmanyc();

The protected virtual member function returns a count of the number of characters that can be extracted
from the input stream with no fear that the program will suffer an indefinite wait. The default behavior is
to return zero.

basic_streambuf::snextc

int_type snextc();

The member function calls sbumpc() and, if that function returns T::eof(), returns T::eof().
Otherwise, it returns sgetc().

basic_streambuf::sputbackc

int_type sputbackc(E c);

If a putback position is available and c compares equal to the character stored in that position, the
member function decrements the next pointer for the input buffer and returns ch, which is the value
T::to_int_type(c). Otherwise, it returns pbackfail(ch).

basic_streambuf::sputc

int_type sputc(E c);

If a write position is available, the member function stores c in the write position, increments the next
pointer for the output buffer, and returns ch, which is the value T::to_int_type(c). Otherwise, it
returns overflow(ch).

basic_streambuf::sputn

streamsize sputn(const E *s, streamsize n);

The member function returns sputn(s, n).

basic_streambuf::sungetc

int_type sungetc();

If a putback position is available, the member function decrements the next pointer for the input buffer
and returns T::to_int_type(*gptr()). Otherwise it returns pbackfail().

basic_streambuf::sync

virtual int sync();

The protected virtual member function endeavors to synchronize the controlled streams with any
associated external streams. Typically, this involves writing out any elements between the beginning and
next pointers for the output buffer. It does not involve putting back any elements between the next and
end pointers for the input buffer. If the function cannot succeed, it returns -1. The default behavior is to
return zero.

basic_streambuf::traits_type

typedef T traits_type;

The type is a synonym for the template parameter T.

basic_streambuf::uflow

virtual int_type uflow();

The protected virtual member function endeavors to extract the current element c from the input stream,
then advance the current stream position, and return the element as T::to_int_type(c). It can do so
in various ways:

If a read position is available, it takes c as the element stored in the read position and advances the
next pointer for the input buffer.

●

It can read an element directly, from some external source, and deliver it as the value c.●

For a stream buffer with common input and output streams, it can make a read position available by
writing out, to some external destination, some or all of the elements between the beginning and
next pointers for the output buffer. Or it can allocate new or additional storage for the input buffer.
The function then reads in, from some external source, one or more elements.

●

If the function cannot succeed, it returns T::eof(), or throws an exception. Otherwise, it returns the
current element c in the input stream, converted as described above, and advances the next pointer for the
input buffer. The default behavior is to call underflow() and, if that function returns T::eof(), to
return T::eof(). Otherwise, the function returns the current element c in the input stream, converted as
described above, and advances the next pointer for the input buffer.

basic_streambuf::underflow

virtual int_type underflow();

The protected virtual member function endeavors to extract the current element c from the input stream,
without advancing the current stream position, and return it as T::to_int_type(c). It can do so in
various ways:

If a read position is available, c is the element stored in the read position.●

It can make a read position available by allocating new or additional storage for the input buffer,
then reading in, from some external source, one or more elements.

●

If the function cannot succeed, it returns T::eof(), or throws an exception. Otherwise, it returns the
current element in the input stream, converted as described above. The default behavior is to return
T::eof().

basic_streambuf::xsgetn

virtual streamsize xsgetn(E *s, streamsize n);

The protected virtual member function extracts up to n elements from the input stream, as if by repeated
calls to sbumpc, and stores them in the array beginning at s. It returns the number of elements actually
extracted.

basic_streambuf::xsputn

virtual streamsize xsputn(const E *s, streamsize n);

The protected virtual member function inserts up to n elements into the output stream, as if by repeated
calls to sputc, from the array beginning at s. It returns the number of elements actually inserted.

streambuf

typedef basic_streambuf<char, char_traits<char> > streambuf;

The type is a synonym for template class basic_streambuf, specialized for elements of type char
with default character traits.

wstreambuf

typedef basic_streambuf<wchar_t, char_traits<wchar_t> > wstreambuf;

The type is a synonym for template class basic_streambuf, specialized for elements of type
wchar_t with default character traits.

See also the Table of Contents and the Index.

Copyright © 1992-1996 by P.J. Plauger. All rights reserved.

<string>

basic_string · char_traits · char_traits<char> · char_traits<wchar_t> ·
getline · operator+ · operator!= · operator== · operator< · operator<< ·
operator<= · operator> · operator>= · operator>> · string · swap · wstring

namespace std {
// TEMPLATE CLASSES
template<class E>
 struct char_traits;
struct char_traits<char>;
struct char_traits<wchar_t>;
template<class E,
 class T = char_traits<E>,
 class A = allocator<E> >
 class basic_string;
typedef basic_string<char> string;
typedef basic_string>wchar_t> wstring;
// TEMPLATE FUNCTIONS
template<class E, class T, class A>
 basic_string<E, T, A> operator+(
 const basic_string<E, T, A>& lhs,
 const basic_string<E, T, A>& rhs);
template<class E, class T, class A>
 basic_string<E, T, A> operator+(
 const basic_string<E, T, A>& lhs,
 const E *rhs);
template<class E, class T, class A>
 basic_string<E, T, A> operator+(
 const basic_string<E, T, A>& lhs,
 E rhs);
template<class E, class T, class A>
 basic_string<E, T, A> operator+(
 const E *lhs,
 const basic_string<E, T, A>& rhs);
template<class E, class T, class A>
 basic_string<E, T, A> operator+(
 E lhs,
 const basic_string<E, T, A>& rhs);
template<class E, class T, class A>
 bool operator==(
 const basic_string<E, T, A>& lhs,

http://www.dinkumware.com/

 const basic_string<E, T, A>& rhs);
template<class E, class T, class A>
 bool operator==(
 const basic_string<E, T, A>& lhs,
 const E *rhs);
template<class E, class T, class A>
 bool operator==(
 const E *lhs,
 const basic_string<E, T, A>& rhs);
template<class E, class T, class A>
 bool operator!=(
 const basic_string<E, T, A>& lhs,
 const basic_string<E, T, A>& rhs);
template<class E, class T, class A>
 bool operator!=(
 const basic_string<E, T, A>& lhs,
 const E *rhs);
template<class E, class T, class A>
 bool operator!=(
 const E *lhs,
 const basic_string<E, T, A>& rhs);
template<class E, class T, class A>
 bool operator<(
 const basic_string<E, T, A>& lhs,
 const basic_string<E, T, A>& rhs);
template<class E, class T, class A>
 bool operator<(
 const basic_string<E, T, A>& lhs,
 const E *rhs);
template<class E, class T, class A>
 bool operator<(
 const E *lhs,
 const basic_string<E, T, A>& rhs);
template<class E, class T, class A>
 bool operator>(
 const basic_string<E, T, A>& lhs,
 const basic_string<E, T, A>& rhs);
template<class E, class T, class A>
 bool operator>(
 const basic_string<E, T, A>& lhs,
 const E *rhs);
template<class E, class T, class A>
 bool operator>(
 const E *lhs,
 const basic_string<E, T, A>& rhs);
template<class E, class T, class A>
 bool operator<=(
 const basic_string<E, T, A>& lhs,

 const basic_string<E, T, A>& rhs);
template<class E, class T, class A>
 bool operator<=(
 const basic_string<E, T, A>& lhs,
 const E *rhs);
template<class E, class T, class A>
 bool operator<=(
 const E *lhs,
 const basic_string<E, T, A>& rhs);
template<class E, class T, class A>
 bool operator>=(
 const basic_string<E, T, A>& lhs,
 const basic_string<E, T, A>& rhs);
template<class E, class T, class A>
 bool operator>=(
 const basic_string<E, T, A>& lhs,
 const E *rhs);
template<class E, class T, class A>
 bool operator>=(
 const E *lhs,
 const basic_string<E, T, A>& rhs);
template<class E, class T, class A>
 void swap(
 const basic_string<E, T, A>& lhs,
 const basic_string<E, T, A>& rhs);
template<class E, class T, class A>
 basic_ostream<E>& operator<<(
 basic_ostream <E>& os,
 const basic_string<E, T, A>& str);
template<class E, class T, class A>
 basic_istream<E>& operator>>(
 basic_istream <E>& is,
 basic_string<E, T, A>& str);
template<class E, class T, class A>
 basic_istream<E, T>& getline(
 basic_istream <E, T>& is,
 basic_string<E, T, A>& str);
 template<class E, class T, class A>
 basic_istream<E, T>& getline(
 basic_istream <E, T>& is,
 basic_string<E, T, A>& str,
 E delim);
 };

Include the standard header <string> to define the container template class basic_string and various
supporting templates.

basic_string

allocator_type · append · assign · at · basic_string · begin · c_str ·
capacity · char_type · compare · const_iterator · const_pointer ·
const_reference · const_reverse_iterator · copy · data · difference_type ·
empty · end · erase · find · find_first_not_of · find_first_of ·
find_last_not_of · find_last_of · get_allocator · insert · iterator · length
· max_size · npos · operator+= · operator= · operator[] · pointer · rbegin ·
reference · rend · replace · reserve · resize · reverse_iterator · rfind ·
size · size_type · substr · swap · traits_type · value_type

template<class E,
 class T = char_traits<E>,
 class A = allocator<T> >
 class basic_string {
public:
 typedef T traits_type;
 typedef A allocator_type;
 typedef T::char_type char_type;
 typedef A::size_type size_type;
 typedef A::difference_type difference_type;
 typedef A::pointer pointer;
 typedef A::const_pointer const_pointer;
 typedef A::reference reference;
 typedef A::const_reference const_reference;
 typedef A::value_type value_type;
 typedef T0 iterator;
 typedef T1 const_iterator;
 typedef reverse_iterator<iterator, value_type,
 reference, pointer, difference_type>
 reverse_iterator;
 typedef reverse_iterator<const_iterator, value_type,
 const_reference, const_pointer, difference_type>
 const_reverse_iterator;
 static const size_type npos = -1;
 explicit basic_string(const A& al = A());
 basic_string(const basic_string& rhs);
 basic_string(const basic_string& rhs, size_type pos, size_type n,
 const A& al = A());
 basic_string(const E *s, size_type n, const A& al = A());
 basic_string(const E *s, const A& al = A());
 basic_string(size_type n, E c, const A& al = A());
 template <class InIt>

 basic_string(InIt first, InIt last, const A& al = A());
 basic_string& operator=(const basic_string& rhs);
 basic_string& operator=(const E *s);
 basic_string& operator=(E c);
 iterator begin();
 const_iterator begin() const;
 iterator end();
 const_iterator end() const;
 reverse_iterator rbegin();
 const_reverse_iterator rbegin() const;
 reverse_iterator rend();
 const_reverse_iterator rend() const;
 const_reference at(size_type pos) const;
 reference at(size_type pos);
 const_reference operator[](size_type pos) const;
 reference operator[](size_type pos);
 const E *c_str() const;
 const E *data() const;
 size_type length() const;
 size_type size() const;
 size_type max_size() const;
 void resize(size_type n, E c = E());
 size_type capacity() const;
 void reserve(size_type n = 0);
 bool empty() const;
 basic_string& operator+=(cosst basic_string& rhs);
 basic_string& operator+=(c=nst E *s);
 basic_string& operator+=(E c);
 basic_string& append(const basic_string& str);
 basic_string& append(const basic_string& str,
 size_type pos, size_type n);
 basic_string& append(const E *s, size_type n);
 basic_string& append(const E *s);
 basic_string& append(size_type n, E c);
 template<class InIt>
 basic_string& append(InIt first, InIt last);
 basic_string& assign(const basic_string& str);
 basic_string& assign(const basic_string& str,
 size_type pos, size_type n);
 basic_string& assign(const E *s, size_type n);
 basic_string& assign(const E *s);
 basic_string& assign(size_type n, E c);
 template<class InIt>
 basic_string& assign(InIt first, InIt last);

 basic_string& insert(size_type p0,
 const basic_string& str);
 basic_string& insert(size_type p0,
 const basic_string& str, size_type pos, size_type n);
 basic_string& insert(size_type p0,
 const E *s, size_type n);
 basic_string& insert(size_type p0, const E *s);
 basic_string& insert(size_type p0, size_type n, E c);
 iterator insert(iterator it, E c);
 void insert(iterator it, size_type n, E c);
 template<class InIt>
 void insert(iterator it, InIt first, InIt last);
 basic_string& erase(size_type p0 = 0, size_type n = npos);
 iterator erase(iterator it);
 iterator erase(iterator first, iterator last);
 basic_string& replace(size_type p0, size_type n0,
 const basic_string& str);
 basic_string& replace(size_type p0, size_type n0,
 const basic_string& str, size_type pos, size_type n);
 basic_string& replace(size_type p0, size_type n0,
 const E *s, size_type n);
 basic_string& replace(size_type p0, size_type n0,
 const E *s);
 basic_string& replace(size_type p0, size_type n0,
 size_type n, E c);
 basic_string& replace(iterator first0, iterator last0,
 const basic_string& str);
 basic_string& replace(iterator first0, iterator last0,
 const E *s, size_type n);
 basic_string& replace(iterator first0, iterator last0,
 const E *s);
 basic_string& replace(iterator first0, iterator last0,
 size_type n, E c);
 template<class InIt>
 basic_string& replace(iterator first0, iterator last0,
 InIt first, InIt last);
 size_type copy(E *s, size_type n, size_type pos = 0) const;
 void swap(basic_string& str);
 size_type find(const basic_string& str,
 size_type pos = 0) const;
 size_type find(const E *s, size_type pos, size_type n) const;
 size_type find(const E *s, size_type pos = 0) const;
 size_type find(E c, size_type pos = 0) const;
 size_type rfind(const basic_string& str,
 size_type pos = npos) const;
 size_type rfind(const E *s, size_type pos,

 size_type n = npos) const;
 size_type rfind(const E *s, size_type pos = npos) const;
 size_type rfind(E c, size_type pos = npos) const;
 size_type find_first_of(const basic_string& str,
 size_type pos = 0) const;
 size_type find_first_of(const E *s, size_type pos,
 size_type n) const;
 size_type find_first_of(const E *s, size_type pos = 0) const;
 size_type find_first_of(E c, size_type pos = 0) const;
 size_type find_last_of(const basic_string& str,
 size_type pos = npos) const;
 size_type find_last_of(const E *s, size_type pos,
 size_type n = npos) con/t;
 size_type find_last_of(const E *s, size_type pos = npos) const;
 size_type find_last_of(E c, size_type pos = npos) const;
 size_type find_first_not_of(const basic_string& str,
 size_type pos = 0) const;
 size_type find_first_not_of(const E *s, size_type pos,
 size_type n) const;
 size_type find_first_not_of(const E *s, size_type pos = 0) const;
 size_type find_first_not_of(E c, size_type pos = 0) const;
 size_type find_last_not_of(const basic_string& str,
 size_type pos = npos) const;
 size_type find_last_not_of(const E *s, size_type pos,
 size_type n) const;
 size_type find_last_not_of(const E *s,
 size_type pos = npos) const;
 size_type find_last_not_of(E c, size_type pos = npos) const;
 basic_string substr(size_type pos = 0, size_type n = npos) const;
 int compare(const basic_string& str) const;
 int compare(size_type p0, size_type n0,
 const basic_string& str);
 int compare(size_type p0, size_type n0,
 const basic_string& str, size_type pos, size_type n);
 int compare(const E *s) const;
 int compare(size_type p0, size_type n0,
 const E *s) const;
 int compare(size_type p0, size_type n0,
 const E *s, size_type pos) const;
 A get_allocator() const;
protected:
 A allocator;
 };

The template class describes an object that controls a varying-length sequence of elements of type E. Such an
element type must not require explicit construction or destruction, and it must be suitable for use as the E

parameter to basic_istream or basic_ostream. (A ``plain old data structure,'' or POD, from C generally
meets this criterion.) The Standard C++ library provides two specializations of this template class, with the type
definitions string, for elements of type char, and wstring, for elements of type wchar_t.

Various important properties of the elements in a basic_string specialization are described by the class T. A
class that specifies these character traits must have the same external interface as an object of template class
char_traits.

The object allocates and frees storage for the sequence it controls through a protected object named
allocator, of class A. Such an allocator object must have the same external interface as an object of template
class allocator. (Class char_traits has no provision for alternate addressing schemes, such as might be
required to implement a far heap.) Note that allocator is not copied when the object is assigned.

The sequences controlled by an object of template class basic_string are usually called strings. These
objects should not be confused, however, with the null-terminated C strings used throughout the Standard C++
library.

Many member functions require an operand sequence of elements of type E. You can specify such an operand
sequence several ways:

c -- a sequence of one element with value c●

n, c -- a repetition of n elements each with value c●

s -- a null-terminated sequence (such as a C string, for E of type char) beginning at s (which must not be a
null pointer), where the terminating element is the value E(0) and is not part of the operand sequence

●

s, n -- a sequence of n elements beginning at s (which must not be a null pointer)●

str -- the sequence specified by the basic_string object str●

str, pos, n -- the substring of the basic_string object str with up to n elements (or through the
end of the string, whichever comes first) beginning at position pos

●

first, last -- a sequence of elements delimited by the iterators first and last, in the range
[first, last)

●

If a position argument (such as pos above) is beyond the end of the string on a call to a basic_string
member function, the function reports an out-of-range error by throwing an object of class out_of_range.

If a function is asked to generate a sequence longer than max_size() elements, the function reports a length
error by throwing an object of class length_error.

basic_string::allocator_type

typedef A allocator_type;

The type is a synonym for the template parameter A.

basic_string::append

basic_string& append(const E *s);
basic_string& append(const E *s, size_type n);
basic_string& append(const basic_string& str,
 size_type pos, size_type n);
basic_string& append(const basic_string& str);

basic_string& append(size_type n, E c);
template<class InIt>
 basic_string& append(InIt first, InIt last);

The member template function appends the operand sequence to the end of the sequence controlled by *this,
then returns *this.

In this implementation, if a translator does not support member template functions, hhe template is replaced by:

basic_string& append(const_iterator first, const_iterator last);

basic_string::assign

basic_string& assign(const E *s);
basic_string& assign(const E *s, size_type n);
basic_string& assign(const basic_string& str,
 size_type pos, size_type n);
basic_string& assign(const basic_string& str);
basic_string& assign(size_type n, E c);
template<class InIt>
 basic_string& assign(InIt first, InIt last);

The member functions each replaces the sequence controlled by *this with the operand sequence, then returns
*this.

In this implementation, if a translator does not support member template functions, the template is replaced by:

basic_string& assign(const_iterator first, const_iterator last);

basic_string::at

const_reference at(size_type pos) const;
reference at(size_type pos);

The member functions each returns a reference to the element of the controlled sequence at position pos, or it
reports an out-of-range error.

basic_string::basic_string

basic_string(const E *s, const A& al = A());
basic_string(const E *s, size_type n, const A& al = A());
basic_string(const basic_string& rhs);
basic_string(const basic_string& rhs, size_type pos, size_type n,
 const A& al = A());
basic_string(size_type n, E c, const A& al = A());
explicit basic_string(const A& al = A());
template <class InIt>
 basic_string(InIt first, InIt last, const A& al = A());

The constructors each stores the allocator object al (or, for the copy constructor, x.get_allocator()) in
allocator and initializes the controlled sequence to a copy of the operand sequence specified by the

remaining operands. The explicit constructor specifies an empty initial controlled sequence.

In this implementation, if a translator does not support member template functions, the template is replaced by:

basic_string(const_iterator first, const_iterator last, const A& al = A());

basic_string::begin

const_iterator begin() const;
iterator begin();

The member functions each returns a random-access iterator that points at the first element of the sequence (or
just beyond the end of an empty sequence).

basic_string::c_str

const E *c_str() const;

The member function returns a pointer to a non-modifiable C string constructed by adding a terminating null
element (E(0)) to the controlled sequence. Calling any non-const member function for *this can invalidate
the pointer.

basic_string::capacity

size_type capacity() const;

The member function returns the storage currently allocated to hold the controlled sequence, a value at least as
large as size().

basic_string::char_type

typedef T::char_type char_type;

The type is a synonym for the template parameter E.

basic_string::compare

int compare(const basic_string& str) const;
int compare(size_type p0, size_type n0,
 const basic_string& str);
int compare(size_type p0, size_type n0,
 const basic_string& str, size_type pos, size_type n);
int compare(const E *s) const;
int compare(size_type p0, size_type n0,
 const E *s) const;
int compare(size_type p0, size_type n0,
 const E *s, size_type pos) const;

The member functions each compares up to n0 elements of the controlled sequence beginning with position p0,
or the entire controlled sequence if these arguments are not supplied, to the operand sequence. The function
returns:

a negative value if the first differing element in the controlled sequence compares less than the
corresponding element in the operand sequence (as determined by T::compare), or if the two have a
common prefix but the operand sequence is longer

●

zero if the two compare equal element by element and are the same length●

a positive value otherwise●

basic_string::const_iterator

typedef T1 const_iterator;

The type describes an object that can serve as a constant random-access iterator for the controlled sequence. It is
described here as a synonym for the unspecified type T1.

basic_string::const_pointer

typedef A::const_pointer const_pointer;

The type describes an object that can serve as a constant pointer to an element of the controlled sequence.

basic_string::const_reference

typedef A::const_reference const_reference;

The type describes an object that can serve as a constant reference to an element of the controlled sequence.

basic_string::const_reverse_iterator

typedef reverse_iterator<const_iterator, value_type,
 const_reference, const_pointer, difference_type>
 const_reverse_iterator;

The type describes an object that can serve as a constant reverse iterator for the controlled sequence.

basic_string::copy

size_type copy(E *s, size_type n, size_type pos = 0) const;

The member function copies up to n elements from the controlled sequence, beginning at position pos, to the
array of E beginning at s. It returns the number of elements actually copied.

basic_string::data

const E *data() const;

The member function returns a pointer to the first element of the sequence (or, for an empty sequence, a non-null
pointer that cannot be dereferenced).

basic_string::difference_type

typedef A::difference_type difference_type;

The signed integer type describes an object that can represent the difference between the addresses of any two
elements in the controlled sequence.

basic_string::empty

bool empty() const;

The member function returns true for an empty controlled sequence.

basic_string::end

const_iterator end() const;
iterator end();

The member functions each returns a random-access iterator that points just beyond the end of the sequence.

basic_string::erase

iterator erase(iterator first, iterator last);
iterator erase(iterator it);
basic_string& erase(size_type p0 = 0, size_type n = npos);

The first member function removes the elements of the controlled sequence in the range [first, last). The
second member function removes the element of the controlled sequence pointed to by it. Both return an iterator
that designates the first element remaining beyond any elements removed, or end() if no such element exists.

The third member function removes up to n elements of the controlled sequence beginning at position p0, then
returns *this.

basic_string::find

size_type find(E c, size_type pos = 0) const;
size_type find(const E *s, size_type pos = 0) const;
size_type find(const E *s, size_type pos, size_type n) const;
size_type find(const basic_string& str, size_type pos = 0) const;

The member functions each finds the first (lowest beginning position) subsequence in the controlled sequence,
beginning on or after position pos, that matches the operand sequence specified by the remaining operands. If it
succeeds, it returns the position where the matching subsequence begins. Otherwise, the function returns npos.

basic_string::find_first_not_of

size_type find_first_not_of(E c, size_type pos = 0) const;
size_type find_first_not_of(const E *s, size_type pos = 0) const;
size_type find_first_not_of(const E *s, size_type pos,
 size_type n) const;
size_type find_first_not_of(const basic_string& str,

 size_type pos = 0) const;

The member functions each finds the first (lowest position) element of the controlled sequence, at or after
position pos, that matches none of the elements in the operand sequence specified by the remaining operands. If
it succeeds, it returns the position. Otherwise, the function returns npos.

basic_string::find_first_of

size_type find_first_of(E c, size_type pos = 0) const;
size_type find_first_of(const E *s, size_type pos = 0) const;
size_type find_first_of(const E *s, size_type pos, size_type n) const;
size_type find_first_of(const basic_string& str,
 size_type pos = 0) const;

The member functions each finds the first (lowest position) element of the controlled sequence, at or after
position pos, that matches any of the elements in the operand sequence specified by the remaining operands. If it
succeeds, it returns the position. Otherwise, the function returns npos.

basic_string::find_last_not_of

size_type find_last_not_of(E c, size_type pos = npos) const;
size_type find_last_not_of(const E *s, size_type pos = npos) const;
size_type find_last_not_of(const E *s, size_type pos, size_type n) const;
size_type find_last_not_of(const basic_string& str,
 size_type pos = npos) const;

The member functions each finds the last (highest position) element of the controlled sequence, at or before
position pos, that matches none of the elements in the operand sequence specified by the remaining operands. If
it succeeds, it returns the position. Otherwise, the function returns npos.

basic_string::find_last_of

size_type find_last_of(E c, size_type pos = npos) const;
size_type find_last_of(const E *s, size_type pos = npos) const;
size_type find_last_of(const E *s, size_type pos, size_type n = npos) const;
size_type find_last_of(const basic_string& str,
 size_type pos = npos) const;

The member functions each finds the last (highest position) element of the controlled sequence, at or before
position pos, that matches any of the elements in the operand sequence specified by the remaining operands. If it
succeeds, it returns the position. Otherwise, the function returns npos.

basic_string::get_allocator

A get_allocator() const;

The member function returns allocator.

basic_string::insert

basic_string& insert(size_type p0, const E *s);
basic_string& insert(size_type p0, const E *s, size_type n);
basic_string& insert(size_type p0,
 const basic_string& str);
basic_string& insert(size_type p0,
 const basic_string& str, size_type pos, size_type n);
basic_string& insert(size_type p0, size_type n, E c);
iterator insert(iterator it, E c);
template<class InIt>
 void insert(iterator it, InIt first, InIt last);
void insert(iterator it, size_type n, E c);

The member functions each inserts, before position p0 or before the element pointed to by it in the controlled
sequence, the operand sequence specified by the remaining operands. A function that returns a value returns
*this.

In this implementation, if a translator does not support member template functions, the template is replaced by:

void insert(iterator it, const_iterator first, const_iterator last);

basic_string::iterator

typedef T0 iterator;

The type describes an object that can serve as a random-access iterator for the controlled sequence. It is described
here as a synonym for the unspecified type T0.

basic_string::length

size_type length() const;

The member function returns the length of the controlled sequence (same as size()).

basic_string::max_size

size_type max_size() const;

The member function returns the length of the longest sequence that the object can control.

basic_string::npos

static const size_type npos = -1;

The constant is the largest representable value of type size_type. It is assuredly larger than max_size(),
hence it serves as either very large value or as a special code.

basic_string::operator+=

basic_string& operator+=(E c);
basic_string& operator+=(const E *s);
basic_string& operator+=(const basic_string& rhs);

The operators each appends the operand sequence to the end of the sequence controlled by *this, then returns
*this.

basic_string::operator=

basic_string& operator=(E c);
basic_string& operator=(const E *s);
basic_string& operator=(const basic_string&nmp; rhs);

The operators each replaces the sequence controlled by *this with the operand sequence, then returns *this.

basic_string::operator[]

const_reference operator[](size_type pos) const;
reference operator[](size_type pos);

The member functions each returns a reference to the element of the controlled sequence at position pos. If that
position is invalid, the behavior is undefined.

basic_string::pointer

typedef A::pointer pointer;

The type describes an object that can serve as a pointer to an element of the controlled sequence.

basic_string::rbegin

const_reverse_iterator rbegin() const;
reverse_iterator rbegin();

The member function returns a reverse iterator that points just beyond the end of the controlled sequence. Hence,
it designates the beginning of the reverse sequence.

basic_string::reference

typedef A::reference reference;

The type describes an object that can serve as a reference to an element of the controlled sequence.

basic_string::rend

const_reverse_iterator rend() const;
reverse_iterator rend();

The member functions each returns a reverse iterator that points at the first element of the sequence (or just

beyond the end of an empty sequence). Hence, it designates the end of the reverse sequence.

basic_string::replace

basic_string& replace(size_type p0, size_type n0,
 const E *s);
basic_string& replace(size_type p0, size_type n0,
 const E *s, size_type n);
basic_string& replace(size_type p0, size_type n0,
 const basic_string& str);
basic_string& replace(size_type p0, size_type n0,
 const basic_string& str, size_type pos, size_type n);
basic_string& replace(size_type p0, size_type n0,
 size_type n, E c);
basic_string& replace(iterator first0, iterator last0,
 const E *s);
basic_string& replace(iterator first0, iterator last0,
 const E *s, size_type n);
basic_string& replace(iterator first0, iterator last0,
 const basic_string& str);
basic_string& replace(iterator first0, iterator last0,
 size_type n, E c);
template<class InIt>
 basic_string& replace(iterator first0, iterator last0,
 InIt first, InIt last);

The member functions each replaces up to n0 elements of the controlled sequence beginning with position p0, or
the elements of the controlled sequence beginning with the one pointed to by first, up to but not including
last. The replacement is the operand sequence specified by the remaining operands. The function then returns
*this.

In this implementation, if a translator does not support member template functions, the template is replaced by:

basic_string& replace(iterator first0, iterator last0, const_iterator first,
const_iterator last);

basic_string::reserve

void reserve(size_type n = 0);

The member function ensures that capacity() henceforth returns at least n.

basic_string::resize

void resize(size_type n, E c = E());

The member function ensures that size() henceforth returns n. If it must make the controlled sequence longer,
it appends elements with value c.

basic_string::reverse_iterator

typedef reverse_iterator<iterator, value_type,
 reference, pointer, difference_type>
 reverse_iterator;

The type describes an object that can serve as a reverse iterator for the controlled sequence.

basic_string::rfind

size_type rfind(E c, size_type pos = npos) const;
size_type rfind(const E *s, size_type pos = npos) const;
size_type rfind(const E *s, size_type pos, size_type n = npos) const;
size_type rfind(const basic_string& str,
 size_type pos = npos) const;

The member functions each finds the last (highest beginning position) subsequence in the controlled sequence,
beginning on or before position pos, that matches the operand sequence specified by the remaining operands. If
it succeeds, it returns the position where the matching subsequence begins. Otherwise, the function returns npos.

basic_string::size

size_type size() const;

The member function returns the length of the controlled sequence.

basic_string::size_type

typedef A::size_type size_type;

The unsigned integer type describes an object that can represent the length of any controlled sequence.

basic_string::substr

basic_string substr(size_type pos = 0,
 size_type n = npos) const;

The member function returns an object whose controlled sequence is a copy of up to n elements of the controlled
sequence beginning at position pos.

basic_string::swap

void swap(basic_string& str);

The member function swaps the controlled sequences between *this and str. If allocator ==
str.allocator, it does so in constant time. Otherwise, it performs a number of element assignments and
constructor calls proportional to the number of elements in the two controlled sequences.

basic_string::traits_type

typedef T traits_type;

The type is a synonym for the template parameter T.

basic_string::value_type

typedef A::value_type value_type;

The type is a synonym for the template parameter E.

char_traits

struct char_traits<E> {
 typedef E char_type;
 typedef T1 int_type;
 typedef T2 pos_type;
 typedef T3 off_type;
 typedef T4 state_type;
 static void assign(E& x, const E& y);
 static E *assign(E *x, size_t n, const E& y);
 static bool eq(const E& x, const E& y);
 static bool lt(const E& x, const E& y);
 static int compare(const E *x, const E *y, size_t n);
 static size_t length(const E *x);
 static E *copy(E *x, const E *y, size_t n);
 static E *move(E *x, const E *y, size_t n);
 static const E *find(const E *x, size_t n, const E& y);
 static E to_char_type(const int_type& ch);
 static int_type to_int_type(const E& c);
 static bool eq_int_type(const int_type& ch1, const int_type& ch2);
 static int_type eof();
 static int_type not_eof(const int_type& ch);
 };

The template class describes various character traits for type E. The template class basic_string as well as
several iostreams template classes, including basic_ios, use this information to manipulate elements of type
E. Such an element type must not require explicit construction or destruction. A bitwise copy has the same effect
as an assignment.

char_traits::assign

static void assign(E& x, const E& y);
static E *assign(E *x, size_t n, const E& y);

The first static member function assigns y to x. The second static member function assigns y to each element

X[N] for N in the range [0, N).

char_traits::char_type

typedef E char_type;

The type is a synonym for the template parameter E.

char_traits::compare

static int compare(const E *x, const E *y, size_t n);

The static member function compares the sequence of length n beginning at xto the sequence of the same length
beginning at y. The function returns:

a negative value if the first differing element in x (as determined by eq) compares less than the
corresponding element in y (as determined by lt)

●

zero if the two compare equal element by element●

a positive value otherwise●

char_traits::copy

static E *copy(E *x, const E *y, size_t n);

The static member function copies the sequence of n elements beginning at y to the array beginning at x, then
returns x. The source and destination must not overlap.

char_traits::eof

static int_type eof();

The static member function returns a value that represents end-of-file (such as EOF or WEOF). If the value is also
representable as type E, it must correspond to no valid value of that type.

char_traits::eq

static bool eq(const E& x, const E& y);

The static member function returns true if x compares equal to y.

char_traits::eq_int_type

static bool eq_int_type(const int_type& ch1, const int_type& ch2);

The static member function returns true if ch1 == ch2.

char_traits::find

static const E *find(const E *x, size_t n, const E& y);

The static member function determines the lowest N in the range [0, n) for which eq(x[N], y) is true. If
successful, it returns x + N. Otherwise, it returns a null pointer.

char_traits::int_type

typedef T1 int_type;

The type is (typically) an integer type T1 that describes an object that can represent any element of the controlled
sequence as well as the value returned by eof(). It must be possible to type cast a value of type E to
int_type then back to E without altering the original value. In addition, the expression int_type('\0')
must yield the code that terminates a null-terminated strings for elements of type E. Also, the expression
int_type('\n') must yield a suitable newline character of type E.

char_traits::length

static size_t length(const E *x);

The static member function returns the number of elements N in the sequence beginning at x up to but not
including the element x[N] which compares equal to E(0).

char_traits::lt

static bool lt(const E& x, const E& y);

The static member function returns true if x compares less than y.

char_traits::move

static E *move(E *x, const E *y, size_t n);

The static member function copies the sequence of n elements beginning at y to the array beginning at x, then
returns x. The source and destination may overlap.

char_traits::not_eof

static int_type not_eof(const int_type& ch);

If !eq_int_type(eof(), ch), the static member function returns ch. Otherwise, it returns a value other
than eof().

char_traits::off_type

typedef T3 off_type;

The type is a signed integer type T3 that describes an object that can store a byte offset involved in various
stream positioning operations. It is typically a synonym for streamoff, but in any case it has essentially the
same properties as that type.

char_traits::pos_type

typedef T2 pos_type;

The type is an opaque type T2 that describes an object that can store all the information needed to restore an

arbitrary file-position indicator within a stream. It is typically a synonym for streampos, but in any case it has
essentially the same properties as that type.

char_traits::state_type

typedef T4 state_type;

The type is an opaque type T4 that describes an object that can represent a conversion state. It is typically a
synonym for mbstate_t, but in any case it has essentially the same properties as that type.

char_traits::to_char_type

static E to_char_type(const int_type& ch);

The static member function returns ch, represented as type E. A value of ch that cannot be so represented yields
an unspecified result.

char_traits::to_int_type

static int_type to_int_type(const E& c);

The static member function returns ch, represented as type int_type. It should always be true that
to_char_type(to_int_type(c) == c for any value of c.

char_traits<char>

class char_traits<char>;

The class is an explicit specialization of template class char_traits for elements of type char, (so that it can
take advantage of library functions that manipulate objects of this type).

char_traits<wchar_t>

class char_traits<wchar_t>;

The class is an explicit specialization of template class char_traits for elements of type wchar_t (so that it
can take advantage of library functions that manipulate objects of this type).

In this implementation, if wchar_t is not a unique type, then char_type is defined as an encapsulated
wchar_t, so that operator>>: and operator<<: can be overloaded on char_type&.

getline

template<class E, class T, class A>
 basic_istream<E, T>& getline(
 basic_istream <E, T>& is,
 basic_string<E, T, A>& str);
template<class E, class T, class A>
 basic_istream<E, T>& getline(

 basic_istream <E, T>& is,
 basic_string<E, T, A>& str,
 E delim);

The first template function returns getline(is, str, is.widen('\n')).

The second template function replaces the sequence controlled by str with a sequence of elements extracted
from the stream is. In order of testing, extraction stops:

at end of file1.

after the function extracts an element that compares equal to delim, in which case the element is neither
put back nor appended to the controlled sequence

2.

after the function extracts is.max_size() elements, in which case the function calls
setstate(ios_base::failbit).

3.

If the function extracts no elements, it calls setstate(failbit). In any case, it returns *this.

operator+

template<class E, class T, class A>
 basic_string<E, T, A> operator+(
 const basic_string<E, T, A>& lhs,
 const basic_string<E, T, A>& rhs);
template<class E, class T, class A>
 basic_string<E, T, A> operator+(
 const basic_string<E, T, A>& lhs,
 const E *rhs);
template<class E, class T, class A>
 basic_string<E, T, A> operator+(
 const basic_string<E, T, A>& lhs,
 E rhs);
template<class E, class T, class A>
 basic_string<E, T, A> operator+(
 const E *lhs,
 const basic_string<E, T, A>& rhs);
template<class E, class T, class A>
 basic_string<E, T, A> operator+(
 E lhs,
 const basic_string<E, T, A>& rhs);

The template functions each overloads operator+ to concatenate two objects of template class
basic_string. All effectively return basic_string<E, T, A>(lhs).append(rhs).

operator!=

template<class E, class T, class A>
 bool operator!=(
 const basic_string<E, T, A>& lhs,
 const basic_string<E, T, A>& rhs);

template<class E, class T, class A>
 bool operator!=(
 const basic_string<E, T, A>& lhs,
 const E *rhs);
template<class E, class T, class A>
 bool operator!=(
 const E *lhs,
 const basic_string<E, T, A>& rhs);

The template functions each overloads operator!= to compare two objects of template class
basic_string. All effectively return basic_string<E, T, A>(lhs).compare(rhs) != 0.

operator==

template<class E, class T, class A>
 bool operator==(
 const basic_string<E, T, A>& lhs,
 const basic_string<E, T, A>& rhs);
template<class E, class T, class A>
 bool operator==(
 const basic_string<E, T, A>& lhs,
 const E *rhs);
template<class E, class T, class A>
 bool operator==(
 const E *lhs,
 const basic_string<E, T, A>& rhs);

The template functions each overloads operator== to compare two objects of template class
basic_string. All effectively return basic_string<E, T, A>(lhs).compare(rhs) == 0.

operator<

template<class E, class T, class A>
 bool operator<(
 const basic_string<E, T, A>& lhs,
 const basic_string<E, T, A>& rhs);
template<class E, class T, class A>
 bool operator<(
 const basic_string<E, T, A>& lhs,
 const E *rhs);
template<class E, class T, class A>
 bool operator<(
 const E *lhs,
 const basic_string<E, T, A>& rhs);

The template functions each overloads operator< to compare two objects of template class basic_string.
All effectively return basic_string<E, T, A>(lhs).compare(rhs) < 0.

operator<<

template<class E, class T, class A>
 basic_ostream<E, T>& operator<<(
 basic_ostream <E, T>& os,
 const basic_string<E, T, A>& str);

The template function overloads operator<< to insert an object str of template class basic_string into
the stream os The function effectively returns os.write(str.c_str(), str.size()).

operator<=

template<class E, class T, class A>
 bool operator<=(
 const basic_string<E, T, A>& lhs,
 const basic_string<E, T, A>& rhs);
template<class E, class T, class A>
 bool operator<=(
 const basic_string<E, T, A>& lhs,
 const E *rhs);
template<class E, class T, class A>
 bool operator<=(
 const E *lhs,
 const basic_string<E, T, A>& rhs);

The template functions each overloads operator<= to compare two objects of template class
basic_string. All effectively return basic_string<E, T, A>(lhs).compare(rhs) <= 0.

operator>

template<class E, class T, class A>
 bool operator>(
 const basic_string<E, T, A>& lhs,
 const basic_string<E, T, A>& rhs);
template<class E, class T, class A>
 bool operator>(
 const basic_string<E, T, A>& lhs,
 const E *rhs);
template<class E, class T, class A>
 bool operator>(
 const E *lhs,
 const basic_string<E, T, A>& rhs);

The template functions each overloads operator> to compare two objects of template class basic_string.
All effectively return basic_string<E, T, A>(lhs).compare(rhs) > 0.

operator>=

template<class E, class T, class A>
 bool operator>=(
 const basic_string<E, T, A>& lhs,
 const basic_string<E, T, A>& rhs);
template<class E, class T, class A>
 bool operator>=(
 const basic_string<E, T, A>& lhs,
 const E *rhs);
template<class E, class T, class A>
 bool operator>=(
 const E *lhs,
 const basic_string<E, T, A>& rhs);

The template functions each overloads operator>= to compare two objects of template class
basic_string. All effectively return basic_string<E, T, A>(lhs).compare(rhs) >= 0.

operator>>

template<class E, class T, class A>
 basic_istream<E, T>& operator>>(
 basic_istream <E, T>& is,
 const basic_string<E, T, A>& str);

The template function overloads operator>> to replace the sequence controlled by str with a sequence of
elements extracted from the stream is. Extraction stops:

at end of file●

after the function extracts is.width() elements, if that value is nonzero●

after the function extracts is.max_size() elements●

after the function extracts an element c for which use_facet< ctype<E> >(getloc()). is(
ctype<E>::space, c) is true, in which case the character is put back

●

If the function extracts no elements, it calls setstate(ios_base::failbit). In any case, it calls
width(0) and returns *this.

string

typedef basic_string<char> string;

The type describes a specialization of template class basic_string specialized for elements of type char.

swap

template<class T, class A>
 void swap(

 const basic_string<E, T, A>& lhs,
 const basic_string<E, T, A>& rhs);

The template function executes swap(lhs, rhs).

wstring

typedef basic_string<wchar_t> wstring;

The type describes a specialization of template class basic_string for elements of type wchar_t.

See also the Table of Contents and the Index.

Copyright © 1992-1996 by P.J. Plauger. All rights reserved.

<strstream>

namespace std {
 class strstreambuf;
 class istrstream;
 class ostrstream;
 class strstream;
 };

Include the iostreams standard header <strstream> to define several classes that support iostreams
operations on sequences stored in an allocated array of char object. Such sequences are easily converted
to and from C strings.

strstreambuf

class strstreambuf : public streambuf {
public:
 typedef E char_type;
 typedef T::int_type int_type;
 typedef T::pos_type pos_type;
 typedef T::off_type off_type;
 explicit strstreambuf(streamsize n = 0);
 strstreambuf(void (*palloc)(size_t),
 void (*pfree)(void *));
 strstreambuf(char *gp, streamsize n,
 char *pp = 0);
 strstreambuf(signed char *gp, streamsize n,
 signed char *pp = 0);
 strstreambuf(unsigned char *gp, streamsize n,
 unsigned char *pp = 0);
 strstreambuf(const char *gp, streamsize n);
 strstreambuf(const signed char *gp, streamsize n);
 strstreambuf(const unsigned char *gp, streamsize n);
 void freeze(bool frz = true) const;
 char *str();
 streamsize pcount();
protected:

http://www.dinkumware.com/

 virtual streampos seekoff(streamoff off, ios_base::seekdir way,
 ios_base::openmode which = ios_base::in | ios_base::out);
 virtual streampos seekpos(streampos sp,
 ios_base::openmode which = ios_base::in | ios_base::out);
 virtual int underflow();
 virtual int pbackfail(int c = EOF);
 virtual int overflow(int c = EOF);
 };

The class describes a stream buffer that controls the transmission of elements to and from a sequence of
elements stored in a char array object. Depending on how it is constructed, the object can be allocated,
extended, and freed as necessary to accommodate changes in the sequence.

An object of class strstreambuf stores several bits of mode information as its strstreambuf mode.
These bits indicate whether the controlled sequence:

has been allocated, and hence needs to be freed eventually●

is modifiable●

is extendable by reallocating storage●

has been frozen and hence needs to be unfrozen before the object is destroyed, or freed (if
allocated) by an agency other than the object

●

A controlled sequence that is frozen cannot be modified or extended, regardless of the state of these
separate mode bits.

The object also stores pointers to two functions that control strstreambuf allocation. If these are null
pointers, the object devises its own method of allocating and freeing storage for the controlled sequence.

basic_strstreambuf::char_type

typedef E char_type;

The type is a synonym for the template parameter E.

strstreambuf::freeze

void freeze(bool frz = true) const;

If frz is true, the function alters the stored strstreambuf mode to make the controlled sequence frozen.
Otherwise, it makes the controlled sequence not frozen.

basic_strstreambuf::int_type

typedef T::int_type int_type;

The type is a synonym for T::int_type.

basic_strstreambuf::off_type

typedef T::off_type off_type;

The type is a synonym for T::off_type.

strstreambuf::pcount

streamsize pcount();

The member function returns a count of the number of elements written to the controlled sequence.
Specifically, if pptr() is a null pointer, the function returns zero. Otherwise, it returns pptr() -
pbase().

basic_strstreambuf::pos_type

typedef T::pos_type pos_type;

The type is a synonym for T::pos_type.

strstreambuf::strstreambuf

explicit strstreambuf(streamsize n = 0);
strstreambuf(void (*palloc)(size_t),
 void (*pfree)(void *));
strstreambuf(char *gp, streamsize n,
 char *pp = 0);
strstreambuf(signed char *gp, streamsize n,
 signed char *pp = 0);
strstreambuf(unsigned char *gp, streamsize n,
 unsigned char *pp = 0);
strstreambuf(const char *gp, streamsize n);
strstreambuf(const signed char *gp, streamsize n);
strstreambuf(const unsigned char *gp, streamsize n);

The first constructor stores a null pointer in all the pointers controlling the input buffer, the output buffer,
and strstreambuf allocation. It sets the stored strstreambuf mode to make the controlled sequence
modifiable and extendable.

The second constructor behaves much as the first, except that it stores palloc as the pointer to the
function to call to allocate storage, and pfree as the pointer to the function to call to free that storage.

The three constructors:

strstreambuf(char *gp, streamsize n,
 char *pp = 0);
strstreambuf(signed char *gp, streamsize n,
 signed char *pp = 0);

strstreambuf(unsigned char *gp, streamsize n,
 unsigned char *pp = 0);

also behave much as the first, except that gp designates the array object used to hold the controlled
sequence. (Hence, it must not be a null pointer.) The number of elements N in the array is determined as
follows:

If (n > 0), then N is n.●

If (n == 0), then N is strlen((const char *)gp).●

If (n < 0), then N is INT_MAX.●

If pp is a null pointer, the function establishes just an input buffer, by executing:

setg(gp, gp, gp + N);

Otherwise, it establishes both input and output buffers, by executing:

setg(gp, gp, pp);
setp(pp, gp + N);

In this case, pp must be in the interval [gp, gp + N].

Finally, the three constructors:

strstreambuf(const char *gp, streamsize n);
strstreambuf(const signed char *gp, streamsize n);
strstreambuf(const unsigned char *gp, streamsize n);

all behave the same as:

streambuf((char *)gp, n);

except that the stored mode makes the controlled sequence neither modifiable not extendable.

strstreambuf::overflow

virtual int overflow(int c = EOF);

If c != EOF, the protected virtual member function endeavors to insert the element (char)c into the
output buffer. It can do so in various ways:

If a write position is available, it can store the element into the write position and increment the
next pointer for the output buffer.

●

If the stored strstreambuf mode says the controlled sequence is modifiable, extendable, and not
frozen, the function can make a write position available by allocating new for the output buffer.
(Extending the output buffer this way also extends any associated input buffer.)

●

If the function cannot succeed, it returns EOF. Otherwise, if c == EOF it returns some value other than
EOF. Otherwise, it returns c.

strstreambuf::pbackfail

virtual int pbackfail(int c = EOF);

The protected virtual member function endeavors to put back an element into the input buffer, then make
it the current element (pointed to by the next pointer).

If c == EOF, the element to push back is effectively the one already in the stream before the current
element. Otherwise, that element is replaced by x = (char)c. The function can put back an element
in various ways:

If a putback position is available, and the element stored there compares equal to x, it can simply
decrement the next pointer for the input buffer.

●

If a putback position is available, and if the strstreambuf mode says the controlled sequence is
modifiable, the function can store x into the putback position and decrement the next pointer for
the input buffer.

●

If the function cannot succeed, it returns EOF. Otherwise, if c == EOF it returns some value other than
EOF. Otherwise, it returns c.

strstreambuf::seekoff

virtual streampos seekoff(streamoff off, ios_base::seekdir way,
 ios_base::openmode which = ios_base::in | ios_base::out);

The protected virtual member function endeavors to alter the current positions for the controlled streams.
For an object of class strstreambuf, a stream position consists purely of a stream offset. Offset zero
designates the first element of the controlled sequence.

The new position is determined as follows:

If way == ios_base::beg, the new position is the beginning of the stream plus off.●

If way == ios_base::cur, the new position is the current stream position plus off.●

If way == ios_base::end, the new position is the end of the stream plus off.●

If which & ios_base::in is nonzero and the input buffer exist, the function alters the next position
to read in the input buffer. If which & ios_base::out is also nonzero, way !=
ios_base::cur, and the output buffer exists, the function also sets the next position to write to match
the next position to read.

Otherwise, if which & ios_base::out is nonzero and the output buffer exists, the function alters
the next position to write in the output buffer. Otherwise, the positioning operation fails. For a
positioning operation to succeed, the resulting stream position must lie within the controlled sequence.

If the function succeeds in altering the stream position(s), it returns the resultant stream position.

Otherwise, it fails and returns an invalid stream position.

strstreambuf::seekpos

virtual streampos seekpos(streampos sp,
 ios_base::openmode which = ios_base::in | ios_base::out);

The protected virtual member function endeavors to alter the current positions for the controlled streams.
For an object of class strstreambuf, a stream position consists purely of a stream offset. Offset zero
designates the first element of the controlled sequence. The new position is determined by sp.

If which & ios_base::in is nonzero and the input buffer exists, the function alters the next
position to read in the input buffer. (If which & ios_base::out is nonzero and the output buffer
exists, the function also sets the next position to write to match the next position to read.) Otherwise, if
which & ios_base::out is nonzero and the output buffer exists, the function alters the next
position to write in the output buffer. Otherwise, the positioning operation fails. For a positioning
operation to succeed, the resulting stream position must lie within the controlled sequence.

If the function succeeds in altering the stream position(s), it returns the resultant stream position.
Otherwise, it fails and returns an invalid stream position.

strstreambuf::str

char *str();

The member function calls freeze(), then returns a pointer to the beginning of the controlled
sequence. (Note that no terminating null element exists, unless you insert one explicitly.)

strstreambuf::underflow

virtual int underflow();

The protected virtual member function endeavors to extract the current element c from the input buffer,
then advance the current stream position, and return the element as (int)(unsigned char)c. It
can do so in only one way: If a read position is available, it takes c as the element stored in the read
position and advances the next pointer for the input buffer.

If the function cannot succeed, it returns EOF. Otherwise, it returns the current element in the input
stream, converted as described above.

istrstream

class istrstream : public istream {
public:
 typedef E char_type;
 typedef T::int_type int_type;

 typedef T::pos_type pos_type;
 typedef T::off_type off_type;
 explicit istrstream(const char *s);
 explicit istrstream(char *s);
 istrstream(const char *s, streamsize n);
 istrstream(char *s, streamsize n);
 strstreambuf *rdbuf() const;
 char *str();
 };

The class describes an object that controls extraction of elements and encoded objects from a stream
buffer of class strstreambuf. The object stores an ojbect of class strstreambuf.

basic_istrstream::char_type

typedef E char_type;

The type is a synonym for the template parameter E.

basic_istrstream::int_type

typedef T::int_type int_type;

The type is a synonym for T::int_type.

istrstream::istrstream

explicit istrstream(const char *s);
explicit istrstream(char *s);
istrstream(const char *s, streamsize n);
istrstream(char *s, streamsize n);

All the constructors initialize the base class by calling istream(sb), where sb is the stored object of
class strstreambuf. The first two constructors also initialize sb by calling
strstreambuf((const char *)s, 0). The remaining two constructors instead call
strstreambuf((const char *)s, n).

basic_istrstream::off_type

typedef T::off_type off_type;

The type is a synonym for T::off_type.

basic_istrstream::pos_type

typedef T::pos_type pos_type;

The type is a synonym for T::pos_type.

istrstream::rdbuf

strstreambuf *rdbuf() const

The member function returns the address of the stored stream buffer, of type pointer to
strstreambuf.

istrstream::str

char *str();

The member function returns rdbuf()-> str().

ostrstream

class ostrstream : public ostream {
public:
 typedef E char_type;
 typedef T::int_type int_type;
 typedef T::pos_type pos_type;
 typedef T::off_type off_type;
 ostrstream();
 ostrstream(char *s, streamsize n,
 ios_base::openmode mode = ios_base::out);
 strstreambuf *rdbuf() const;
 void freeze(bool frz = true);
 char *str();
 streamsize pcount() const;
 };

The class describes an object that controls insertion of elements and encoded objects into a stream buffer
of class strstreambuf. The object stores an ojbect of class strstreambuf.

basic_ostrstream::char_type

typedef E char_type;

The type is a synonym for the template parameter E.

ostrstream::freeze

void freeze(bool frz = true)

The member function calls rdbuf()-> freeze(frz).

basic_ostrstream::int_type

typedef T::int_type int_type;

The type is a synonym for T::int_type.

basic_ostrstream::off_type

typedef T::off_type off_type;

The type is a synonym for T::off_type.

ostrstream::ostrstream

ostrstream();
ostrstream(char *s, streamsize n,
 ios_base::openmode mode = ios_base::out);

Both constructors initialize the base class by calling ostream(sb), where sb is the stored object of
class strstreambuf. The first constructor also initializes sb by calling strstreambuf(). The
second constructor initializes the base class one of two ways:

If mode & ios_base::app == 0, then s must designate the first element of an array of n
elements, and the constructor calls strstreambuf(s, n, s).

●

Otherwise, s must designate the first element of an array of n elements that contains a C string
whose first element is designated by s, and the constructor calls strstreambuf(s, n, s +
strlen(s).

●

ostrstream::pcount

streamsize pcount() const;

The member function returns rdbuf()-> pcount().

basic_ostrstream::pos_type

typedef T::pos_type pos_type;

The type is a synonym for T::pos_type.

ostrstream::rdbuf

strstreambuf *rdbuf() const

The member function returns the address of the stored stream buffer, of type pointer to
strstreambuf.

ostrstream::str

char *str();

The member function returns rdbuf()-> str().

strstream

class strstream : public iostream {
public:
 strstream();
 strstream(char *s, streamsize n,
 ios_base::openmode mode = ios_base::in | ios_base::out);
 strstreambuf *rdbuf() const;
 void freeze(bool frz = true);
 char *str();
 streamsize pcount() const;
 };

The class describes an object that controls insertion and extraction of elements and encoded objects using
a stream buffer of class strstreambuf. The object stores an ojbect of class strstreambuf.

strstream::freeze

void freeze(bool frz = true)

The member function calls rdbuf()-> freeze(zfrz).

strstream::pcount

streamsize pcount() const;

The member function returns rdbuf()-> pcount().

strstream::strstream

strstream();
strstream(char *s, streamsize n,
 ios_base::openmode mode = ios_base::in | ios_base::out);

Both constructors initialize the base class by calling streambuf(sb), where sb is the stored object of
class strstreambuf. The first constructor also initializes sb by calling strstreambuf(). The
second constructor initializes the base class one of two ways:

If mode & ios_base::app == 0, then s must designate the first element of an array of n
elements, and the constructor calls strstreambuf(s, n, s).

●

Otherwise, s must designate the first element of an array of n elements that contains a C string
whose first element is designated by s, and the constructor calls strstreambuf(s, n, s +
strlen(s).

●

strstream::rdbuf

strstreambuf *rdbuf() const

The member function returns the address of the stored stream buffer, of type pointer to
strstreambuf.

strstream::str

char *str();

The member function returns rdbuf()-> str().

See also the Table of Contents and the Index.

Copyright © 1992-1996 by P.J. Plauger. All rights reserved.

<typeinfo>

namespace std {
 class type_info;
 class bad_cast;
 class bad_typeid;
 };

Include the standard header <typeinfo> to define several types associated with the type-identification
operator typeid, which yields information about both static and dynamic types.

bad_cast

class bad_cast : public exception {
 };

The class describes an exception thrown to indicate that a dynamic cast expression, of the form:

dynamic_cast<type>(expression)

generated a null pointer to initialize a reference. The value returned by what() is
implementation-defined. None of the member functions throw any exceptions.

bad_typeid

class bad_typeid : public exception {
 };

The class describes an exception thrown to indicate that a typeid operator encountered a null pointer.
The value returned by what() is implementation-defined. None of the member functions throw any
exceptions.

type_info

class type_info {
public:
 virtual ~type_info();
 bool operator==(const type_info& rhs) const;
 bool operator!=(const type_info& rhs) const;

http://www.dinkumware.com/

 bool before(const type_info& rhs) const;
 const char *name() const;
private:
 type_info(const type_info& rhs);
 type_info& operator=(const type_info& rhs);
 };

The class describes type information generated within the program by the implementation. Objects of
this class effectively store a pointer to a name for the type, and an encoded value suitable for comparing
two types for equality or collating order. The names, encoded values, and collating order for types are
all unspecified and may differ between program executions.

An expression of the form typeid x is the only way to construct a (temporary) typeinfo object.
The class has only a private copy constructor. Since the assignment operator is also private, you cannot
copy or assign objects of class typeinfo either.

type_info::operator!=

bool operator!=(const type_info& rhs) const;

The function returns !(*this == rhs).

type_info::operator==

bool operator==(const type_info& rhs) const;

The function returns a nonzero value if *this and rhs represent the same type.

type_info::before

bool before(const type_info& rhs) const;

The function returns a nonzero value if *this precedes rhs in the collating order for types.

type_info::name

const char *name() const;

The function returns a C string which specifies the name of the type.

See also the Table of Contents and the Index.

Copyright © 1992-1996 by P.J. Plauger. All rights reserved.

<utility>

namespace std {
// TEMPLATE CLASSES
template<class T, class U>
 struct pair;
// TEMPLATE FUNCTIONS
template<class T, class U>
 pair<T, U> make_pair(const T& x, const U& y);
template<class T, class U>
 bool operator==(const pair<T, U>& x, const pair<T, U>& y);
template<class T, class U>
 bool operator!=(const pair<T, U>& x, const pair<T, U>& y);
template<class T, class U>
 bool operator<(const pair<T, U>& x, const pair<T, U>& y);
template<class T, class U>
 bool operator>(const pair<T, U>& x, const pair<T, U>& y);
template<class T, class U>
 bool operator<=(const pair<T, U>& x, const pair<T, U>& y);
template<class T, class U>
 bool operator>=(const pair<T, U>& x, const pair<T, U>& y);
namespace rel_ops {
 template<class T>
 bool operator!=(const T& x, const T& y);
 template<class T>
 bool operator<=(const T& x, const T& y);
 template<class T>
 bool operator>(const T& x, const T& y);
 template<class T>
 bool operator>=(const T& x, const T& y);
 };
 };

Include the STL standard header <utility> to define several templates of general use throughout the
Standard Template Library.

If an implementation supports namespaces, four template operators are defined in the rel_ops
namespace, nested within the std namespace. They define a total ordering on pairs of operands of the
same type, given definitions of operator== and operator<. If you wish to make use of these

http://www.dinkumware.com/

template operators, write the declaration:

using namespace std::rel_ops;

which promotes the template operators into the current namespace.

make_pair

template<class T, class U>
 pair<T, U> make_pair(const T& x, const U& y);

The template function returns pair<T, U>(x, y).

operator!=

template<class T>
 bool operator!=(const T& x, const T& y);
template<class T, class U>
 bool operator!=(const pair<T, U>& x, const pair<T, U>& y);

The template function returns !(x == y).

operator==

template<class T, class U>
 bool operator==(const pair<T, U>& x, const pair<T, U>& y);

The template function returns x.first == y.first && x.second == y.second.

operator<

template<class T, class U>
 bool operator<(const pair<T, U>& x, const pair<T, U>& y);
template<class T, class U>
 bool operator<(const pair<T, U>& x, const pair<T, U>& y);

The template function returns x.first < y.first || !(y.first < x.first &&
x.second < y.second.

operator<=

template<class T>
 bool operator<=(const T& x, const T& y);
template<class T, class U>

 bool operator<=(const pair<T, U>& x, const pair<T, U>& y);

The template function returns !(y < x).

operator>

template<class T>
 bool operator>(const T& x, const T& y);
template<class T, class U>
 bool operator>(const pair<T, U>& x, const pair<T, U>& y);

The template function returns y < x.

operator>=

template<class T>
 bool operator>=(const T& x, const T& y);
template<class T, class U>
 bool operator>=(const pair<T, U>& x, const pair<T, U>& y);

The template function returns !(x < y).

pair

template<class T, class U>
 struct pair {
 typedef T first_type;
 typedef U second_type
 T first;
 U second;
 pair();
 pair(const T& x, const U& y);
 template<class V, class W>
 pair(const pair<V, W>& pr);
 };

The template class stores a pair of objects, first, of type T, and second, of type U. The type
definition first_type, is the same as the template parameter T, while second_type, is the same as
the template parameter U.

The first (default) constructor initializes first to T() and second to U(). The second constructor
initializes first to x and second to y. The third (template) constructor initializes first to
pr.first and second to pr.second. T and U each need supply only a single-argument constructor
and a destructor.

See also the Table of Contents and the Index.

Copyright © 1992-1996 by P.J. Plauger. Portions derived from work copyright © 1994 by
Hewlett-Packard Company. All rights reserved.

<valarray>

gslice · gslice_array · indirect_array · mask_array · slice ·
slice_array · valarray · valarray<bool>

abs · acos · asin · atan · atan2 · cos · cosh · exp · log · log10 ·
max · min · operator!= · operator% · operator& · operator&& ·
operator> · operator>> · operator>= · operator< · operator<< ·
operator<= · operator* · operator+ · operator- · operator/ ·
operator== · operator^ · operator| · operator|| · pow · sin · sinh ·
sqrt · tan · tanh

namespace std {
class slice;
class gslice;
template<class T>
 class valarray;
template<class T>
 class slice_array;
template<class T>
 class gslice_array;
template<class T>
 class mask_array;
template<class T>
 class indirect_array;
 // TEMPLATE FUNCTIONS
template<class T>
 valarray<T> operator*(const valarray<T>& lhs,
 const valarray<T>& rhs);
template<class T>
 valarray<T> operator*(const valarray<T> lhs,
 const T& rhs);
template<class T>
 valarray<T> operator*(const T& lhs, const valarray<T>& rhs);
template<class T>
 valarray<T> operator/(const valarray<T>& lhs,
 const valarray<T>& rhs);
template<class T>

http://www.dinkumware.com/

 valarray<T> operator/(const valarray<T> lhs, const T& rhs);
template<class T>
 valarray<T> operator/(const T& lhs, const valarray<T>& rhs);
template<class T>
 valarray<T> operator%(const valarray<T>& lhs,
 const vararray<T>& rhs);
template<class T>
 valarray<T> operator%(const valarray<T> lhs, const T& rhs);
template<class T>
 valarray<T> operator%(const T& lhs, const valarray<T>& rhs);
template<class T>
 valarray<T> operator+(const valarray<T>& lhs,
 const valarray<T>& rhs);
template<class T>
 valarray<T> operator+(const valarray<T> lhs, const T& rhs);
template<class T>
 valarray<T> operator+(const T& lhs, const valarray<T>& rhs);
template<class T>
 valarray<T> operator-(const valarray<T>& lhs,
 const valarray<T>& rhs);
template<class T>
 valarray<T> operator-(const valarray<T> lhs, const T& rhs);
template<class T>
 valarray<T> operator-(const T& lhs, const valarray<T>& rhs);
template<class T>
 valarray<T> operator^(const valarray<T>& lhs,
 const valarray<T>& rhs);
template<class T>
 valarray<T> operator^(const valarray<T> lhs, const T& rhs);
template<class T>
 valarray<T> operator^(const T& lhs, const valarray<T>& rhs);
template<class T>
 valarray<T> operator&(const valarray<T>& lhs,
 const valarray<T>& rhs);
template<class T>
 valarray<T> operator&(const valarray<T> lhs, const T& rhs);
template<class T>
 valarray<T> operator&(const T& lhs, const valarray<T>& rhs);
template<class T>
 valarray<T> operator|(const valarray<T>& lhs,
 const valarray<T>& rhs);
template<class T>
 valarray<T> operator|(const valarray<T> lhs, const T& rhs);

template<class T>
 valarray<T> operator|(const T& lhs, const valarray<T>& rhs);
template<class T>
 valarray<T> operator<<(const valarray<T>& lhs,
 const valarray<T>& rhs);
template<class T>
 valarray<T> operator<<(const valarray<T> lhs, const T& rhs);
template<class T>
 valarray<T> operator<<(const T& lhs, const valarray<T>& rhs);
template<class T>
 valarray<T> operator>>(const valarray<T>& lhs,
 const valarray<T>& rhs);
template<class T>
 valarray<T> operator>>(const valarray<T> lhs, const T& rhs);
template<class T>
 valarray<T> operator>>(const T& lhs, const valarray<T>& rhs);
template<class T>
 valarray<bool> operator&&(const valarray<T>& lhs,
 const valarray<T>& rhs);
template<class T>
 valarray<bool> operator&&(const valarray<T> lhs, const T& rhs);
template<class T>
 valarray<bool> operator&&(const T& lhs, const valarray<T>& rhs);
template<class T>
 valarray<biil> operator||(const valarray<T>& lhs,
 const valarray<T>& rhs);
template<class T>
 valarray<bool> operator||(const valarray<T> lhs, const T& rhs);
template<class T>
 valarray<bool> operator||(const T& lhs, const valarray<T>& rhs);
template<class T>
 valarray<bool> operator==(const valarray<T>& lhs,
 const valarray<T>& rhs);
template<class T>
 valarray<bool> operator==(const valarray<T> lhs, const T& rhs);
template<class T>
 valarray<bool> operator==(const T& lhs, const valarray<T>& rhs);
template<class T>
 valarray<bool> operator!=(const valarray<T>& lhs,
 const valarray<T>& rhs);
template<class T>
 valarray<bool> operator!=(const valarray<T> lhs, const T& rhs);
template<class T>

 valarray<bool> operator!=(const T& lhs, const valarray<T>& rhs);
template<class T>
 valarray<bool> operator<(const valarray<T>& lhs,
 const valarray<T>& rhs);
template<class T>
 valarray<bool> operator<(const valarray<T> lhs, const T& rhs);
template<class T>
 valarray<bool> operator<(const T& lhs, const valarray<T>& rhs);
template<class T>
 valarray<bool> operator>=(const valarray<T>& lhs,
 const valarray<T>& rhs);
template<class T>
 valarray<bool> operator>=(const valarray<T> lhs, const T& rhs);
template<class T>
 valarray<bool> operator>=(const T& lhs, const valarray<T>& rhs);
template<class T>
 valarray<bool> operator>(const valarray<T>& lhs,
 const valarray<T>& rhs);
template<class T>
 valarray<bool> operator>(const valarray<T> lhs, const T& rhs);
template<class T>
 valarray<bool> operator>(const T& lhs, const valarray<T>& rhs);
template<class T>
 valarray<bool> operator<=(const valarray<T>& lhs,
 const valarray<T>& rhs);
template<class T>
 valarray<bool> operator<=(const valarray<T> lhs, const T& rhs);
template<class T>
 valarray<bool> operator<=(const T& lhs, const valarray<T>& rhs);
template<class T>
 T max(const valarray<T>& x);
template<class T>
 T min(const valarray<T>& x);
template<class T>
 valarray<T> abs(const valarray<T>& x);
template<class T>
 valarray<T> acos(const valarray<T>& x);
template<class T>
 valarray<T> asin(const valarray<T>& x);
template<class T>
 valarray<T> atan(const valarray<T>& x);
template<class T>
 valarray<T> atan2(const valarray<T>& x,

 const valarray<T>& y);
template<class T>
 valarray<T> atan2(const valarray<T> x, const T& y);
template<class T>
 valarray<T> atan2(const T& x, const valarray<T>& y);
template<class T>
 valarray<T> cos(const valarray<T>& x);
template<class T>
 valarray<T> cosh(const valarray<T>& x);
template<class T>
 valarray<T> exp(const valarray<T>& x);
template<class T>
 valarray<T> log(const valarray<T>& x);
template<class T>
 valarray&tt;T> log10(const valarray<T>& x);
template<class T>
 valarray<T> pow(const valarray<T>& x,
 const valarray<T>& y);
template<class T>
 valarray<T> pow(const valarray<T> x, const T& y);
template<class T>
 valarray<T> pow(const T& x, const valarray<T>& y);
template<class T>
 valarray<T> sin(const valarray<T>& x);
template<class T>
 valarray<T> sinh(const valarray<T>& x);
template<class T>
 valarray<T> sqrt(const valarray<T>& x);
template<class T>
 valarray<T> tan(const valarray<T>& x);
template<class T>
 valarray<T> tanh(const valarray<T>& x);
 };

Include the standard header <valarray> to define the template class valarray and numerous
supporting template classes and functions. These template classes and functions are permitted unusual
latitude, in the interest of improved performance. Specifically, any function returning valarray<T>
may return an object of some other type T'. In that case, any function that accepts one or more
arguments of type valarray<T> must have overloads that accept arbitrary combinations of those
arguments, each replaced with an argument of type T'. (Put simply, the only way you can detect such a
substitution is to go looking for it.)

abs

template<class T>
 valarray<T> abs(const valarray<T>& x);

The template function returns an object of class valarray<T>, each of whose elements I is the
absolute value of x[I].

acos

template<class T>
 valarray<T> acos(const valarray<T>& x);

The template function returns an object of class valarray<T>, each of whose elements I is the
arccosine of x[I].

asin

template<class T>
 valarray<T> asin(const valarray<T>& x);

The template function returns an object of class valarray<T>, each of whose elements I is the arcsine
of x[I].

atan

template<class T>
 valarray<T> atan(const valarray<T>& x);

The template function returns an object of class valarray<T>, each of whose elements I is the
arctangent of x[I].

atan2

template<class T>
 valarray<T> atan2(const valarray<T>& x,
 const valarray<T>& y);
template<class T>
 valarray<T> atan2(const valarray<T> x, const T& y);
template<class T>
 valarray<T> atan2(const T& x, const valarray<T>& y);

The first template function returns an object of class valarray<T>, each of whose elements I is the
arctangent of x[I] / y[I]. The second template function stores in element I the arctangent of x[I]

/ y. The third template function stores in element I the arctangent of x / y[I].

cos

template<class T>
 valarray<T> cos(const valarray<T>& x);

The template function returns an object of class valarray<T>, each of whose elements I is the cosine
of x[I].

cosh

template<class T>
 valarray<T> cosh(const valarray<T>& x);

The template function returns an object of class valarray<T>, each of whose elements I is the
hyperbolic cosine of x[I].

exp

template<class T>
 valarray<T> exp(const valarray<T>& x);

The template function returns an object of class valarray<T>, each of whose elements I is the
exponential of x[I].

gslice

class gslice {
public:
 gslice();
 gslice(size_t st,
 const valarray<size_t> len, const valarray<size_t> str);
 size_t start() const;
 const valarray<size_t> size() const;
 const valarray<size_t> stride() const;
 };

The class stores the parameters that characterize a gslice_array when an object of class gslice
appears as a subscript for an object of class valarray<T>. The stored values include:

a starting index●

a length vector of class valarray<size_t>●

a stride vector of class valarray<size_t>●

The two vectors must have the same length.

gslice::gslice

gslice();
gslice(size_t st,
 const valarray<size_t> len, const valarray<size_t> str);

The default constructor stores zero for the starting index, and zero-length vectors for the length and stride
vectors. The second constructor stores st for the starting index, len for the length vector, and str for
the stride vector.

gslice::size

const valarray<size_t> size() const;

The member function returns the stored length vector.

gslice::start

size_t start() const;

The member function returns the stored starting index.

gslice::stride

const valarray<size_t> stride() const;

The member function returns the stored stride vector.

gslice_array

template<class T>
 class gslice_array {
public:
 typedef T value_type;
 void operator=(const valarray<T> x) const;
 void operator=(const T& x);
 void operator*=(const valarray<T> x) const;
 void operator/=(const valarray<T> x) const;
 void operator%=(const valarray<T> x) const;
 void operator+=(const valarray<T> x) const;
 void operator-=(const valarray<T> x) const;
 void operator^=(const valarray<T> x) const;
 void operator&=(const valarray<T> x) const;

 void operator|=(const valarray<T> x) const;
 void operator<<=(const valarray<T> x) const;
 void operator>>=(const valarray<T> x) const;
 void fill();
 };

The class describes an object that stores a reference to an object x of class valarray<T>, along with
an object gs of class gslice which describes the sequence of elements to select from the
valarray<T> object.

You construct a gslice_array<T> object only by writing an expression of the form x[gs]. The
member functions of class gslice_array then behave like the corresponding function signatures
defined for valarray<T>, except that only the sequence of selected elements is affected.

The sequence is determined as follows. For a length vector gs.size() of length N, construct the index
vector valarray<size_t> idx(0, N). This designates the initial element of the sequence, whose
index k within x is given by the mapping:

k = start;
for (size_t i = 0; i < gs.size()[i]; ++i)
 k += idx[i] * gs.stride()[i];

The successor to an index vector value is given by:

for (size_t i = N; 0 < i--;)
 if (++idx[i] < gs.size()[i])
 break;
 else
 idx[i] = 0;

For example:

const size_t lv[] = {2, 3};
const size_t dv[] = {7, 2};
const valarray<size_t> len(lv, 2), str(dv, 2);
// x[gslice(3, len, str)] selects elements with indices
// 3, 5, 7, 10, 12, 14

indirect_array

template<class T>
 class indirect_array {
public:
 typedef T value_type;
 void operator=(const valarray<T> x) const;

 void operator=(const T& x);
 void operator*=(const valarray<T> x) const;
 void operator/=(const valarray<T> x) const;
 void operator%=(const valarray<T> x) const;
 void operator+=(const valarray<T> x) const;
 void operator-=(const valarray<T> x) const;
 void operator^=(const valarray<T> x) const;
 void operator&=(const valarray<T> x) const;
 void operator|=(const valarray<T> x) const;
 void operator<<=(const valarray<T> x) const;
 void operator>>=(const valarray<T> x) const;
 void fill();
 };

The class describes an object that stores a reference to an object x of class valarray<T>, along with
an object xa of class valarray<size_t> which describes the sequence of elements to select from
the valarray<T> object.

You construct an indirect_array<T> object only by writing an expression of the form x[xa]. The
member functions of class indirect_array then behave like the corresponding function signatures
defined for valarray<T>, except that only the sequence of selected elements is affected.

The sequence consists of xa.size() elements, where element i becomes the index xa[i] within x.
For example:

const size_t vi[] = {7, 5, 2, 3, 8};
// x[valarray<size_t>(vi, 5)] selects elements with indices
// 7, 5, 2, 3, 8

log

template<class T>
 valarray<T> log(const valarray<T>& x);

The template function returns an object of class valarray<T>, each of whose elements I is the natural
logarithm of x[I].

log10

template<class T>
 valarray<T> log10(const valarray<T>& x);

The template function returns an object of class valarray<T>, each of whose elements I is the
base-10 logarithm of x[I].

mask_array

template<class T>
 class mask_array {
public:
 typedef T value_type;
 void operator=(const valarray<T> x) const;
 void operator=(const T& x);
 void operator*=(const valarray<T> x) const;
 void operator/=(const valarray<T> x) const;
 void operator%=(const valarray<T> x) const;
 void operator+=(const valarray<T> x) const;
 void operator-=(const valarray<T> x) const;
 void operator^=(const valarray<T> x) const;
 void operator&=(const valarray<T> x) const;
 void operator|=(const valarray<T> x) const;
 void operator<<=(const valarray<T> x) const;
 void operator>>=(const valarray<T> x) const;
 void fill();
 };

The class describes an object that stores a reference to an object x of class valarray<T>, along with
an object ba of class valarray<bool> which describes the sequence of elements to select from the
valarray<T> object.

You construct a mask_array<T> object only by writing an expression of the form x[xa]. The
member functions of class mask_array then behave like the corresponding function signatures defined
for valarray<T>, except that only the sequence of selected elements is affected.

The sequence consists of at most ba.size() elements. An element j is included only if ba[j] is
true. Thus, there are as many elements in the sequence as there are true elements in ba. If i is the index
of the lowest true element in ba, then x[i] is element zero in the selected sequence. For example:

const bool vb[] = {false, false, true, true, false, true};
// x[valarray<bool>(vb, 56] selects eleeents with indices
// 2, 3, 5

max

template<class T>
 T max(const valarray<T>& x);

The template function returns the value of the largest element of x, by applying operator< between
pairs of elements of class T.

min

template<class T>
 T min(const valarray<T>& x);

The template function returns the value of the smallest element of x, by applying operator< between
pairs of elements of class T.

operator!=

template<class T>
 valarray<bool> operator!=(const valarray<T>& x,
 const valarray<T>& y);
template<class T>
 valarray<bool> operator!=(const valarray<T> x, const T& y);
template<class T>
 valarray<bool> operator!=(const T& x, const valarray<T>& y);

The first template operator returns an object of class valarray<bool>, each of whose elements I is
x[I] != y[I]. The second template operator stores in element I x[I] != y. The third template
operator stores in element I x != y[I].

operator%

template<class T>
 valarray<T> operator%(const valarray<T>& lhs,
 const valarray<T>& rhs);
template<class T>
 valarray<T> operator%(const valarray<T> lhs, const T& rhs);
template<class T>
 valarray<T> operator%(const T& lhs, const valarray<T>& rhs);

The first template operator returns an object of class valarray<T>, each of whose elements I is x[I]
% y[I]. The second template operator stores in element I x[I] % y. The third template operator
stores in element I x % y[I].

operator&

template<class T>
 valarray<T> operator&(const valarray<T>& lhs,
 const valarray<T>& rhs);
template<class T>
 valarray<T> operator&(const valarray<T> lhs, const T& rhs);
template<class T>

 valarray<T> operator&(const T& lhs, const valarray<T>& rhs);

The first template operator returns an object of class valarray<T>, each of whose elements I is x[I]
& y[I]. The second template operator stores in element I x[I] & y. The third template operator
stores in element I x & y[I].

operator&&

template<class T>
 valarray<bool> operator&&(const valarray<T>& lhs,
 const valarray<T>& rhs);
template<class T>
 valarray<bool> operator&&(const valarray<T> lhs, const T& rhs);
template<class T>
 valarray<bool> operator&&(const T& lhs, const valarray<T>& rhs);

The first template operator returns an object of class valarray<bool>, each of whose elements I is
x[I] && y[I]. The second template operator stores in element I x[I] && y. The third template
operator stores in element I x && y[I].

operator>

template<class T>
 valarray<bool> operator>(const valarray<T>& x,
 const valarray<T>& y);
template<class T>
 valarray<bool> operator>(const valarray<T> x, const T& y);
template<class T>
 valarray<bool> operator>(const T& x, const valarray<T>& y);

The first template operator returns an object of class valarray<bool>, each of whose elements I is
x[I] > y[I]. The second template operator stores in element I x[I] > y. The third template
operator stores in element I x > y[I].

operator>>

template<class T>
 valarray<T> operator>>(const valarray<T>& lhs,
 const valarray<T>& rhs);
template<class T>
 valarray<T> operator>>(const valarray<T> lhs, const T& rhs);
template<class T>
 valarray<T> operator>>(const T& lhs, const valarray<T>& rhs);

The first template operator returns an object of class valarray<T>, each of whose elements I is x[I]

>> y[I]. The second template operator stores in element I x[I] >> y. The third template operator
stores in element I x >> y[I].

operator>=

template<class T>
 valarray<bool> operator>=(const valarray<T>& x,
 const valarray<T>& y);
template<class T>
 valarray<bool> operator>=(const valarray<T> x, const T& y);
template<class T>
 valarray<bool> operator>=(const T& x, const valarray<T>& y);

The first template operator returns an object of class valarray<bool>, each of whose elements I is
x[I] >= y[I]. The second template operator stores in element I x[I] >= y. The third template
operator stores in element I x >= y[I].

operator<

template<class T>
 valarray<bool> operator<(const valarray<T>& x,
 const valarray<T>& y);
template<class T>
 valarray<bool> operator<(const valarray<T> x, const T& y);
template<class T>
 valarray<bool> operator<(const T& x, const valarray<T>& y);

The first template operator returns an object of class valarray<bool>, each of whose elements I is
x[I] < y[I]. The second template operator stores in element I x[I] < y. The third template
operator stores in element I x < y[I].

operator<<

template<class T>
 valarray<T> operator<<(const valarray<T>& lhs,
 const valarray<T>& rhs);
template<class T>
 valarray<T> operator<<(const valarray<T> lhs, const T& rhs);
template<class T>
 valarray<T> operator<<(const T& lhs, const valarray<T>& rhs);

The first template operator returns an object of class valarray<T>, each of whose elements I is x[I]
<< y[I]. The second template operator stores in element I x[I] << y. The third template operator
stores in element I x << y[I].

operator<=

template<class T>
 valarray<bool> operator<=(const valarray<T>& x,
 const valarray<T>& y);
template<class T>
 valarray<bool> operator<=(const valarray<T> x, const T& y);
template<class T>
 valarray<bool> operator<=(const T& x, const valarray<T>& y);

The first template operator retrrns an object of class valarray<bool>, each of whose elements I is
x[I] <= y[I]. The second template operator stores in element I x[I] <= y. The third template
operator stores in element I x <= y[I].

operator*

template<class T>
 valarray<T> operator*(const valarray<T>& lhs,
 const valarray<T>& rhs);
template<class T>
 valarray<T> operator*(const valarray<T> lhs, const T& rhs);
template<class T>
 valarray<T> operator*(const T& lhs, const valarray<T>& rhs);

The first template operator returns an object of class valarray<T>, each of whose elements I is x[I]
* y[I]. The second template operator stores in element I x[I] * y. The third template operator
stores in element I x * y[I].

operator+

template<class T>
 valarray<T> operator+(const valarray<T>& lhs,
 const valarray<T>& rhs);
template<class T>
 valarray<T> operator+(const valarray<T> lhs, const T& rhs);
template<class T>
 valarray<T> operator+(const T& lhs, const valarray<T>& rhs);

The first template operator returns an object of class valarray<T>, each of whose elements I is x[I]
+ y[I]. The second template operator stores in element I x[I] + y. The third template operator
stores in element I x + y[I].

operator-

template<class T>
 valarray<T> operator-(const valarray<T>& lhs,
 const valarray<T>& rhs);
template<class T>
 valarray<T> operator-(const valarray<T> lhs, const T& rhs);
template<class T>
 valarray<T> operator-(const T& lhs, const valarray<T>& rhs);

The first template operator returns an object of class valarray<T>, each of whose elements I is x[I]
- y[I]. The second template operator stores in element I x[I] - y. The third template operator
stores in element I x - y[I].

operator/

template<class T>
 valarray<T> operator/(const valarray<T>& lhs,
 const valarray<T>& rhs);
template<class T>
 valarray<T> operator/(const valarray<T> lhs, const T& rhs);
template<class T>
 valarray<T> operator/(const T& lhs, const valarray<T>& rhs);

The first template operator returns an object of class valarray<T>, each of whose elements I is x[I]
/ y[I]. The second template operator stores in element I x[I] / y. The third template operator
stores in element I x / y[I].

operator==

template<class T>
 valarray<bool> operator==(const valarray<T>& x,
 const valarray<T>& y);
template<class T>
 valarray<bool> operator==(const valarray<T> x, const T& y);
template<class T>
 valarray<bool> operator==(const T& x const valarray<T>& y);

The first template operator returns an object of class valarray<bool>, each of whose elements I is
x[I] == y[I]. The second template operator stores in element I x[I] == y. The third template
operator stores in element I x == y[I].

operator^

template<class T>
 valarray<T> operator^(const valarray<T>& lhs,
 const valarray<T>& rhs);
template<class T>
 valarray<T> operator^(const valarray<T> lhs, const T& rhs);
template<class T>
 valarray<T> operator^(const T& lhs, const valarray<T>& rhs);

The first template operator returns an object of class valarray<T>, each of whose elements I is x[I]
^ y[I]. The second template operator stores in element I x[I] ^ y. The third template operator
stores in element I x ^ y[I].

operator|

template<class T>
 valarray<T> operator|(const valarray<T>& lhs,
 const valarray<T>& rhs);
template<class T>
 valarray<T> operator|(const valarray<T> lhs, const T& rhs);
template<class T>
 valarray<T> operator|(const T& lhs, const valarray<T>& rhs);

The first template operator returns an object of class valarray<T>, each of whose elements I is x[I]
| y[I]. The second template operator stores in element I x[I] | y. The third template operator
stores in element I x | y[I].

operator||

template<class T>
 valarray<bool> operator||(const valarray<T>& lhs,
 const valarray<T>& rhs);
template<class T>
 valarray<bool> operator||(const valarray<T> lhs, const T& rhs);
template<class T>
 valarray<bool> operator||(const T& lhs, const valarray<T>& rhs);

The first template operator returns an object of class valarray<bool>, each of whose elements I is
x[I] || y[I]. The second template operator stores in element I x[I] || y. The third template
operator stores in element I x || y[I].

pow

template<class T>
 valarray<T> pow(const valarray<T>& x,
 const valarray<T>& y);
template<class T>
 valarray<T> pow(const valarray<T> x, const T& y);
template<class T>
 valarray<T> pow(const T& x, const valarray<T>& y);

The first template function returns an object of class valarray<T>, each of whose elements I is x[I]
raised to the y[I] power. The second template function stores in element I x[I] raised to the y power.
The third template function stores in element I x raised to the y[I] power.

sin

template<class T>
 valarray<T> sin(const valarray<T>& x);

The template function returns an object of class valarray<T>, each of whose elements I is the sine of
x[I].

sinh

template<class T>
 valarray<T> sinh(const valarray<T>& x);

The template function returns an object of class valarray<T>, each of whose elements I is the
hyperbolic sine of x[I].

slice

class slice {
public:
 slice();
 slice(size_t st, size_t len, size_t str);
 size_t start() const;
 size_t size() const;
 size_t stride() const;
 };

The class stores the parameters that characterize a slice_array when an object of class slice
appears as a subscript for an object of class valarray<T>. The stored values include:

a starting index●

a total length●

a stride, or distance between subsequent indices●

slice::slice

slice();
slice(size_t st,
 const valarray<size_t> len, const valarray<size_t> str);

The default constructor stores zeros for the starting index, total length, and stride. The second constructor
stores st for the starting index, len for the total length, and str for the stride.

slice::size

size_t size() const;

The member function returns the stored total length.

slice::start

size_t start() const;

The member function returns the stored starting index.

slice::stride

size_t stride() const;

The member function returns the stored stride.

slice_array

template<class T>
 class slice_array {
public:
 typedef T value_type;
 void operator=(const valarray<T> x) const;
 void operator=(const T& x);
 void operator*=(const valarray<T> x) const;
 void operator/=(const valarray<T> x) const;
 void operator%=(const valarray<T> x) const;
 void operator+=(const valarray<T> x) const;
 void operator-=(const valarray<T> x) const;
 void operator^=(const valarray<T> x) const;
 void operator&=(const valarray<T> x) const;

 void operator|=(const valarray<T> x) const;
 void operator<<=(const valarray<T> x) const;
 void operator>>=(const valarray<T> x) const;
 void fill();
 };

The class describes an object that stores a reference to an object x of class valarray<T>, along with
an object sl of class slice which describes the sequence of elements to select from the
valarray<T> object.

You construct a slice_array<T> object only by writing an expression of the form x[sl]. The
member functions of class slice_array then behave like the corresponding function signatures
defined for valarray<T>, except that only the sequence of selected elements is affected.

The sequence consists of sl.size() elements, where element i becomes the index sl.start() +
i * sl.stride() within x. For example:

// x[slice(2, 5, 3)] selects elements with indices
// 2, 5, 8, 11, 14

sqrt

template<class T>
 valarray<T> sqrt(const valarray<T>& x);

The template function returns an object of class valarray<T>, each of whose elements I is the square
root of x[I].

tan

template<class T>
 valarray<T> tan(const valarray<T>& x);

The template function returns an object of class valarray<T>, each of whose elements I is the
tangent of x[I].

tanh

template<class T>
 valarray<T> tanh(const valarray<T>& x);

The template function returns an object of class valarray<T>, each of whose elements I is the
hyperbolic tangent of x[I].

valarray

apply · cshift · fill · free · max · min · operator T * · operator! ·
operator%= · operator&= · operator>>= · operator<<= · operator*= ·
operator+ · operator+= · operator- · operator-= · operator/= ·
operator= · operator[] · operator^= · operator|= · operator~ · resize
· shift · size · sum · valarray · value_type

template<class T>
 class valarray {
public:
 typedef T value_type;
 valarray();
 explicit valarray(size_t n);
 valarray(const T& val, size_t n));
 valarray(const T *p, size_t n);
 valarray(const slice_array<T>& sa);
 valarray(const gslice_array<T>& ga);
 valarray(const mask_array<T>& ma);
 valarray(const indirect_array<T>& ia);
 valarray<T>& operator=(const valarray<T>& va);
 valarray<T>& operator=(const T& x);
 valarray<T>& operator=(const slice_array<T>& sa);
 valarray<T>& operator=(const gslice_array<T>& ga);
 valarray<T>& operator=(const mask_array<T>& ma);
 valarray<T>& operator=(const indirect_array<T>& ia);
 T operator[](size_t n) const;
 T& operator[](size_t n);
 valarray<T> operator[](slice sa) const;
 slice_array<T> operator[](slice sa);
 valarray<T> operator[](const gslice& ga) const;
 gslice_array<T> operator[](const gslice& ga);
 valarray<T> operator[](const valarray<bool>& ba) const;
 mask_array<T> operator[](const valarray<bool>& ba);
 valarray<T> operator[](const valarray<size_t>& xa) const;
 indirect_array<T> operator[](const valarray<size_t>& xa);
 valarray<T> operator+();
 valarray<T> operator-();
 valarray<T> operator~();

 valarray<bool> operator!();
 valarray<T>& operator*=(const valarray<T>& x);
 valarray<T>& operator*=(const T& x);
 valarray<T>& operator/=(const valarray<T>& x);
 valarray<T>& operator/=(const T& x);
 valarray<T>& operator%=(const valarray<T>& x);
 valarray<T>& operator%=(const T& x);
 valarray<T>& operator+=(const valarray<T>& x);
 valarray<T>& operator+=(const T& x);
 valarray<T>& operator-=(const valarray<T>& x);
 valarray<T>& operator-=(const T& x);
 valarray<T>& operator^=(const valarray<T>& x);
 valarray<T>& operator^=(const T& x);
 valarray<T>& operator&=(const valarray<T>& x);
 valarray<T>& operator&=(const T& x);
 valarray<T>& operator|=(const valarray<T>& x);
 valarray<T>& operator|=(const T& x);
 valarray<T>& operator<<=(const valarray<T>& x);
 valarray<T>& operator<<=(const T& x);
 valarray<T>& operator>>=(const valarray<T>& x);
 valarray<T>& operator>>=(const T& x);
 operator T *();
 operator const T *() const;
 size_t size() const;
 T sum() const;
 T max() const;
 T min() const;
 valarray<T> shift(int n) const;
 valarray<T> cshift(int n) const;
 valarray<T> apply(T fn(T)) const;
 valarray<T> apply(T fn(const T&)) const;
 void fill(const T& val);
 void free();
 void resize(size_t n, const T& c = T());
 };

The template class describes an object that controls a varying-length sequence of elements of type T. The
sequence is stored as an array of T. It differs from template class vector in two important ways:

It defines numerous arithmetic operations between corresponding elements of valarray<T>
objects of the same type and length, such as x = cos(y) + sin(z).

●

It defines a variety of interesting ways to subscript a valarray<T> object, by overloading●

operator[].

valarray::apply

valarray<T> apply(T fn(T)) const;
valarray<T> apply(T fn(const T&)) const;

The member function returns an object of class valarray<T>, of length size(), each of whose
elements I is fn((*this)[I]).

valarray::cshift

valarray<T> cshift(int n) const;

The member function returns an object of class valarray<T>, of length size(), each of whose
elements I is (*this)[(I + n) % size()]. Thus, if element zero is taken as the leftmost
element, a positive value of n shifts the elements circularly left n places.

valarray::fill

void fill(const T& val);

The member function stores val in every element of *this.

valarray::free

void free();

The member function destroys all elements of *this, leaving an array of zero length.

valarray::size

size_t size() const;

The member function returns the number of elements in the array.

valarray::max

T max() const;

The member function returns the value of the largest element of *this, which must have nonzero
length. If the length is greater than one, it compares values by applying operator< between pairs of
corresponding elements of class T.

valarray::min

T min() const;

The member function returns the value of the smallest element of *this, which must have nonzero
length. If the length is greater than one, it compares values by applying operator< between pairs of
elements of class T.

valarray::operator T *

operator T *();
operator const T *() const;

Both member functions return a pointer to the first element of the controlled array, which must have at
least one element.

valarray::operator!

valarray<bool> operator!();

The member operator returns an object of class valarray<bool>, of length size(), each of whose
elements I is !(*this).

valarray::operator%=

valarray<T>& operator%=(const valarray<T>& x);
valarray<T>& operator%=(const T& x);

The member operator replaces each element I of *this with (*this)[I] % x[I]. It returns
*this.

valarray::operator&=

valarray<T>& operator&=(const valarray<T>& x);
valarray<T>& operator&=(const T& x);

The member operator replaces each element I of *this with (*this)[I] & x[I]. It returns
*this.

valarray::operator>>=

valarray<T>& operator>>=(const valarray<T>& x);
valarray<T>& operator>>=(const T& x);

The member operator replaces each element I of *this with (*this)[I] >> x[I]. It returns
*this.

valarray::operator<<=

valarray<T>& operator<<=(const valarray<T>& x);
valarray<T>& operator<<=(const T& x);

The member operator replaces each element I of *this with (*this)[I] << x[I]. It returns
*this.

valarray::operator*=

valarray<T>& operator*=(const valarray<T>& x);
valarray<T>& operator*=(const T& x);

The member operator replaces each element I of *this with (*this)[I] * x[I]. It returns
*this.

valarray::operator+

valarray<T> operator+();

The member operator returns an object of class valarray<T>, of length size(), each of whose
elements I is (*this)[I].

valarray::operator+=

valarray<T>& operator+=(const valarray<T>& x);
valarray<T>& operator+=(const T& x);

The member operator replaces each element I of *this with (*this)[I] + x[I]. It returns
*this.

valarray::operator-

valarray<T> operator-();

The member operator returns an object of class valarray<T>, of length size(), each of whose
elements I is -(*this)[I].

valarray::operator-=

valarray<T>& operator-=(const valarray<T>& x);
valarray<T>& operator-=(const T& x);

The member operator replaces each element I of *this with (*this)[I] - x[I]. It returns
*this.

valarray::operator/=

valarray<T>& operator/=(const valarray<T>& x);
valarray<T>& operator/=(const T& x);

The member operator replaces each element I of *this with (*this)[I] / x[I]. It returns
*this.

valarray::operator=

valarray<T>& operator=(const valarray<T>& va);
 valarray<T>& operator=(const T& x);
valarray<T>& operator=(const slice_array<T>& sa);
valarray<T>& operator=(const gslice_array<T>& ga);
valarray<T>& operator=(const mask_array<T>& ma);
valarray<T>& operator=(const indirect_array<T>& ia);

The first member operator replaces the controlled sequence with a copy of the sequence controlled by
va. The second member operator replaces each element of the controlled sequence with a copy of x. The
remaining member operators replace those elements of the controlled sequence selected by their
arguments, which are generated only by operator[]. If the value of a member in the replacement
controlled sequence depends on a member in the initial controlled sequence, the result is undefined.

If the length of the controlled sequence changes, the result is generally undefined. In this

in this implementation, however, the effect is merely to invalidate any pointers or references to elements
in the controlled sequence.

valarray::operator[]

T& operator[](size_t n);
slice_array<T> operator[](slice sa);
gslice_array<T> operator[](const gslice& ga);
mask_array<T> operator[](const valarray<bool>& ba);
indirect_array<T> operator[](const valarray<size_t>& xa);

T operator[](size_t n) const;
valarray<T> operator[](slice sa) const;
valarray<T> operator[](const gslice& ga) const;
valarray<T> operator[](const valarray<bool>& ba) const;
valarray<T> operator[](const valarray<size_t>& xa) const;

The member operator is overloaded to provide several ways to select sequences of elements from among
those controlled by *this. The first group of five member operators work in conjunction with various
overloads of operator= (and other assigning operators) to allow selective replacement (slicing) of the
controlled sequence. The selected elements must exist.

The first member operator selects element n. For example:

valarray<char> v0("abcdefghijklmnop", 16);
v0[3] = 'A';
// v0 == valarray<char>("abcAefghijklmnop", 16)

The second member operator selects those elements of the controlled sequence designated by sa. For
example:

valarray<char> v0("abcdefghijklmnop", 16);
valarray<char> v1("ABCDE", 5);
v0[slice(2, 5, 3)] = v1;
// v0 == valarray<char>("abAdeBghCjkDmnEp", 16)

The third member operator selects those elements of the controlled sequence designated by ga. For
example:

valarray<char> v0("abcdefghijklmnop", 16);
valarray<char> v1("ABCDEF", 6);
const size_t lv[] = {2, 3};
const size_t dv[] = {7, 2};
const valarray<size_t> len(lv, 2), str(dv, 2);
v0[gslice(3, len, str)] = v1;
// v0 == valarray<char>("abcAeBgCijDlEnFp", 16)

The fourth member operator selects those elements of the controlled sequence designated by ma. For
example:

valarray<char> v0("abcdefghijklmnop", 16);
valarray<char> v1("ABC", 3);
const bool vb[] = {false, false, true, true, false, true};
v0[valarray<bool>(vb, 6)] = v1;
// v0 == valarray<char>("abABeCghijklmnop", 16)

The fifth member operator selects those elements of the controlled sequence designated by ia. For
example:

valarray<char> v0("abcdefghijklmnop", 16);
valarray<char> v1("ABCDE", 5);
const size_t vi[] = {7, 5, 2, 3, 8};
v0[valarray<size_t>(vi, 5)] = v1;
// v0 == valarray<char>("abCDeBgAEjklmnop", 16)

The second group of five member operators each construct an object that represents the value(s) selected.
The selected elements must exist.

The sixth member operator returns the value of element n. For example:

valarray<char> v0("abcdefghijklmnop", 16);
// v0[3] returns 'd'

The seventh member operator returns an object of class valarray<T> containing those elements of the
controlled sequence designated by sa. For example:

valarray<char> v0("abcdefghijklmnop", 16);
// v0[slice(2, 5, 3)] returns valarray<char>("cfilo", 5)

The eighth member operator selects those elements of the controlled sequence designated by ga. For
example:

valarray<char> v0("abcdefghijklmnop", 16);
const size_t lv[] = {2, 3};
const size_t dv[] = {7, 2};
const valarray<size_t> len(lv, 2), str(dv, 2);
// v0[gslice(3, len, str)] returns valarray<char>("dfhkmo", 6)

The ninth member operator selects those elements of the controlled sequence designated by ma. For
example:

valarray<char> v0("abcdefghijklmnop", 16);
const bool vb[] = {false, false, true, true, false, true};
// v0[valarray<bool>(vb, 6)] returns valarray<char>("cdf", 3)

The last member operator selects those elements of the controlled sequence designated by ia. For
example:

valarray<char> v0("abcdefghijklmnop", 16);
const size_t vi[] = {7, 5, 2, 3, 8};
// v0[valarray<size_t>(vi, 5)] returns valarray<char>("hfcdi", 3)

valarray::operator^=

valarray<T>& operator^=(const valarray<T>& x);
valarray<T>& operator^=(const T& x);

The member operator replaces each element I of *this with (*this)[I] ^ x[I]. It returns
*this.

valarray::operator|=

valarray<T>& operator|=(const valarray<T>& x);
valarray<T>& operator|=(const T& x);

The member operator replaces each element I of *this with (*this)[I] | x[I]. It returns
*this.

valarray::operator~

valarray<T> operator~();

The member operator returns an object of class valarray<T>, of length size(), each of whose
elements I is ~(*this)[I].

valarray::resize

void resize(size_t n, const T& c = T());

The member function ensures that size() henceforth returns n. If it must make the controlled sequence
longer, it appends elements with value c. Any pointers or references to elements in the controlled
sequence are invalidated.

valarray::shift

valarray<T> shift(int n) const;

The member function returns an object of class valarray<T>, of length size(), each of whose
elements I is either (*this)[I + n], if I + n is a valid subscript, or T(). Thus, if element zero is
taken as the leftmost element, a positive value of n shifts the elements left n places, with zero fill.

valarray::sum

T sum() const;

The member function returns the sum of all elements of *this, which must have nonzero length. If the
length is greater than one, it adds values to the sum by applying operator+= between pairs of
elements of class T.

valarray::valarray

valarray();
explicit valarray(size_t n);
valarray(const T& val, size_t n));
valarray(const T *p, size_t n);
valarray(const slice_array<T>& sa);
valarray(const gslice_array<T>& ga);

valarray(const mask_array<T>& ma);
valarray(const indirect_array<T>& ia);

The first (default) constructor initializes the object to an empty array. The next three constructors each
initialize the object to an array of n elements as follows:

For explicit valarray(size_t n), each element is initialized with the default
constructor.

●

For valarray(const T& val, size_t n)), each element is initialized with val.●

For valarray(const T *p, size_t n), the element at position I is initialized with
p[I].

●

Each of the remaining constructors initializes the object to a valarray<T> object determined by the
argument.

valarray::value_type

typedef T value_type;

The type is a synonym for the template parameter T.

valarray<bool>

class valarray<bool>;

In this implementation, if bool is not a distinct type, the specialization valarray<bool> should be
referred to by the synonym _Boolarray.

See also the Table of Contents and the Index.

Copyright © 1992-1996 by P.J. Plauger. All rights reserved.

<vector>

namespace std {
template<class T, class A>
 class vector;
template<class A>
 class vector<bool, A>;
// TEMPLATE FUNCTIONS
template<class T, class A>
 bool operator==(
 const vector<T, A>& lhs,
 const vector<T, A>& rhs);
template<class T, class A>
 bool operator!=(
 const vector<T, A>& lhs,
 const vector<T, A>& rhs);
template<class T, class A>
 bool operator<(
 const vector<T, A>& lhs,
 const vector<T, A>& rhs);
template<class T, class A>
 bool operator>(
 const vector<T, A>& lhs,
 const vector<T, A>& rhs);
template<class T, class A>
 bool operator<=(
 const vector<T, A>& lhs,
 const vector<T, A>& rhs);
template<class T, class A>
 bool operator>=(
 const vector<T, A>& lhs,
 const vector<T, A>& rhs);
template<class T, class A>
 void swap(
 const vector<T, A>& lhs,
 const vector<T, A>& rhs);
 };

Include the STL standard header <vector> to define the container template class vector and three
supporting templates.

http://www.dinkumware.com/

operator!=

template<class T, class A>
 bool operator!=(
 const vector <T, A>& lhs,
 const vector <T, A>& rhs);

The template function returns !(lhs == rhs).

operator==

template<class T, class A>
 bool operator==(
 const vector <T, A>& lhs,
 const vector <T, A>& rhs);

The template function overloads operator== to compare two objects of template class vector. The
function returns lhs.size() == rhs.size() && equal(lhs. begin(), lhs. end(),
rhs.begin()).

operator<

template<class T, class A>
 bool operator<(
 const vector <T, A>& lhs,
 const vector <T, A>& rhs);

The template function overloads operator< to compare two objects of template class vector. The
function returns lexicographical_compare(lhs. begin(), lhs. end(),
rhs.begin(), rhs.end()).

operator<=

template<class T, class A>
 bool operator<=(
 const vector <T, A>& lhs,
 const vector <T, A>& rhs);

The template function returns !(rhs < lhs).

operator>

template<class T, class A>
 bool operator>(
 const vector <T, A>& lhs,
 const vector <T, A>& rhs);

The template function returns rhs < lhs.

operator>=

template<class T, class A>
 bool operator>=(
 const vector <T, A>& lhs,
 const vector <T, A>& rhs);

The template function returns !(lhs < rhs).

swap

template<class T, class A>
 void swap(
 const vector <T, A>& lhs,
 const vector <T, A>& rhs);

The template function executes lhs.swap(rhs).

vector

allocator_type · assign · at · back · begin · capacity · clear ·
const_iterator · const_reference · const_reverse_iterator ·
difference_type · empty · end · erase · front · get_allocator · insert
· iterator · max_size · operator[] · pop_back · push_back · rbegin ·
reference · rend · reserve · resize · reverse_iterator · size ·
size_type · swap · value_type · vector

template<class T, class A = allocator<T> >
 class vector {
public:
 typedef A allocator_type;
 typedef A::size_type size_type;

 typedef A::difference_type difference_type;
 typedef A::reference reference;
 typedef A::const_reference const_reference;
 typedef A::value_type value_type;
 typedef T0 iterator;
 typedef T1 const_iterator;
 typedef reverse_iterator<iterator, value_type,
 reference, A::pointer, difference_type>
 reverse_iterator;
 typedef reverse_iterator<const_iterator, value_type,
 const_reference, A::const_pointer, difference_type>
 const_reverse_iterator;
 explicit vector(const A& al = A());
 explicit vector(size_type n, const T& v = T(), const A& al = A());
 vector(const vector& x);
 template<class InIt>
 vector(InIt first, InIt last, const A& al = A());
 void reserve(size_type n);
 size_type capacity() const;
 iterator begin();
 const_iterator begin() const;
 iterator end();
 iterator end() const;
 reverse_iterator rbegin();
 const_reverse_iterator rbegin() const;
 reverse_iterator rend();
 const_reverse_iterator rend() const;
 void resize(size_type n, T x = T());
 size_type size() const;
 size_type max_size() const;
 bool empty() const;
 A get_allocator() const;
 reference at(size_type pos);
 const_reference at(size_type pos) const;
 reference operator[](size_type pos);
 const_reference operator[](size_type pos);
 reference front();
 const_reference front() const;
 reference back();
 const_reference back() const;
 void push_back(const T& x);

 void pop_back();
 template<class InIt>
 void assign(InIt first, InIt last);
 template<class Size, class T2>
 void assign(Size n, const T2& x = T2());
 iterator insert(iterator it, const T& x = T());
 void insert(iterator it, size_type n, const T& x);
 template<class InIt>
 void insert(iterator it, InIt first, InIt last);
 iterator erase(iterator it);
 iterator erase(iterator first, iterator last);
 void clear();
 void swap(vector x);
protected:
 A allocator;
 };

The template class describes an object that controls a varying-length sequence of elements of type T. The
sequence is stored as an array of T.

The object allocates and frees storage for the sequence it controls through a protected object named
allocator, of class A. Such an allocator object must have the same external interface as an object of
template class allocator. Note that allocator is not copied when the object is assigned.

Vector reallocation occurs when a member function must grow the controlled sequence beyond its
current storage capacity. Other insertions and erasures may alter various storage addresses within the
sequence. In all such cases, iterators or references that point at altered portions of the controlled sequence
become invalid.

vector::allocator_type

typedef A allocator_type;

The type is a synonym for the template parameter A.

vector::assign

template<class InIt>
 void assign(InIt first, InIt last);
template<class Size, class T2>
 void assign(Size n, const T2& x = T2());

The first member template function replaces the sequence controlled by *this with the sequence
[first, last). The second member template function replaces the sequence controlled by *this
with a repetition of n elements of value x.

In this implementation, if a translator does not support member template functions, the templates are
replaced by:

void assign(const_iterator first, const_iterator last);
void assign(size_type n, const T& x = T());

vector::at

const_reference at(size_type pos) const;
reference at(size_type pos);

The member function returns a reference to the element of the controlled sequence at position pos. If
that position is invalid, the function throws an object of class out_of_range.

vector::back

reference back();
const_reference back() const;

The member function returns a reference to the last element of the controlled sequence, which must be
non-empty.

vector::begin

const_iterator begin() const;
iterator begin();

The member function returns a random-access iterator that points at the first element of the sequence (or
just beyond the end of an empty sequence).

vector::capacity

size_type capacity() const;

The member function returns the storage currently allocated to hold the controlled sequence, a value at
least as large as size().

vector::clear

void clear() const;

The member function calls erase(begin(), end()).

vector::const_iterator

typedef T1 const_iterator;

The type describes an object that can serve as a constant random-access iterator for the controlled

sequence. It is described here as a synonym for the unspecified type T1.

vector::const_reference

typedef A::const_reference const_reference;

The type describes an object that can serve as a constant reference to an element of the controlled
sequence.

vector::const_reverse_iterator

typedef reverse_iterator<const_iterator, value_type,
 const_reference, A::const_pointer, difference_type>
 const_reverse_iterator;

The type describes an object that can serve as a constant reverse iterator for the controlled sequence.

vector::difference_type

typedef A::difference_type difference_type;

The signed integer type describes an object that can represent the difference between the addresses of any
two elements in the controlled sequence.

vector::empty

bool empty() const;

The member function returns true for an empty controlled sequence.

vector::end

const_iterator end() const;
iterator end();

The member function returns a random-access iterator that points just beyond the end of the sequence.

vector::erase

iterator erase(iterator it);
iterator erase(iterator first, iterator last);

The first member function removes the element of the controlled sequence pointed to by it. The second
member function removes the elements of the controlled sequence in the range [first, last). Both
return an iterator that designates the first element remaining beyond any elements removed, or end() if
no such element exists.

Erasing N elements causes N destructor calls and an assignment for each of the elements between the

insertion point and the end of the sequence. No reallocation occurs, so iterators and references become
invalid only from the first element erased through the end of the sequence.

vector::front

reference front();
const_reference front() const;

The member function returns a reference to the first element of the controlled sequence, which must be
non-empty.

vector::get_allocator

A get_allocator() const;

The member function returns allocator.

vector::insert

iterator insert(iterator it, const T& x = T());
void insert(iterator it, size_type n, const T& x);
template<class InIt>
 void insert(iterator it, InIt first, InIt last);

Each of the member functions inserts, before the element pointed to by it in the controlled sequence, a
sequence specified by the remaining operands. The first member function inserts a single element with
value x and returns an iterator that points to the newly inserted element. The second member function
inserts a repetition of n elements of value x. The member template function inserts the sequence
[first, last).

In this implementation, if a translator does not support member template functions, the template is
replaced by:

void insert(iterator it, const_iterator first, const_iterator last);

When inserting a single element, the number of element copies is linear in the number of elements
between the insertion point and the end of the sequence. When inserting a single element at the end of the
sequence, the amortized number of element copies is constant. When inserting N elements, the number of
element copies is linear in N plus the number of elements between the insertion point and the end of the
sequence -- except when the template member is specialized for InIt an input iterator, which behaves
like N single insertions.

If reallocation occurs, the size of the controlled sequence at least doubles, and all iterators and references
become invalid. If no reallocation occurs, iterators become invalid only from the point of insertion
through the end of the sequence.

vector::iterator

typedef T0 iterator;

The type describes an object that can serve as a random-access iterator for the controlled sequence. It is
described here as a synonym for the unspecified type T0.

vector::max_size

size_type max_size() const;

The member function returns the length of the longest sequence that the object can control.

vector::operator[]

const_reference operator[](size_type pos) const;
reference operator[](size_type pos);

The member function returns a reference to the element of the controlled sequence at position pos. If
that position is invalid, the behavior is undefined.

vector::pop_back

void pop_back();

The member function removes the last element of the controlled sequence, which must be non-empty.

vector::push_back

void push_back(const T& x);

The member function inserts an element with value x at the end of the controlled sequence.

vector::rbegin

const_reverse_iterator rbegin() const;
reverse_iterator rbegin();

The member function returns a reverse iterator that points just beyond the end of the controlled sequence.
Hence, it designates the beginning of the reverse sequence.

vector::reference

typedef A::reference reference;

The type describes an object that can serve as a reference to an element of the controlled sequence.

vector::rend

const_reverse_iterator rend() const;
reverse_iterator rend();

The member function returns a reverse iterator that points at the first element of the sequence (or just
beyond the end of an empty sequence). Hence, it designates the end of the reverse sequence.

vector::reserve

void reserve(size_type n);

The member function ensures that capacity() henceforth returns at least n.

vector::resize

void resize(size_type n, T x = T());

The member function ensures that size() henceforth returns n. If it must make the controlled sequence
longer, it appends elements with value x.

vector::reverse_iterator

typedef reverse_iterator<iterator, value_type,
 reference, A::pointer, difference_type>
 reverse_iterator;

The type describes an object that can serve as a reverse iterator for the controlled sequence.

vector::size

size_type size() const;

The member function returns the length of the controlled sequence.

vector::size_type

typedef A::size_type size_type;

The unsigned integer type describes an object that can represent the length of any controlled sequence.

vector::swap

void swap(vector& str);

The member function swaps the controlled sequences between *this and str. If allocator ==
str.allocator, it does so in constant time. Otherwise, it performs a number of element assignments
and constructor calls proportional to the number of elements in the two controlled sequences.

vector::value_type

typedef A::value_type value_type;

The type is a synonym for the template parameter T.

vector::vector

explicit vector(const A& al = A());
explicit vector(size_type n, const T& v = T(), const A& al = A());
vector(const vector& x);
template<class InIt>
 vector(InIt first, InIt last, const A& al = A());

All constructors store the allocator object al (or, for the copy constructor, x.get_allocator()) in
allocator and initialize the controlled sequence. The first constructor specifies an empty initial
controlled sequence. The second constructor specifies a repetition of n elements of value x. The third
constructor specifies a copy of the sequence controlled by x. The member template constructor specifies
the sequence [first, last).

In this implementation, if a translator does not support member template functions, the template is
replaced by:

vector(const_iterator first, const_iterator last, const A& al = A());

If the member template constructor is specialized for forward iterators, the constructor copies at most 2
* N elements to initialize a sequence of N elements. It reallocates the sequence at most
ceil(log2(N)) times. All other constructors copy N elements and perform no interim reallocation.

vector<bool, A>

template<class A = allocator<bool> >
 class vector<bool, A> {
 class reference;
 typedef bool const_reference;
 typedef T0 iterator;
 typedef T1 const_iterator;
 void flip();
 static void swap(reference x, reference y);
// rest same as template class vector
 };

The class is a partial specialization of template class vector for elements of type bool. It alters the
definition of four member types (to optimize the packing and unpacking of elements) and adds two
member functions. Its behavior is otherwise the same as for template class vector.

In this implementation, if partial specializations are not supported or if bool is not a distinct type, the
class should be referred to by the synonym _Bvector.

vector<bool, A>::const_iterator

typedef T1 const_iterator;

The type describes an object that can serve as a constant random-access iterator for the controlled
sequence. It is described here as a synonym for the unspecified type T1.

vector<bool, A>::const_reference

typedef bool const_reference;

The type describes an object that can serve as a constant reference to an element of the controlled
sequence, in this case bool.

vector<bool, A>::flip

void flip();

The member function inverts the values of all the members of the controlled sequence.

vector<bool, A>::iterator

typedef T0 iterator;

The type describes an object that can serve as a random-access iterator for the controlled sequence. It is
described here as a synonym for the unspecified type T0.

vector<bool, A>::reference

class reference {
public:
 reference& operator=(const reference& x);
 reference& operator=(bool x);
 void flip();
 bool operator~() const;
 operator bool() const;
 };

The type describes an object that can serve as a reference to an element of the controlled sequence.
Specifically, for two objects x and y of class reference:

bool(x) yields the value of the element designated by x●

~x yields the inverted value of the element designated by x●

x.flip() inverts the value stored in x●

y = bool(x) and y = x both assign the value of the element designated by x to the element
designated by y

●

It is unspecified how member functions of class vector<bool, A> construct objects of class
reference that designate elements of a controlled sequence. The default constructor for class
reference generates an object that refers to no such element.

vector<bool, A>::swap

void swap(reference x, reference y);

The static member function swaps the members of the controlled sequences designated by x and y.

See also the Table of Contents and the Index.

Copyright © 1992-1996 by P.J. Plauger. Portions derived from work copyright © 1994 by
Hewlett-Packard Company. All rights reserved.

<cassert>

namespace std {
#include <assert.h>
 };

Include the standard header <cassert> to effectively include the standard header <assert.h>
within the std namespace.

See also the Table of Contents and the Index.

Copyright © 1992-1996 by P.J. Plauger. All rights reserved.

http://www.dinkumware.com/

<cctype>

namespace std {
#include <ctype.h>
 };

Include the standard header <cctype> to effectively include the standard header <ctype.h> within
the std namespace.

See also the Table of Contents and the Index.

Copyright © 1992-1996 by P.J. Plauger. All rights reserved.

http://www.dinkumware.com/

<cerrno>

namespace std {
#include <errno.h>
 };

Include the standard header <cerrno> to effectively include the standard header <errno.h> within
the std namespace.

See also the Table of Contents and the Index.

Copyright © 1992-1996 by P.J. Plauger. All rights reserved.

http://www.dinkumware.com/

<cfloat>

namespace std {
#include <float.h>
 };

Include the standard header <cfloat> to effectively include the standard header <float.h> within
the std namespace.

See also the Table of Contents and the Index.

Copyright © 1992-1996 by P.J. Plauger. All rights reserved.

http://www.dinkumware.com/

<ciso646>

namespace std {
#include <iso646.h>
 };

Include the standard header <ciso646> to effectively include the standard header <iso646.h>
within the std namespace (for what it's worth).

See also the Table of Contents and the Index.

Copyright © 1992-1996 by P.J. Plauger. All rights reserved.

http://www.dinkumware.com/

<climits>

namespace std {
#include <limits.h>
 };

Include the standard header <climits> to effectively include the standard header <limits.h>
within the std namespace.

See also the Table of Contents and the Index.

Copyright © 1992-1996 by P.J. Plauger. All rights reserved.

http://www.dinkumware.com/

<clocale>

namespace std {
#include <locale.h>
 };

Include the standard header <clocale> to effectively include the standard header <locale.h>
within the std namespace.

See also the Table of Contents and the Index.

Copyright © 1992-1996 by P.J. Plauger. All rights reserved.

http://www.dinkumware.com/

<cmath>

namespace std {
#include <math.h>
 };

Include the standard header <cmath> to effectively include the standard header <math.h> within the
std namespace.

See also the Table of Contents and the Index.

Copyright © 1992-1996 by P.J. Plauger. All rights reserved.

http://www.dinkumware.com/

<csetjmp>

namespace std {
#include <setjmp.h>
 };

Include the standard header <csetjmp> to effectively include the standard header <setjmp.h>
within the std namespace.

See also the Table of Contents and the Index.

Copyright © 1992-1996 by P.J. Plauger. All rights reserved.

http://www.dinkumware.com/

<csignal>

namespace std {
#include <signal.h>
 };

Include the standard header <csignal> to effectively include the standard header <signal.h>
within the std namespace.

See also the Table of Contents and the Index.

Copyright © 1992-1996 by P.J. Plauger. All rights reserved.

http://www.dinkumware.com/

<cstdarg>

namespace std {
#include <stdarg.h>
 };

Include the standard header <cstdarg> to effectively include the standard header <stdarg.h>
within the std namespace.

See also the Table of Contents and the Index.

Copyright © 1992-1996 by P.J. Plauger. All rights reserved.

http://www.dinkumware.com/

<cstddef>

namespace std {
#include <stddef.h>
 };

Include the standard header <cstddef> to effectively include the standard header <stddef.h>
within the std namespace.

See also the Table of Contents and the Index.

Copyright © 1992-1996 by P.J. Plauger. All rights reserved.

http://www.dinkumware.com/

<cstdio>

namespace std {
#include <stdio.h>
 };

Include the standard header <cstdio> to effectively include the standard header <stdio.h> within
the std namespace.

See also the Table of Contents and the Index.

Copyright © 1992-1996 by P.J. Plauger. All rights reserved.

http://www.dinkumware.com/

<cstdlib>

namespace std {
#include <stdlib.h>
 };

Include the standard header <cstdlib> to effectively include the standard header <stdlib.h>
within the std namespace.

See also the Table of Contents and the Index.

Copyright © 1992-1996 by P.J. Plauger. All rights reserved.

http://www.dinkumware.com/

<cstring>

namespace std {
#include <string.h>
 };

Include the standard header <cstring> to effectively include the standard header <string.h>
within the std namespace.

See also the Table of Contents and the Index.

Copyright © 1992-1996 by P.J. Plauger. All rights reserved.

http://www.dinkumware.com/

<ctime>

namespace std {
#include <time.h>
 };

Include the standard header <ctime> to effectively include the standard header <time.h> within the
std namespace.

See also the Table of Contents and the Index.

Copyright © 1992-1996 by P.J. Plauger. All rights reserved.

http://www.dinkumware.com/

<cwchar>

namespace std {
#include <wchar.h>
 };

Include the standard header <cwchar> to effectively include the standard header <wchar.h> within
the std namespace.

See also the Table of Contents and the Index.

Copyright © 1992-1996 by P.J. Plauger. All rights reserved.

http://www.dinkumware.com/

<cwctype>

namespace std {
#include <wctype.h>
 };

Include the standard header <cwctype> to effectively include the standard header <wctype.h>
within the std namespace.

See also the Table of Contents and the Index.

Copyright © 1992-1996 by P.J. Plauger. All rights reserved.

http://www.dinkumware.com/

<assert.h>

#undef assert
#if defined NDEBUG
#define assert(test) (void)0
#else
#define assert(test) <void expression>
#endif

Include the standard header <assert.h> to define the macro assert, which is useful for diagnosing
logic errors in the program. You can eliminate the testing code produced by the macro assert without
removing the macro references from the program by defining the macro NDEBUG in the program before
you include <assert.h>. Each time the program includes this header, it redetermines the definition of
the macro assert.

assert

#undef assert
#if defined NDEBUG
#define assert(test) (void)0
#else
#define assert(test) <void expression>
#endif

If the int expression test equals zero, the macro writes to stderr a diagnostic message that includes:

the text of test●

the source filename (the predefined macro __FILE__)●

the source line number (the predefined macro __LINE__)●

It then calls abort.

You can write the macro assert in the program in any side-effects context.

See also the Table of Contents and the Index.

Copyright © 1989-1996 by P.J. Plauger and Jim Brodie. All rights reserved.

http://www.dinkumware.com/

<ctype.h>

int isalnum(int c);
int isalpha(int c);
int iscntrl(int c);
int isdigit(int c);
int isgraph(int c);
int islower(int c);
int isprint(int c);
int ispunct(int c);
int isspace(int c);
int isupper(int c);
int isxdigit(int c);
int tolower(int c);
int toupper(int c);

Include the standard header <ctype.h> to declare several functions that are useful for classifying and
mapping codes from the target character set. Every function that has a parameter of type int can accept
the value of the macro EOF or any value representable as type unsigned char. Thus, the argument can be
the value returned by any of the functions fgetc, fputc, getc, getchar, putc, putchar,
tolower, toupper, and ungetc. You must not call these functions with other argument values.

Other library functions use these functions. The function scanf, for example, uses the function
isspace to determine valid white space within an input field.

The character classification functions are strongly interrelated. Many are defined in terms of other
functions. For characters in the basic C character set, here are the dependencies between these functions:

http://www.dinkumware.com/

The diagram tells you that the function isprint returns nonzero for space or for any character for
which the function isgraph returns nonzero. The function isgraph, in turn, returns nonzero for any
character for which either the function isalnum or the function ispunct returns nonzero. The
function isdigit, on the other hand, returns nonzero only for the digits 0-9.

An implementation can define additional characters that return nonzero for some of these functions. Any
character set can contain additional characters that return nonzero for:

ispunct (provided the characters cause isalnum to return zero)●

iscntrl (provided the characters cause isprint to return zero)●

The diagram indicates with ++ those functions that can define additional characters in any character set.
Moreover, locales other than the "C" locale can define additional characters that return nonzero for:

isalpha, isupper, and islower (provided the characters cause iscntrl, isdigit,
ispunct, and isspace to return zero)

●

isspace (provided the characters cause isprint to return zero)●

The diagram indicates with + those functions that can define additional characters in locales other than
the "C" locale.

Note that an implementation can define locales other than the "C" locale in which a character can cause
isalpha (and hence isalnum) to return nonzero, yet still cause isupper and islower to return
zero.

isalnum

int isalnum(int c);

The function returns nonzero if c is any of:

a b c d e f g h i j k l m n o p q r s t u v w x y z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
o 1 2 3 4 5 6 7 8 9

or any other locale-specific alphabetic character.

isalpha

int isalpha(int c);

The function returns nonzero if c is any of:

a b c d e f g h i j k l m n o p q r s t u v w x y z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

or any other locale-specific alphabetic character.

iscntrl

int iscntrl(int c);

The function returns nonzero if c is any of:

BEL BS CR FF HT NL VT

or any other implementation-defined control character.

isdigit

int isdigit(int c);

The function returns nonzero if c is any of:

0 1 2 3 4 5 6 7 8 9

isgraph

int isgraph(int c);

The function returns nonzero if c is any character for which either isalnum or ispunct returns
nonzero.

islower

int islower(int c);

The function returns nonzero if c is any of:

a b c d e f g h i j k l m n o p q r s t u v w x y z

or any other locale-specific lowercase character.

isprint

int isprint(int c);

The function returns nonzero if c is space or a character for which isgraph returns nonzero.

ispunct

int ispunct(int c);

The function returns nonzero if c is any of:

! " # % & ' () ; <
= > ? [\] * + , -
. / : ^ _ { | } ~

or any other implementation-defined punctuation character.

isspace

int isspace(int c);

The function returns nonzero if c is any of:

CR FF HT NL VT space

or any other locale-specific space character.

isupper

int isupper(int c);

The function returns nonzero if c is any of:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

or any other locale-specific uppercase character.

isxdigit

int isxdigit(int c);

The function returns nonzero if c is any of:

0 1 2 3 4 5 6 7 8 9 a b c d e f A B C D E F

tolower

int tolower(int c);

The function returns the corresponding lowercase letter if one exists and if isupper(c); otherwise, it
returns c.

toupper

int toupper(int c);

The function returns the corresponding uppercase letter if one exists and if islower(c); otherwise, it
returns c.

See also the Table of Contents and the Index.

Copyright © 1989-1996 by P.J. Plauger and Jim Brodie. All rights reserved.

<errno.h>

#define EDOM <#if expression>
#define EILSEQ <#if expression>
#define ERANGE <#if expression>
#define errno <int modifiable lvalue>

Include the standard header <errno.h> to test the value stored in errno by certain library functions.
At program startup, the value stored is zero. Library functions store only values greater than zero. Any
library function can alter the value stored, but only those cases where a library function is explicitly
required to store a value are documented here.

To test whether a library function stores a value in errno, the program should store the value zero there
immediately before it calls the library function. An implementation can define additional macros in this
standard header that you can test for equality with the value stored. All these additional macros have
names that begin with E.

EDOM

#define EDOM <#if expression>

The macro yields the value stored in errno on a domain error.

EILSEQ

#define EILSEQ <#if expression>

The macro yields the value stored in errno on an invalid multibyte sequence.

ERANGE

#define ERANGE <#if expression>

The macro yields the value stored in errno on a range error.

http://www.dinkumware.com/

errno

#define errno <int modifiable lvalue>

The macro designates an object that is assigned a value greater than zero on certain library errors.

See also the Table of Contents and the Index.

Copyright © 1989-1996 by P.J. Plauger and Jim Brodie. All rights reserved.

<float.h>

#define DBL_DIG <integer rvalue >= 10>
#define DBL_EPSILON <double rvalue <= 10^(-9)>
#define DBL_MANT_DIG <integer rvalue>
#define DBL_MAX <double rvalue >= 10^37>
#define DBL_MAX_10_EXP <integer rvalue >= 37>
#define DBL_MAX_EXP <integer rvalue>
#define DBL_MIN <double rvalue <= 10^(-37)>
#define DBL_MIN_10_EXP <integer rvalue <= -37>
#define DBL_MIN_EXP <integer rvalue>
#define FLT_DIG <integer rvalue >= 6>
#define FLT_EPSILON <float rvalue <= 10^(-5)>
#define FLT_MANT_DIG <integer rvalue>
#define FLT_MAX <float rvalue >= 10^37>
#define FLT_MAX_10_EXP <integer rvalue >= 37>
#define FLT_MAX_EXP <integer rvalue>
#define FLT_MIN <float rvalue <= 10^(-37)>
#define FLT_MIN_10_EXP <integer rvalue <= -37>
#define FLT_MIN_EXP <integer rvalue>
#define FLT_RADIX <#if expression >= 2>
#define FLT_ROUNDS <integer rvalue>
#define LDBL_DIG <integer rvalue >= 10>
#define LDBL_EPSILON <long double rvalue <= 10^(-9)>
#define LDBL_MANT_DIG <integer rvalue>
#define LDBL_MAX <long double rvalue >= 10^37>
#define LDBL_MAX_10_EXP <integer rvalue >= 37>
#define LDBL_MAX_EXP <integer rvalue>
#define LDBL_MIN <long double rvalue <= 10^(-37)>
#define LDBL_MIN_10_EXP <integer rvalue <= -37>
#define LDBL_MIN_EXP <integer rvalue>

Include the standard header <float.h> to determine various properties of floating-point type
representations. The standard header <float.h> is available even in a freestanding implementation.

You can test only the value of the macro FLT_RADIX in an if directive. (The macro expands to a #if
expression.) All other macros defined in this header expand to expressions whose values can be

http://www.dinkumware.com/

determined only when the program executes. (These macros are rvalue expressions.) Some target
environments can change the rounding and error-reporting properties of floating-point type
representations while the program is running.

DBL_DIG

#define DBL_DIG <integer rvalue >= 10>

The macro yields the precision in decimal digits for type double.

DBL_EPSILON

#define DBL_EPSILON <double rvalue <= 10^(-9)>

The macro yields the smallest X of type double such that 1.0 + X != 1.0.

DBL_MANT_DIG

#define DBL_MANT_DIG <integer rvalue>

The macro yields the number of mantissa digits, base FLT_RADIX, for type double.

DBL_MAX

#define DBL_MAX <double rvalue >= 10^37>

The macro yields the largest finite representable value of type double.

DBL_MAX_10_EXP

#define DBL_MAX_10_EXP <integer rvalue >= 37>

The macro yields the maximum integer X, such that 10^X is a finite representable value of type double.

DBL_MAX_EXP

#define DBL_MAX_EXP <integer rvalue>

The macro yields the maximum integer X, such that FLT_RADIX^(X - 1) is a finite representable value
of type double.

DBL_MIN

#define DBL_MIN <double rvalue <= 10^(-37)>

The macro yields the smallest normalized, finite representable value of type double.

DBL_MIN_10_EXP

#define DBL_MIN_10_EXP <integer rvalue <= -37>

The macro yields the minimum integer X such that 10^X is a normalized, finite representable value of
type double.

DBL_MIN_EXP

#define DBL_MIN_EXP <integer rvalue>

The macro yields the minimum integer X such that FLT_RADIX^(X - 1) is a normalized, finite
representable value of type double.

FLT_DIG

#define FLT_DIG <integer rvalue >= 6>

The macro yields the precision in decimal digits for type float.

FLT_EPSILON

#define FLT_EPSILON <float rvalue <= 10^(-5)>

The macro yields the smallest X of type float such that 1.0 + X != 1.0.

FLT_MANT_DIG

#define FLT_MANT_DIG <integer rvalue>

The macro yields the number of mantissa digits, base FLT_RADIX, for type float.

FLT_MAX

#define FLT_MAX <float rvalue >= 10^37>

The macro yields the largest finite representable value of type float.

FLT_MAX_10_EXP

#define FLT_MAX_10_EXP <integer rvalue >= 37>

The macro yields the maximum integer X, such that 10^X is a finite representable value of type float.

FLT_MAX_EXP

#define FLT_MAX_EXP <integer rvalue>

The macro yields the maximum integer X, such that FLT_RADIX^(X - 1) is a finite representable value
of type float.

FLT_MIN

#define FLT_MIN <float rvalue <= 10^(-37)>

The macro yields the smallest normalized, finite representable value of type float.

FLT_MIN_10_EXP

#define FLT_MIN_10_EXP <integer rvalue <= -37>

The macro yields the minimum integer X, such that 10^X is a normalized, finite representable value of
type float.

FLT_MIN_EXP

#define FLT_MIN_EXP <integer rvalue>

The macro yields the minimum integer X, such that FLT_RADIX^(X - 1) is a normalized, finite
representable value of type float.

FLT_RADIX

#define FLT_RADIX <#if expression >= 2>

The macro yields the radix of all floating-point representations.

FLT_ROUNDS

#define FLT_ROUNDS <integer rvalue>

The macro yields a value that describes the current rounding mode for floating-point operations. Note
that the target environment can change the rounding mode while the program executes. How it does so,
however, is not specified. The values are:

-1 if the mode is indeterminate●

0 if rounding is toward zero●

1 if rounding is to nearest representable value●

2 if rounding is toward +infinity●

3 if rounding is toward -infinity●

An implementation can define additional values for this macro.

LDBL_DIG

#define LDBL_DIG <integer rvalue >= 10>

The macro yields the precision in decimal digits for type long double.

LDBL_EPSILON

#define LDBL_EPSILON <long double rvalue <= 10^(-9)>

The macro yields the smallest X of type long double such that 1.0 + X != 1.0.

LDBL_MANT_DIG

#define LDBL_MANT_DIG <integer rvalue>

The macro yields the number of mantissa digits, base FLT_RADIX, for type long double.

LDBL_MAX

#define LDBL_MAX <long double rvalue >= 10^37>

The macro yields the largest finite representable value of type long double.

LDBL_MAX_10_EXP

#define LDBL_MAX_10_EXP <integer rvalue >= 37>

The macro yields the maximum integer X, such that 10^X is a finite representable value of type long
double.

LDBL_MAX_EXP

#define LDBL_MAX_EXP <integer rvalue>

The macro yields the maximum integer X, such that FLT_RADIX^(X - 1) is a finite representable value
of type long double.

LDBL_MIN

#define LDBL_MIN <long double rvalue <= 10^(-37)>

The macro yields the smallest normalized, finite representable value of type long double.

LDBL_MIN_10_EXP

#define LDBL_MIN_10_EXP <integer rvalue <= -37>

The macro yields the minimum integer X, such that 10^X is a normalized, finite representable value of
type long double.

LDBL_MIN_EXP

#define LDBL_MIN_EXP <integer rvalue>

The macro yields the minimum integer X, such that FLT_RADIX^(X - 1) is a normalized, finite
representable value of type long double.

See also the Table of Contents and the Index.

Copyright © 1989-1996 by P.J. Plauger and Jim Brodie. All rights reserved.

<iso646.h> [Added with
Amendment 1]

#define and && [keyword in C++]
#define and_eq &= [keyword in C++]
#define bitand & [keyword in C++]
#define bitor | [keyword in C++]
#define compl ~ [keyword in C++]
#define not ! [keyword in C++]
#define not_eq != [keyword in C++]
#define or || [keyword in C++]
#define or_eq |= [keyword in C++]
#define xor ^ [keyword in C++]
#define xor_eq ^= [keyword in C++]

Include the standard header <iso646.h> to provide readable alternatives to certain operators or
punctuators. The standard header <iso646.h> is available even in a freestanding implementation.

and

#define and && [keyword in C++]

The macro yields the operator &&.

and_eq

#define and_eq &= [keyword in C++]

The macro yields the operator &=.

bitand

#define bitand & [keyword in C++]

The macro yields the operator &.

http://www.dinkumware.com/

bitor

#define bitor | [keyword in C++]

The macro yields the operator |.

compl

#define compl ~ [keyword in C++]

The macro yields the operator ~.

not

#define not ! [keyword in C++]

The macro yields the operator !.

not_eq

#define not_eq != [keyword in C++]

The macro yields the operator !=.

or

#define or || [keyword in C++]

The macro yields the operator ||.

or_eq

#define or_eq |= [keyword in C++]

The macro yields the operator |=.

xor

#define xor ^ [keyword in C++]

The macro yields the operator ^.

xor_eq

#define xor_eq ^= [keyword in C++]

The macro yields the operator ^=.

See also the Table of Contents and the Index.

Copyright © 1989-1996 by P.J. Plauger and Jim Brodie. All rights reserved.

<limits.h>

#define CHAR_BIT <#if expression >= 8>
#define CHAR_MAX <#if expression >= 127>
#define CHAR_MIN <#if expression <= 0>
#define INT_MAX <#if expression >= 32,767>
#define INT_MIN <#if expression <= -32,767>
#define LONG_MAX <#if expression >= 2,147,483,647>
#define LONG_MIN <#if expression <= -2,147,483,647>
#define MB_LEN_MAX <#if expression >= 1>
#define SCHAR_MAX <#if expression >= 127>
#define SCHAR_MIN <#if expression <= -127>
#define SHRT_MAX <#if expression >= 32,767>
#define SHRT_MIN <#if expression <= -32,767>
#define UCHAR_MAX <#if expression >= 255>
#define UINT_MAX <#if expression >= 65,535>
#define ULONG_MAX <#if expression >= 4,294,967,295>
#define USHRT_MAX <#if expression >= 65,535>

Include the standard header <limits.h> to determine various properties of the integer type
representations. The standard header <limits.h> is available even in a freestanding implementation.

You can test the values of all these macros in an if directive. (The macros are #if expressions.)

CHAR_BIT

#define CHAR_BIT <#if expression >= 8>

The macro yields the maximum value for the number of bits used to represent an object of type char.

CHAR_MAX

#define CHAR_MAX <#if expression >= 127>

The macro yields the maximum value for type char. Its value is:

SCHAR_MAX if char represents negative values●

UCHAR_MAX otherwise●

http://www.dinkumware.com/

CHAR_MIN

#define CHAR_MIN <#if expression <= 0>

The macro yields the minimum value for type char. Its value is:

SCHAR_MIN if char represents negative values●

zero otherwise●

INT_MAX

#define INT_MAX <#if expression >= 32,767>

The macro yields the maximum value for type int.

INT_MIN

#define INT_MIN <#if expression <= -32,767>

The macro yields the minimum value for type int.

LONG_MAX

#define LONG_MAX <#if expression >= 2,147,483,647>

The macro yields the maximum value for type long.

LONG_MIN

#define LONG_MIN <#if expression <= -2,147,483,647>

The macro yields the minimum value for type long.

MB_LEN_MAX

#define MB_LEN_MAX <#if expression >= 1>

The macro yields the maximum number of characters that constitute a multibyte character in any
supported locale. Its value is >= MB_CUR_MAX.

SCHAR_MAX

#define SCHAR_MAX <#if expression >= 127>

The macro yields the maximum value for type signed char.

SCHAR_MIN

#define SCHAR_MIN <#if expression <= -127>

The macro yields the minimum value for type signed char.

SHRT_MAX

#define SHRT_MAX <#if expression >= 32,767>

The macro yields the maximum value for type short.

SHRT_MIN

#define SHRT_MIN <#if expression <= -32,767>

The macro yields the minimum value for type short.

UCHAR_MAX

#define UCHAR_MAX <#if expression >= 255>

The macro yields the maximum value for type unsigned char.

UINT_MAX

#define UINT_MAX <#if expression >= 65,535>

The macro yields the maximum value for type unsigned int.

ULONG_MAX

#define ULONG_MAX <#if expression >= 4,294,967,295>

The macro yields the maximum value for type unsigned long.

USHRT_MAX

#define USHRT_MAX <#if expression >= 65,535>

The macro yields the maximum value for type unsigned short.

See also the Table of Contents and the Index.

Copyright © 1989-1996 by P.J. Plauger and Jim Brodie. All rights reserved.

<locale.h>

#define LC_ALL <integer constant expression>
#define LC_COLLATE <integer constant expression>
#define LC_CTYPE <integer constant expression>
#define LC_MONETARY <integer constant expression>
#define LC_NUMERIC <integer constant expression>
#define LC_TIME <integer constant expression>
#define NULL <either 0, 0L, or (void *)0> [0 in C++]
struct lconv;
struct lconv *localeconv(void);
char *setlocale(int category, const char *locale);

Include the standard header <locale.h> to alter or access properties of the current locale -- a
collection of culture-specific information. An implementation can define additional macros in this
standard header with names that begin with LC_. You can use any of these macro names as the locale
category argument (which selects a cohesive subset of a locale) to setlocale.

LC_ALL

#define LC_ALL <integer constant expression>

The macro yields the locale category argument value that affects all locale categories.

LC_COLLATE

#define LC_COLLATE <integer constant expression>

The macro yields the locale category argument value that affects the collation functions strcoll and
strxfrm.

LC_CTYPE

#define LC_CTYPE <integer constant expression>

The macro yields the locale category argument value that affects character classification functions,
wide-character classification functions, and various multibyte conversion functions.

http://www.dinkumware.com/

LC_MONETARY

#define LC_MONETARY <integer constant expression>

The macro yields the locale category argument value that affects monetary information returned by
localeconv.

LC_NUMERIC

#define LC_NUMERIC <integer constant expression>

The macro yields the locale category argument value that affects numeric information returned by
localeconv, including the decimal point used by numeric conversion, read, and write functions.

LC_TIME

#define LC_TIME <integer constant expression>

The macro yields the locale category argument value that affects the time conversion function
strftime.

NULL

#define NULL <either 0, 0L, or (void *)0> [0 in C++]

The macro yields a null pointer constant that is usable as an address constant expression.

lconv

struct lconv {
 ELEMENT "C" LOCALE LOCALE CATEGORY
 char *currency_symbol; "" LC_MONETARY
 char *decimal_point; "." LC_NUMERIC
 char *grouping; "" LC_NUMERIC
 char *int_curr_symbol; "" LC_MONETARY
 char *mon_decimal_point; "" LC_MONETARY
 char *mon_grouping; "" LC_MONETARY
 char *mon_thousands_sep; "" LC_MONETARY
 char *negative_sign; "" LC_MONETARY
 char *positive_sign; "" LC_MONETARY
 char *thousands_sep; "" LC_NUMERIC
 char frac_digits; CHAR_MAX LC_MONETARY
 char int_frac_digits; CHAR_MAX LC_MONETARY

 char n_cs_precedes; CHAR_MAX LC_MONETARY
 char n_sep_by_space; CHAR_MAX LC_MONETARY
 char n_sign_posn; CHAR_MAX LC_MONETARY
 char p_cs_precedes; CHAR_MAX LC_MONETARY
 char p_sep_by_space; CHAR_MAX LC_MONETARY
 char p_sign_posn; CHAR_MAX LC_MONETARY
 };

struct lconv contains members that describe how to format numeric and monetary values.
Functions in the Standard C library use only the field decimal_point. The information is otherwise
advisory:

Members of type pointer to char all point to C strings.●

Members of type char have nonnegative values.●

A char value of CHAR_MAX indicates that a meaningful value is not available in the current locale.●

The members shown above can occur in arbitrary order and can be interspersed with additional members.
The comment following each member shows its value for the "C" locale, the locale in effect at program
startup, followed by the locale category that can affect its value.

A description of each member follows, with an example in parentheses that would be suitable for a USA
locale.

currency_symbol -- the local currency symbol ("$")

decimal_point -- the decimal point for non-monetary values (".")

grouping -- the sizes of digit groups for non-monetary values. Successive elements of the string
describe groups going away from the decimal point:

An element value of zero (the terminating null character) calls for the previous element value to be
repeated indefinitely.

●

An element value of CHAR_MAX ends any further grouping (and hence ends the string).●

Thus, the array {3, 2, CHAR_MAX} calls for a group of three digits, then two, then whatever remains,
as in 9876,54,321, while "\3" calls for repeated groups of three digits, as in 987,654,321.
("\3")

int_curr_symbol -- the international currency symbol specified by ISO 4217 ("USD ")

mon_decimal_point -- the decimal point for monetary values (".")

mon_grouping -- the sizes of digit groups for monetary values. Successive elements of the string
describe groups going away from the decimal point. The encoding is the same as for grouping.

mon_thousands_sep -- the separator for digit groups to the left of the decimal point for monetary
values (",")

negative_sign -- the negative sign for monetary values ("-")

positive_sign -- the positive sign for monetary values ("+")

thousands_sep -- the separator for digit groups to the left of the decimal point for non-monetary
values (",")

frac_digits -- the number of digits to display to the right of the decimal point for monetary values
(2)

int_frac_digits -- the number of digits to display to the right of the decimal point for international
monetary values (2)

n_cs_precedes -- whether the currency symbol precedes or follows the value for negative monetary
values:

A value of 0 indicates that the symbol follows the value.●

A value of 1 indicates that the symbol precedes the value. (1)●

n_sep_by_space -- whether the currency symbol is separated by a space or by no space from the
value for negative monetary values:

A value of 0 indicates that no space separates symbol and value.●

A value of 1 indicates that a space separates symbol and value. (0)●

n_sign_posn -- the format for negative monetary values:

A value of 0 indicates that parentheses surround the value and the currency symbol.●

A value of 1 indicates that the negative sign precedes the value and the currency symbol.●

A value of 2 indicates that the negative sign follows the value and the currency_symbol.●

A value of 3 indicates that the negative sign immediately precedes the currency symbol.●

A value of 4 indicates that the negative sign immediately follows the currency_symbol. (4)●

p_cs_precedes -- whether the currency symbol precedes or follows the value for positive monetary
values:

A value of 0 indicates that the symbol follows the value.●

A value of 1 indicates that the symbol precedes the value. (1)●

p_sep_by_space -- whether the currency symbol is separated by a space or by no space from the
value for positive monetary values:

A value of 0 indicates that no space separates symbol and value.●

A value of 1 indicates that a space separates symbol and value. (0)●

p_sign_posn -- the format for positive monetary values:

A value of 0 indicates that parentheses surround the value and the currency symbol.●

A value of 1 indicates that the negative sign precedes the value and the currency symbol.●

A value of 2 indicates that the negative sign follows the value and the currency symbol.●

A value of 3 indicates that the negative sign immediately precedes the currency symbol.●

A value of 4 indicates that the negative sign immediately follows the currency symbol. (4)●

localeconv

struct lconv *localeconv(void);

The function returns a pointer to a static-duration structure containing numeric formatting information
for the current locale. You cannot alter values stored in the static-duration structure. The stored values
can change on later calls to localeconv or on calls to setlocale that alter any of the categories
LC_ALL, LC_MONETARY, or LC_NUMERIC.

setlocale

char *setlocale(int category, const char *locale);

The function either returns a pointer to a static-duration string describing a new locale or returns a null
pointer (if the new locale cannot be selected). The value of category selects one or more locale
categories, each of which must match the value of one of the macros defined in this standard header with
names that begin with LC_.

If locale is a null pointer, the locale remains unchanged. If locale points to the string "C", the new
locale is the "C" locale for the locale category specified. If locale points to the string "", the new
locale is the native locale (a default locale presumably tailored for the local culture) for the locale
category specified. locale can also point to a string returned on an earlier call to setlocale or to
other strings that the implementation can define.

At program startup, the target environment calls setlocale(LC_ALL, "C") before it calls main.

See also the Table of Contents and the Index.

Copyright © 1989-1996 by P.J. Plauger and Jim Brodie. All rights reserved.

<math.h>

#define HUGE_VAL <double rvalue>
double abs(double x); [C++ only]
float abs(float x); [C++ only]
long double abs(long double x); [C++ only]
double acos(double x);
float acos(float x); [C++ only]
long double acos(long double x); [C++ only]
float acosf(float x); [optional]
long double acosl(long double x); [optional]
double asin(double x);
float asin(float x); [C++ only]
long double asin(long double x); [C++ only]
float asinf(float x); [optional]
long double asinl(long double x); [optional]
double atan(double x);
float atan(float x); [C++ only]
long double atan(long double x); [C++ only]
float atanf(float x); [optional]
long double atanl(long double x); [optional]
double atan2(double y, double x);
float atan2(float y, float x); [C++ only]
long double atan2(long double y, long double x); [C++ only]
float atan2f(float y, float x); [optional]
long double atan2l(long double y, long double x); [optional]
double ceil(double x);
float ceil(float x); [C++ only]
long double ceil(long double x); [C++ only]
float ceilf(float x); [optional]
long double ceill(long double x); [optional]
double cos(double x);
float cos(float x); [C++ only]
long double cos(long double x); [C++ only]
float cosf(float x); [optional]
long double cosl(long double x); [optional]

http://www.dinkumware.com/

double cosh(double x);
float cosh(float x); [C++ only]
long double cosh(long double x); [C++ only]
float coshf(float x); [optional]
long double coshl(long double x); [optional]
double exp(double x);
float exp(float x); [C++ only]
long double exp(long double x); [C++ only]
float expf(float x); [optional]
long double expl(long double x); [optional]
double fabs(double x);
float fabs(float x); [C++ only]
long double fabs(long double x); [C++ only]
float fabsf(float x); [optional]
long double fabsl(long double x); [optional]
double floor(double x);
float floor(float x); [C++ only]
long double floor(long double x); [C++ only]
float floorf(float x); [optional]
long double floorl(long double x); [optional]
double fmod(double x, double y);
float fmod(float x, float y); [C++ only]
long double fmod(long double x, long double y); [C++ only]
float fmodf(float x, float y); [optional]
long double fmodl(long double x, long double y); [optional]
double frexp(double x, int *pexp);
float frexp(float x, int *pexp); [C++ only]
long double frexp(long double x, int *pexp); [C++ only]
float frexpf(float x, int *pexp); [optional]
long double frexpl(long double x, int *pexp); [optional]
double ldexp(double x, int exp);
float ldexp(float x, int exp); [C++ only]
long double ldexp(long double x, int exp); [C++ only]
float ldexpf(float x, int exp); [optional]
long double ldexpl(long double x, int exp); [optional]
double log(double x);
float log(float x); [C++ only]
long double log(long double x); [C++ only]
float logf(float x); [optional]
long double logl(long double x); [optional]

double log10(double x);
float log10(float x); [C++ only]
long double log10(long double x); [C++ only]
float log10f(float x); [optional]
long double log10l(long double x); [optional]
double modf(double x, double *pint);
float modf(float x, float *pint); [C++ only]
long double modf(long double x, long double *pint); [C++ only]
float modff(float x, float *pint); [optional]
long double modfl(long double x, long double *pint); [optional]
double pow(double x, double y);
float pow(float x, float y); [C++ only]
long double pow(long double x, long double y); [C++ only]
double pow(double x, int y); [C++ only]
float pow(float x, int y); [C++ only]
long double pow(long double x, int y); [C++ only]
float powf(float x, float y); [optional]
long double powl(long double x, long double y); [optional]
double sin(double x);
float sin(float x); [C++ only]
long double sin(long double x); [C++ only]
float sinf(float x); [optional]
long double sinl(long double x); [optional]
double sinh(double x);
float sinh(float x); [C++ only]
long double sinh(long double x); [C++ only]
float sinhf(float x); [optional]
long double sinhl(long double x); [optional]
double sqrt(double x);
float sqrt(float x); [C++ only]
long double sqrt(long double x); [C++ only]
float sqrtf(float x); [optional]
long double sqrtl(long double x); [optional]
double tan(double x);
float tan(float x); [C++ only]
long double tan(long double x); [C++ only]
float tanf(float x); [optional]
long double tanl(long double x); [optional]
double tanh(double x);
float tanh(float x); [C++ only]

long double tanh(long double x); [C++ only]
float tanhf(float x); [optional]
long double tanhl(long double x); [optional]

Include the standard header <math.h> to declare several functions that perform common mathematical
operations on floating-point values.

A domain error exception occurs when the function is not defined for its input argument value or
values. A function reports a domain error by storing the value of EDOM in errno and returning a
peculiar value defined for each implementation.

A range error exception occurs when the return value of the function is defined but cannot be
represented. A function reports a range error by storing the value of ERANGE in errno and returning
one of three values:

HUGE_VAL -- if the value of a function returning double is positive and too large in magnitude to
represent

●

zero -- if the value of the function is too small to represent with a finite value●

-HUGE_VAL -- if the value of a function returning double is negative and too large in magnitude
to represent

●

HUGE_VAL

#define HUGE_VAL <double rvalue>

The macro yields the value returned by some functions on a range error. The value can be a
representation of infinity.

abs

double abs(double x); [C++ only]
float abs(float x); [C++ only]
long double abs(long double x); [C++ only]

The function returns the absolute value of x, |x|, the same as fabs.

acos, acosf, acosl
double acos(double x);
float acos(float x); [C++ only]
long double acos(long double x); [C++ only]
float acosf(float x); [optional]
long double acosl(long double x); [optional]

The function returns the angle whose cosine is x, in the range [0, pi] radians.

asin, asinf, asinl
double asin(double x);
float asin(float x); [C++ only]
long double asin(long double x); [C++ only]
float asinf(float x); [optional]
long double asinl(long double x); [optional]

The function returns the angle whose sine is x, in the range [-pi/2, +pi/2] radians.

atan, atanf, atanl
double atan(double x);
float atan(float x); [C++ only]
long double atan(long double x); [C++ only]
float atanf(float x); [optional]
long double atanl(long double x); [optional]

The function returns the angle whose tangent is x, in the range [-pi/2, +pi/2] radians.

atan2, atan2f, atan2l
double atan2(double y, double x);
float atan2(float y, float x); [C++ only]
long double atan2(long double y, long double x); [C++ only]
float atan2f(float y, float x); [optional]
long double atan2l(long double y, long double x); [optional]

The function returns the angle whose tangent is y/x, in the full angular range [-pi, +pi] radians.

ceil, ceilf, ceill
double ceil(double x);
float ceil(float x); [C++ only]
long double ceil(long double x); [C++ only]
float ceilf(float x); [optional]
long double ceill(long double x); [optional]

The function returns the smallest integer value not less than x.

cos, cosf, cosl
double cos(double x);
float cos(float x); [C++ only]
long double cos(long double x); [C++ only]
float cosf(float x); [optional]
long double cosl(long double x); [optional]

The function returns the cosine of x for x in radians. If x is large the value returned might not be
meaningful, but the function reports no error.

cosh, coshf, coshl
double cosh(double x);
float cosh(float x); [C++ only]
long double cosh(long double x); [C++ only]
float coshf(float x); [optional]
long double coshl(long double x); [optional]

The function returns the hyperbolic cosine of x.

exp, expf, expl
double exp(double x);
float exp(float x); [C++ only]
long double exp(long double x); [C++ only]
float expf(float x); [optional]
long double expl(long double x); [optional]

The function returns the exponential of x, e^x.

fabs, fabsf, fabsl
double fabs(double x);
float fabs(float x); [C++ only]
long double fabs(long double x); [C++ only]
float fabsf(float x); [optional]
long double fabsl(long double x); [optional]

The function returns the absolute value of x, |x|, the same as abs.

floor, floorf, floorl
double floor(double x);
float floor(float x); [C++ only]
long double floor(long double x); [C++ only]
float floorf(float x); [optional]
long double floorl(long double x); [optional]

The function returns the largest integer value not greater than x.

fmod, fmodf, fmodl
double fmod(double x, double y);
float fmod(float x, float y); [C++ only]
long double fmod(long double x, long double y); [C++ only]
float fmodf(float x, float y); [optional]
long double fmodl(long double x, long double y); [optional]

The function returns the remainder of x/y, which is defined as follows:

If y is zero, the function either reports a domain error or simply returns zero.●

Otherwise, if 0 <= x, the value is x - i*y for some integer i such that:
0 <= i*|y| <= x < (i + 1)*|y|

●

Otherwise, x < 0 and the value is x - i*y for some integer i such that:
i*|y| <= x < (i + 1)*|y| <= 0

●

frexp, frexpf, frexpl
double frexp(double x, int *pexp);
float frexp(float x, int *pexp); [C++ only]
long double frexp(long double x, int *pexp); [C++ only]
float frexpf(float x, int *pexp); [optional]
long double frexpl(long double x, int *pexp); [optional]

The function determines a fraction f and base-2 integer i that represent the value of x. It returns the
value f and stores the integer i in *pexp, such that |f| is in the interval [1/2, 1) or has the value 0, and
x equals f*2^i. If x is zero, *pexp is also zero.

ldexp, ldexpf, ldexpl
double ldexp(double x, int exp);
float ldexp(float x, int exp); [C++ only]
long double ldexp(long double x, int exp); [C++ only]
float ldexpf(float x, int exp); [optional]

long double ldexpl(long double x, int exp); [optional]

The function returns x*2^exp.

log, logf, logl
double log(double x);
float log(float x); [C++ only]
long double log(long double x); [C++ only]
float logf(float x); [optional]
long double logl(long double x); [optional]

The function returns the natural logarithm of x.

log10, log10f, log10l
double log10(double x);
float log10(float x); [C++ only]
long double log10(long double x); [C++ only]
float log10f(float x); [optional]
long double log10l(long double x); [optional]

The function returns the base-10 logarithm of x.

modf, modff, modfl
double modf(double x, double *pint);
float modf(float x, float *pint); [C++ only]
long double modf(long double x, long double *pint); [C++ only]
float modff(float x, float *pint); [optional]
long double modfl(long double x, long double *pint); [optional]

The function determines an integer i plus a fraction f that represent the value of x. It returns the value f
and stores the integer i in *pint, such that f + i == x, |f| is in the interval [0, 1), and both f and
i have the same sign as x.

pow, powf, powl
double pow(double x, double y);
float pow(float x, float y); [C++ only]
long double pow(long double x, long double y); [C++ only]
double pow(double x, int y); [C++ only]
float pow(float x, int y); [C++ only]
long double pow(long double x, int y); [C++ only]

float powf(float x, float y); [optional]
long double powl(long double x, long double y); [optional]

The function returns x raised to the power y, x^y.

sin, sinf, sinl
double sin(double x);
float sin(float x); [C++ only]
long double sin(long double x); [C++ only]
float sinf(float x); [optional]
long double sinl(long double x); [optional]

The function returns the sine of x for x in radians. If x is large the value returned might not be
meaningful, but the function reports no error.

sinh, sinhf, sinhl
double sinh(double x);
float sinh(float x); [C++ only]
long double sinh(long double x); [C++ only]
float sinhf(float x); [optional]
long double sinhl(long double x); [optional]

The function returns the hyperbolic sine of x.

sqrt, sqrtf, sqrtl
double sqrt(double x);
float sqrt(float x); [C++ only]
long double sqrt(long double x); [C++ only]
float sqrtf(float x); [optional]
long double sqrtl(long double x); [optional]

The function returns the square root of x, x^(1/2).

tan, tanf, tanl
double tan(double x);
float tan(float x); [C++ only]
long double tan(long double x); [C++ only]
float tanf(float x); [optional]
long double tanl(long double x); [optional]

The function returns the tangent of x for x in radians.If x is large the value returned might not be

meaningful, but the function reports no error.

tanh, tanhf, tanhl
double tanh(double x);
float tanh(float x); [C++ only]
long double tanh(long double x); [C++ only]
float tanhf(float x); [optional]
long double tanhl(long double x); [optional]

The function returns the hyperbolic tangent of x.

See also the Table of Contents and the Index.

Copyright © 1989-1996 by P.J. Plauger and Jim Brodie. All rights reserved.

<setjmp.h>

typedef a-type jmp_buf;
void longjmp(jmp_buf env, int val);
#define setjmp(jmp_buf env) <int rvalue>

Include the standard header <setjmp.h> to perform control transfers that bypass the normal function
call and return protocol.

jmp_buf

typedef a-type jmp_buf;

The type is the array type a-type of an object that you declare to hold the context information stored
by setjmp and accessed by longjmp.

longjmp

void longjmp(jmp_buf env, int val);

The function causes a second return from the execution of setjmp that stored the current context value
in env. If val is nonzero, the return value is val; otherwise, it is 1.

The function that was active when setjmp stored the current context value must not have returned
control to its caller. An object with dynamic duration that does not have a volatile type and whose stored
value has changed since the current context value was stored will have a stored value that is
indeterminate.

setjmp

#define setjmp(jmp_buf env) <int rvalue>

The macro stores the current context value in the array designated by env and returns zero. A later call
to longjmp that accesses the same context value causes setjmp to again return, this time with a
nonzero value. You can use the macro setjmp only in an expression that:

has no operators●

has only the unary operator !●

has one of the relational or equality operators (==, !=, <, <=, >, or >=) with the other operand an●

http://www.dinkumware.com/

integer constant expression

You can write such an expression only as the expression part of a do, expression, for, if, if-else, switch,,
or while statement.

See also the Table of Contents and the Index.

Copyright © 1989-1996 by P.J. Plauger and Jim Brodie. All rights reserved.

<signal.h>

#define SIGABRT <integer constant expression >= 0>
#define SIGFPE <integer constant expression >= 0>
#define SIGILL <integer constant expression >= 0>
#define SIGINT <integer constant expression >= 0>
#define SIGSEGV <integer constant expression >= 0>
#define SIGTERM <integer constant expression >= 0>
#define SIG_DFL <address constant expression>
#define SIG_ERR <address constant expression>
#define SIG_IGN <address constant expression>
int raise(int sig);
typedef i-type sig_atomic_t;
void (*signal(int sig, void (*func)(int)))(int);

Include the standard header <signal.h> to specify how the program handles signals while it executes.
A signal can report some exceptional behavior within the program, such as division by zero. Or a signal
can report some asynchronous event outside the program, such as someone striking an interactive
attention key on a keyboard.

You can report any signal by calling raise. Each implementation defines what signals it generates (if
any) and under what circumstances it generates them. An implementation can define signals other than
the ones listed here. The standard header <signal.h> can define additional macros with names
beginning with SIG to specify the values of additional signals. All such values are integer constant
expressions >= 0.

You can specify a signal handler for each signal. A signal handler is a function that the target
environment calls when the corresponding signal occurs. The target environment suspends execution of
the program until the signal handler returns or calls longjmp. For maximum portability, an
asynchronous signal handler should only:

make calls (that succeed) to the function signal●

assign values to objects of type volatile sig_atomic_t●

return control to its caller●

If the signal reports an error within the program (and the signal is not asynchronous), the signal handler
can terminate by calling abort, exit, or longjmp.

http://www.dinkumware.com/

SIGABRT

#define SIGABRT <integer constant expression >= 0>

The macro yields the sig argument value for the abort signal.

SIGFPE

#define SIGFPE <integer constant expression >= 0>

The macro yields the sig argument value for the arithmetic error signal, such as for division by zero or
result out of range.

SIGILL

#define SIGILL <integer constant expression >= 0>

The macro yields the sig argument value for the invalid execution signal, such as for a corrupted
function image.

SIGINT

#define SIGINT <integer constant expression >= 0>

The macro yields the sig argument value for the asynchronous interactive attention signal.

SIGSEGV

#define SIGSEGV <integer constant expression >= 0>

The macro yields the sig argument value for the invalid storage access signal, such as for an erroneous
lvalue expression.

SIGTERM

#define SIGTERM <integer constant expression >= 0>

The macro yields the sig argument value for the asynchronous termination request signal.

SIG_DFL

#define SIG_DFL <address constant expression>

The macro yields the func argument value to signal to specify default signal handling.

SIG_ERR

#define SIG_ERR <address constant expression>

The macro yields the signal return value to specify an erroneous call.

SIG_IGN

#define SIG_IGN <address constant expression>

The macro yields the func argument value to signal to specify that the target environment is to
henceforth ignore the signal.

raise

int raise(int sig);

The function sends the signal sig and returns zero if the signal is successfully reported.

sig_atomic_t

typedef i-type sig_atomic_t;

The type is the integer type i-type for objects whose stored value is altered by an assigning operator as
an atomic operation (an operation that never has its execution suspended while partially completed).
You declare such objects to communicate between signal handlers and the rest of the program.

signal

void (*signal(int sig, void (*func)(int)))(int);

The function specifies the new handling for signal sig and returns the previous handling, if successful;
otherwise, it returns SIG_ERR.

If func is SIG_DFL, the target environment commences default handling (as defined by the
implementation).

●

If func is SIG_IGN, the target environment ignores subsequent reporting of the signal.●

Otherwise, func must be the address of a function returning void that the target environment calls
with a single int argument. The target environment calls this function to handle the signal when it
is next reported, with the value of the signal as its argument.

●

When the target environment calls a signal handler:

The target environment can block further occurrences of the corresponding signal until the handler
returns, calls longjmp, or calls signal for that signal.

●

The target environment can perform default handling of further occurrences of the corresponding
signal.

●

For signal SIGILL, the target environment can leave handling unchanged for that signal.●

See also the Table of Contents and the Index.

Copyright © 1989-1996 by P.J. Plauger and Jim Brodie. All rights reserved.

<stdarg.h>

#define va_arg(va_list ap, T) <rvalue of type T>
#define va_end(va_list ap) <void expression>
typedef do-type va_list;
#define va_start(va_list ap, last-par) <void expression>

Include the standard header <stdarg.h> to access the unnamed additional arguments (arguments with
no corresponding parameter declarations) in a function that accepts a varying number of arguments. To
access the additional arguments:

The program must first execute the macro va_start within the body of the function to initialize
an object with context information.

●

Subsequent execution of the macro va_arg, designating the same context information, yields the
values of the additional arguments in order, beginning with the first unnamed argument. You can
execute the macro va_arg from any function that can access the context information saved by the
macro va_start.

●

If you have executed the macro va_start in a function, you must execute the macro va_end in
the same function, designating the same context information, before the function returns.

●

You can repeat this sequence (as needed) to access the arguments as often as you want.

You declare an object of type va_list to store context information. va_list can be an array type,
which affects how the program shares context information with functions that it calls. (The address of the
first element of an array is passed, rather than the object itself.)

For example, here is a function that concatenates an arbitrary number of strings onto the end of an
existing string (assuming that the existing string is stored in an object large enough to hold the resulting
string):

#include <stdarg.h>
void va_cat(char *s, ...)
 {
 char *t;
 va_list ap;

 va_start(ap, s);
 while (t = va_arg(ap, char *)) null pointer ends list
 {
 s += strlen(s); skip to end

http://www.dinkumware.com/

 strcpy(s, t); and copy a string
 }
 va_end(ap);
 }

va_arg

#define va_arg(va_list ap, T) <rvalue of type T>

The macro yields the value of the next argument in order, specified by the context information
designated by ap. The additional argument must be of object type T after applying the rules for
promoting arguments in the absence of a function prototype.

va_end

#define va_end(va_list ap) <void expression>

The macro performs any cleanup necessary, after processing the context information designated by ap,
so that the function can return.

va_list

typedef do-type va_list;

The type is the object type do-type that you declare to hold the context information initialized by
va_start and used by va_arg to access additional unnamed arguments.

va_start

#define va_start(va_list ap, last-par) <void expression>

The macro stores initial context information in the object designated by ap. last-par is the name of
the last parameter you declare. For example, last-par is b for the function declared as int f(int
a, int b, ...). The last parameter must not have register storage class, and it must have a
type that is not changed by the translator. It cannot have:

an array type●

a function type●

type float●

any integer type that changes when promoted●

a reference type [C++ only]●

See also the Table of Contents and the Index.

Copyright © 1989-1996 by P.J. Plauger and Jim Brodie. All rights reserved.

<stddef.h>

#define NULL <either 0, 0L, or (void *)0> [0 in C++]
#define offsetof(s-type, mbr) %lt;size_t constant expression>
typedef si-type ptrdiff_t;
typedef ui-type size_t;
typedef i-type wchar_t; [keyword in C++]

Include the standard header <stddef.h> to define several types and macros that are of general use
throughout the program. The standard header <stddef.h> is available even in a freestanding
implementation.

NULL

#define NULL <either 0, 0L, or (void *)0> [0 in C++]

The macro yields a null pointer constant that is usable as an address constant expression.

offsetof

#define offsetof(s-type, mbr) <size_t constant expression>

The macro yields the offset in bytes, of type size_t, of member mbr from the beginning of structure
type s-type, where for X of type s-type, &X.mbr is an address constant expression.

ptrdiff_t

typedef si-type ptrdiff_t;

The type is the signed integer type si-type of an object that you declare to store the result of
subtracting two pointers.

size_t

typedef ui-type size_t;

The type is the unsigned integer type ui-type of an object that you declare to store the result of the
sizeof operator.

http://www.dinkumware.com/

wchar_t

typedef i-type wchar_t; [keyword in C++]

The type is the integer type i-type of a wide-character constant, such as L'X'. You declare an object
of type wchar_t to hold a wide character.

See also the Table of Contents and the Index.

Copyright © 1989-1996 by P.J. Plauger and Jim Brodie. All rights reserved.

<stdlib.h>

EXIT_FAILURE · EXIT_SUCCESS · MB_CUR_MAX · NULL · RAND_MAX · abort ·
abs · atexit · atof · atoi · atol · bsearch · calloc · div · div_t ·
exit · free · getenv · labs · ldiv · ldiv_t · malloc · mblen ·
mbstowcs · mbtowc · qsort · rand · realloc · size_t · srand · strtod ·
strtol · strtoul · system · wchar_t · wcstombs · wctomb

#define EXIT_FAILURE <rvalue integer expression>
#define EXIT_SUCCESS <rvalue integer expression>
#define MB_CUR_MAX <rvalue integer expression >= 1>
#define NULL <either 0, 0L, or (void *)0> [0 in C++]
#define RAND_MAX <integer constant expression >= 32,767>
void abort(void);
int abs(int i);
long abs(long i); [C++ only]
int atexit(void (*func)(void));
double atof(const char *s);
int atoi(const char *s);
long atol(const char *s);
void *bsearch(const void *key, const void *base, size_t nelem, size_t
size, int (*cmp)(const void *ck, const void *ce));
void *calloc(size_t nelem, size_t size);
div_t div(int numer, int denom);
ldiv_t div(long numer, long denom); [C++ only]
typedef T div_t;
void exit(int status);
void free(void *ptr);
char *getenv(const char *name);
long labs(long i);
ldiv_t ldiv(long numer, long denom);
typedef T ldiv_t;
void *malloc(size_t size);
int mblen(const char *s, size_t n);
size_t mbstowcs(wchar_t *wcs, const char *s, size_t n);
int mbtowc(wchar_t *pwc, const char *s, size_t n);

http://www.dinkumware.com/

void qsort(void *base, size_t nelem, size_t size, int (*cmp)(const
void *e1, const void *e2));
int rand(void);
void *realloc(void *ptr, size_t size);
typedef ui-type size_t;
void srand(unsigned int seed);
double strtod(const char *s, char **endptr);
long strtol(const char *s, char **endptr, int base);
unsigned long strtoul(const char *s, char **endptr, int base);
int system(const char *s);
typedef i-type wchar_t; [keyword in C++]
size_t wcstombs(char *s, const wchar_t *wcs, size_t n);
int wctomb(char *s, wchar_t wchar);

Include the standard header <stdlib.h> to declare an assortment of useful functions and to define the
macros and types that help you use them.

EXIT_FAILURE

#define EXIT_FAILURE <rvalue integer expression>

The macro yields the value of the status argument to exit that reports unsuccessful termination.

EXIT_SUCCESS

#define EXIT_SUCCESS <rvalue integer expression>

The macro yields the value of the status argument to exit that reports successful termination.

MB_CUR_MAX

#define MB_CUR_MAX <rvalue integer expression >= 1>

The macro yields the maximum number of characters that constitute a multibyte character in the current
locale. Its value is <= MB_LEN_MAX.

NULL

#define NULL <either 0, 0L, or (void *)0> [0 in C++]

The macro yields a null pointer constant that is usable as an address constant expression.

RAND_MAX

#define RAND_MAX <integer constant expression >= 32,767>

The macro yields the maximum value returned by rand.

abort

void abort(void);

The function calls raise(SIGABRT), which reports the abort signal, SIGABRT. Default handling for
the abort signal is to cause abnormal program termination and report unsuccessful termination to the
target environment. Whether or not the target environment flushes output streams, closes open files, or
removes temporary files on abnormal termination is implementation defined. If you specify handling that
causes raise to return control to abort, the function calls exit(EXIT_FAILURE), to report
unsuccessful termination with EXIT_FAILURE. abort never returns control to its caller.

abs

int abs(int i);
long abs(long i); [C++ only]

The function returns the absolute value of i, |i|. The version that accepts a long argument behaves the
same as labs

atexit

int atexit(void (*func)(void));

The function registers the function whose address is func to be called by exit (or when main returns)
and returns zero if successful. The functions are called in reverse order of registry. You can register at
least 32 functions.

atof

double atof(const char *s);

The function converts the initial characters of the string s to an equivalent value x of type double and
then returns x. The conversion is the same as for strtod(s, 0), except that a value is not
necessarily stored in errno if a conversion error occurs.

atoi

int atoi(const char *s);

The function converts the initial characters of the string s to an equivalent value x of type int and then
returns x. The conversion is the same as for (int)strtol(s, 0, 10), except that a value is not
necessarily stored in errno if a conversion error occurs.

atol

long atol(const char *s);

The function converts the initial characters of the string s to an equivalent value x of type long and then
returns x. The conversion is the same as for strtol(s, 0, 10), except that a value is not
necessarily stored in errno if a conversion error occurs.

bsearch

void *bsearch(const void *key, const void *base, size_t nelem, size_t
size, int (*cmp)(const void *ck, const void *ce));

The function searches an array of ordered values and returns the address of an array element that equals
the search key key (if one exists); otherwise, it returns a null pointer. The array consists of nelem
elements, each of size bytes, beginning with the element whose address is base.

bsearch calls the comparison function whose address is cmp to compare the search key with elements
of the array. The comparison function must return:

a negative value if the search key ck is less than the array element ce●

zero if the two are equal●

a positive value if the search key is greater than the array element●

bsearch assumes that the array elements are in ascending order according to the same comparison
rules that are used by the comparison function.

calloc

void *calloc(size_t nelem, size_t size);

The function allocates an array object containing nelem elements each of size size, stores zeros in all
bytes of the array, and returns the address of the first element of the array if successful; otherwise, it
returns a null pointer. You can safely convert the return value to an object pointer of any type whose size
in bytes is not greater than size.

div

div_t div(int numer, int denom);
ldiv_t div(long numer, long denom); [C++ only]

The function divides numer by denom and returns both quotient and remainder in the structure div_t
(or ldiv_t) result x, if the quotient can be represented. The structure member x.quot is the algebraic
quotient truncated toward zero. The structure member x.rem is the remainder, such that numer ==
x.quot*denom + x.rem.

div_t

typedef struct {
 int quot, rem;
 } div_t;

The type is the structure type returned by the function div. The structure contains members that
represent the quotient (quot) and remainder (rem) of a signed integer division with operands of type
int. The members shown above can occur in either order.

exit

void exit(int status);

The function calls all functions registered by atexit, closes all files, and returns control to the target
environment. If status is zero or EXIT_SUCCESS, the program reports successful termination. If
status is EXIT_FAILURE, the program reports unsuccessful termination. An implementation can
define additional values for status.

free

void free(void *ptr);

If ptr is not a null pointer, the function deallocates the object whose address is ptr; otherwise, it does
nothing. You can deallocate only objects that you first allocate by calling calloc, malloc, or
realloc.

getenv

char *getenv(const char *name);

The function searches an environment list, which each implementation defines, for an entry whose name
matches the string name. If the function finds a match, it returns a pointer to a static-duration object that

holds the definition associated with the target environment name. Otherwise, it returns a null pointer. Do
not alter the value stored in the object. If you call getenv again, the value stored in the object can
change. No target environment names are required of all environments.

labs

long labs(long i);

The function returns the absolute value of i, |i|, the same as abs.

ldiv

ldiv_t ldiv(long numer, long denom);

The function divides numer by denom and returns both quotient and remainder in the structure
ldiv_t result x, if the quotient can be represented. The structure member x.quot is the algebraic
quotient truncated toward zero. The structure member x.rem is the remainder, such that numer ==
x.quot*denom + x.rem.

ldiv_t

typedef struct {
 long quot, rem;
 } ldiv_t;

The type is the structure type returned by the function ldiv. The structure contains members that
represent the quotient (quot) and remainder (rem) of a signed integer division with operands of type
long. The members shown above can occur in either order.

malloc

void *malloc(size_t size);

The function allocates an object of size size, and returns the address of the object if successful;
otherwise, it returns a null pointer. The values stored in the object are indeterminate. You can safely
convert the return value to an object pointer of any type whose size is not greater than size.

mblen

int mblen(const char *s, size_t n);

If s is not a null pointer, the function returns the number of bytes in the multibyte string s that constitute
the next multibyte character, or it returns -1 if the next n (or the remaining) bytes do not constitute a
valid multibyte character. mblen does not include the terminating null in the count of bytes. The

function can use a conversion state stored in an internal static-duration object to determine how to
interpret the multibyte string.

If s is a null pointer and if multibyte characters have a state-dependent encoding in the current locale, the
function stores the initial conversion state in its internal static-duration object and returns nonzero;
otherwise, it returns zero.

mbstowcs

size_t mbstowcs(wchar_t *wcs, const char *s, size_t n);

The function stores a wide character string, in successive elements of the array whose first element has
the address wcs, by converting, in turn, each of the multibyte characters in the multibyte string s. The
string begins in the initial conversion state. The function converts each character as if by calling mbtowc
(except that the internal conversion state stored for that function is unaffected). It stores at most n wide
characters, stopping after it stores a null wide character. It returns the number of wide characters it stores,
not counting the null wide character, if all conversions are successful; otherwise, it returns -1.

mbtowc

int mbtowc(wchar_t *pwc, const char *s, size_t n);

If s is not a null pointer, the function determines x, the number of bytes in the multibyte string s that
constitute the next multibyte character. (x cannot be greater than MB_CUR_MAX.) If pwc is not a null
pointer, the function converts the next multibyte character to its corresponding wide-character value and
stores that value in *pwc. It then returns x, or it returns -1 if the next n or the remaining bytes do not
constitute a valid multibyte character. mbtowc does not include the terminating null in the count of
bytes. The function can use a conversion state stored in an internal static-duration object to determine
how to interpret the multibyte string.

If s is a null pointer and if multibyte characters have a state-dependent encoding in the current locale, the
function stores the initial conversion state in its internal static-duration object and returns nonzero;
otherwise, it returns zero.

qsort

void qsort(void *base, size_t nelem, size_t size, int (*cmp)(const
void *e1, const void *e2));

The function sorts, in place, an array consisting of nelem elements, each of size bytes, beginning with
the element whose address is base. It calls the comparison function whose address is cmp to compare
pairs of elements. The comparison function must return a negative value if e1 is less than e2, zero if the
two are equal, or a positive value if e1 is greater than e2. Two array elements that are equal can appear
in the sorted array in either order.

rand

int rand(void);

The function computes a pseudo-random number x based on a seed value stored in an internal
static-duration object, alters the stored seed value, and returns x. x is in the interval [0, RAND_MAX].

realloc

void *realloc(void *ptr, size_t size);

The function allocates an object of size size, possibly obtaining initial stored values from the object
whose address is ptr. It returns the address of the new object if successful; otherwise, it returns a null
pointer. You can safely convert the return value to an object pointer of any type whose size is not greater
than size.

If ptr is not a null pointer, it must be the address of an existing object that you first allocate by calling
calloc, malloc, or realloc. If the existing object is not larger than the newly allocated object,
realloc copies the entire existing object to the initial part of the allocated object. (The values stored in
the remainder of the object are indeterminate.) Otherwise, the function copies only the initial part of the
existing object that fits in the allocated object. If realloc succeeds in allocating a new object, it
deallocates the existing object. Otherwise, the existing object is left unchanged.

If ptr is a null pointer, the function does not store initial values in the newly created object.

size_t

typedef ui-type size_t;

The type is the unsigned integer type ui-type of an object that you declare to store the result of the
sizeof operator.

srand

void srand(unsigned int seed);

The function stores the seed value seed in a static-duration object that rand uses to compute a
pseudo-random number. From a given seed value, that function always generates the same sequence of
return values. The program behaves as if the target environment calls srand(1) at program startup.

strtod

double strtod(const char *s, char **endptr);

The function converts the initial characters of the string s to an equivalent value x of type double. If
endptr is not a null pointer, the function stores a pointer to the unconverted remainder of the string in
*endptr. The function then returns x.

The initial characters of the string s must consist of zero or more characters for which isspace returns
nonzero, followed by the longest sequence of one or more characters that match the pattern:

Here, a point is the decimal-point character for the current locale. (It is the dot (.) in the "C" locale.)
If the string s matches this pattern, its equivalent value is the decimal integer represented by any digits to
the left of the point, plus the decimal fraction represented by any digits to the right of the point,
times 10 raised to the signed decimal integer power that follows an optional e or E. A leading minus sign
negates the value. In locales other than the "C" locale, strtod can define additional patterns as well.

If the string s does not match a valid pattern, the value stored in *endptr is s, and x is zero. If a range
error occurs, strtod behaves exactly as the functions declared in <math.h>.

strtol

long strtol(const char *s, char **endptr, int base);

The function converts the initial characters of the string s to an equivalent value x of type long. If
endptr is not a null pointer, it stores a pointer to the unconverted remainder of the string in *endptr.
The function then returns x.

The initial characters of the string s must consist of zero or more characters for which isspace returns
nonzero, followed by the longest sequence of one or more characters that match the pattern:

The function accepts the sequences 0x or 0X only when base equals zero or 16. The letters a-z or A-Z

represent digits in the range [10, 36). If base is in the range [2, 36], the function accepts only digits with
values less than base. If base == 0, then a leading 0x or 0X (after any sign) indicates a hexadecimal
(base 16) integer, a leading 0 indicates an octal (base 8) integer, and any other valid pattern indicates a
decimal (base 10) integer.

If the string s matches this pattern, its equivalent value is the signed integer of the appropriate base
represented by the digits that match the pattern. (A leading minus sign negates the value.) In locales other
than the "C" locale, strtol can define additional patterns as well.

If the string s does not match a valid pattern, the value stored in *endptr is s, and x is zero. If the
equivalent value is too large to represent as type long, strtol stores the value of ERANGE in errno
and returns either LONG_MAX, if x is positive, or LONG_MIN, if x is negative.

strtoul

unsigned long strtoul(const char *s, char **endptr, int base);

The function converts the initial characters of the string s to an equivalent value x of type unsigned long.
If endptr is not a null pointer, it stores a pointer to the unconverted remainder of the string in
*endptr. The function then returns x.

strtoul converts strings exactly as does strtol, but reports a range error only if the equivalent value
is too large to represent as type unsigned long. In this case, strtoul stores the value of ERANGE in
errno and returns ULONG_MAX.

system

int system(const char *s);

If s is not a null pointer, the function passes the string s to be executed by a command processor,
supplied by the target environment, and returns the status reported by the command processor. If s is a
null pointer, the function returns nonzero only if the target environment supplies a command processor.
Each implementation defines what strings its command processor accepts.

wchar_t

typedef i-type wchar_t; [keyword in C++]

The type is the integer type i-type of a wide-character constant, such as L'X'. You declare an object
of type wchar_t to hold a wide character.

wcstombs

size_t wcstombs(char *s, const wchar_t *wcs, size_t n);

The function stores a multibyte string, in successive elements of the array whose first element has the
address s, by converting in turn each of the wide characters in the string wcs. The multibyte string
begins in the initial conversion state. The function converts each wide character as if by calling wctomb
(except that the conversion state stored for that function is unaffected). It stores no more than n bytes,
stopping after it stores a null byte. It returns the number of bytes it stores, not counting the null byte, if all
conversions are successful; otherwise, it returns -1.

wctomb

int wctomb(char *s, wchar_t wchar);

If s is not a null pointer, the function determines x, the number of bytes needed to represent the
multibyte character corresponding to the wide character wchar. x cannot exceed MB_CUR_MAX. The
function converts wchar to its corresponding multibyte character, which it stores in successive elements
of the array whose first element has the address s. It then returns x, or it returns -1 if wchar does not
correspond to a valid multibyte character. wctomb includes the terminating null byte in the count of
bytes. The function can use a conversion state stored in a static-duration object to determine how to
interpret the multibyte character string.

If s is a null pointer and if multibyte characters have a state-dependent encoding in the current locale, the
function stores the initial conversion state in its static-duration object and returns nonzero; otherwise, it
returns zero.

See also the Table of Contents and the Index.

Copyright © 1989-1996 by P.J. Plauger and Jim Brodie. All rights reserved.

<string.h>

NULL · memchr · memcmp · memcpy · memmove · memset · size_t · strcat ·
strchr · strcmp · strcoll · strcpy · strcspn · strerror · strlen ·
strncat · strncmp · strncpy · strpbrk · strrchr · strspn · strstr ·
strtok · strxfrm

#define NULL <either 0, 0L, or (void *)0> [0 in C++]
void *memchr(const void *s, int c, size_t n); [not in C++]
const void *memchr(const void *s, int c, size_t n); [C++ only]
void *memchr(void *s, int c, size_t n); [C++ only]
int memcmp(const void *s1, const void *s2, size_t n);
void *memcpy(void *s1, const void *s2, size_t n);
void *memmove(void *s1, const void *s2, size_t n);
void *memset(void *s, int c, size_t n);
typedef ui-type size_t;
char *strcat(char *s1, const char *s2);
char *strchr(const char *s, int c); [not in C++]
const char *strchr(const char *s, int c); [C++ only]
char *strchr(char *s, int c); [C++ only]
int strcmp(const char *s1, const char *s2);
int strcoll(const char *s1, const char *s2);
char *strcpy(char *s1, const char *s2);
size_t strcspn(const char *s1, const char *s2);
char *strerror(int errcode);
size_t strlen(const char *s);
char *strncat(char *s1, const char *s2, size_t n);
int strncmp(const char *s1, const char *s2, size_t n);
char *strncpy(char *s1, const char *s2, size_t n);
char *strpbrk(const char *s1, const char *s2); [not in C++]
const char *strpbrk(const char *s1, const char *s2); [C++ only]
char *strpbrk(char *s1, const char *s2); [C++ only]
char *strrchr(const char *s, int c); [not in C++]
const char *strrchr(const char *s, int c); [C++ only]
char *strrchr(char *s, int c); [C++ only]
size_t strspn(const char *s1, const char *s2);

http://www.dinkumware.com/

char *strstr(const char *s1, const char *s2); [not in C++]
const char *strstr(const char *s1, const char *s2); [C++ only]
char *strstr(char *s1, const char *s2); [C++ only]
char *strtok(char *s1, const char *s2);
size_t strxfrm(char *s1, const char *s2, size_t n);

Include the standard header <string.h> to declare a number of functions that help you manipulate C
strings and other arrays of characters.

NULL

#define NULL <either 0, 0L, or (void *)0> [0 in C++]

The macro yields a null pointer constant that is usable as an address constant expression.

memchr

void *memchr(const void *s, int c, size_t n); [not in C++]
const void *memchr(const void *s, int c, size_t n); [C++ only]
void *memchr(void *s, int c, size_t n); [C++ only]

The function searches for the first element of an array of unsigned char, beginning at the address s with
size n, that equals (unsigned char)c. If successful, it returns the address of the matching element;
otherwise, it returns a null pointer.

memcmp

int memcmp(const void *s1, const void *s2, size_t n);

The function compares successive elements from two arrays of unsigned char, beginning at the addresses
s1 and s2 (both of size n), until it finds elements that are not equal:

If all elements are equal, the function returns zero.●

If the differing element from s1 is greater than the element from s2, the function returns a
positive number.

●

Otherwise, the function returns a negative number.●

memcpy

void *memcpy(void *s1, const void *s2, size_t n);

The function copies the array of char beginning at the address s2 to the array of char beginning at the
address s1 (both of size n). It returns s1. The elements of the arrays can be accessed and stored in any
order.

memmove

void *memmove(void *s1, const void *s2, size_t n);

The function copies the array of char beginning at s2 to the array of char beginning at s1 (both of size
n). It returns s1. If the arrays overlap, the function accesses each of the element values from s2 before it
stores a new value in that element, so the copy is not corrupted.

memset

void *memset(void *s, int c, size_t n);

The function stores (unsigned char)c in each of the elements of the array of unsigned char
beginning at s, with size n. It returns s.

size_t

typedef ui-type size_t;

The type is the unsigned integer type ui-type of an object that you declare to store the result of the
sizeof operator.

strcat

char *strcat(char *s1, const char *s2);

The function copies the string s2, including its terminating null character, to successive elements of the
array of char that stores the string s1, beginning with the element that stores the terminating null
character of s1. It returns s1.

strchr

char *strchr(const char *s, int c); [not in C++]
const char *strchr(const char *s, int c); [C++ only]
char *strchr(char *s, int c); [C++ only]

The function searches for the first element of the string s that equals (char)c. It considers the
terminating null character as part of the string. If successful, the function returns the address of the
matching element; otherwise, it returns a null pointer.

strcmp

int strcmp(const char *s1, const char *s2);

The function compares successive elements from two strings, s1 and s2, until it finds elements that are
not equal.

If all elements are equal, the function returns zero.●

If the differing element from s1 is greater than the element from s2 (both taken as unsigned
char), the function returns a positive number.

●

Otherwise, the function returns a negative number.●

strcoll

int strcoll(const char *s1, const char *s2);

The function compares two strings, s1 and s2, using a comparison rule that depends on the current
locale. If s1 compares greater than s2 by this rule, the function returns a positive number. If the two
strings compare equal, it returns zero. Otherwise, it returns a negative number.

strcpy

char *strcpy(char *s1, const char *s2);

The function copies the string s2, including its terminating null character, to successive elements of the
array of char whose first element has the address s1. It returns s1.

strcspn

size_t strcspn(const char *s1, const char *s2);

The function searches for the first element s1[i] in the string s1 that equals any one of the elements of
the string s2 and returns i. Each terminating null character is considered part of its string.

strerror

char *strerror(int errcode);

The function returns a pointer to an internal static-duration object containing the message string
corresponding to the error code errcode. The program must not alter any of the values stored in this
object. A later call to strerror can alter the value stored in this object.

strlen

size_t strlen(const char *s);

The function returns the number of characters in the string s, not including its terminating null character.

strncat

char *strncat(char *s1, const char *s2, size_t n);

The function copies the string s2, not including its terminating null character, to successive elements of
the array of char that stores the string s1, beginning with the element that stores the terminating null
character of s1. The function copies no more than n characters from s2. It then stores a null character,
in the next element to be altered in s1, and returns s1.

strncmp

int strncmp(const char *s1, const char *s2, size_t n);

The function compares successive elements from two strings, s1 and s2, until it finds elements that are
not equal or until it has compared the first n elements of the two strings.

If all elements are equal, the function returns zero.●

If the differing element from s1 is greater than the element from s2 (both taken as unsigned
char), the function returns a positive number.

●

Otherwise, it returns a negative number.●

strncpy

char *strncpy(char *s1, const char *s2, size_t n);

The function copies the string s2, not including its terminating null character, to successive elements of
the array of char whose first element has the address s1. It copies no more than n characters from s2.
The function then stores zero or more null characters in the next elements to be altered in s1 until it
stores a total of n characters. It returns s1.

strpbrk

char *strpbrk(const char *s1, const char *s2); [not in C++]
const char *strpbrk(const char *s1, const char *s2); [C++ only]
char *strpbrk(char *s1, const char *s2); [C++ only]

The function searches for the first element s1[i] in the string s1 that equals any one of the elements of
the string s2. It considers each terminating null character as part of its string. If s1[i] is not the

terminating null character, the function returns &s1[i]; otherwise, it returns a null pointer.

strrchr

char *strrchr(const char *s, int c); [not in C++]
const char *strrchr(const char *s, int c); [C++ only]
char *strrchr(char *s, int c); [C++ only]

The function searches for the last element of the string s that equals (char)c. It considers the
terminating null character as part of the string. If successful, the function returns the address of the
matching element; otherwise, it returns a null pointer.

strspn

size_t strspn(const char *s1, const char *s2);

The function searches for the first element s1[i] in the string s1 that equals none of the elements of
the string s2 and returns i. It considers the terminating null character as part of the string s1 only.

strstr

char *strstr(const char *s1, const char *s2); [not in C++]
const char *strstr(const char *s1, const char *s2); [C++ only]
char *strstr(char *s1, const char *s2); [C++ only]

The function searches for the first sequence of elements in the string s1 that matches the sequence of
elements in the string s2, not including its terminating null character. If successful, the function returns
the address of the matching first element; otherwise, it returns a null pointer.

strtok

char *strtok(char *s1, const char *s2);

If s1 is not a null pointer, the function begins a search of the string s1. Otherwise, it begins a search of
the string whose address was last stored in an internal static-duration object on an earlier call to the
function, as described below. The search proceeds as follows:

The function searches the string for begin, the address of the first element that equals none of the
elements of the string s2 (a set of token separators). It considers the terminating null character as
part of the search string only.

1.

If the search does not find an element, the function stores the address of the terminating null
character in the internal static-duration object (so that a subsequent search beginning with that
address will fail) and returns a null pointer. Otherwise, the function searches from begin for
end, the address of the first element that equals any one of the elements of the string s2. It again
considers the terminating null character as part of the search string only.

2.

If the search does not find an element, the function stores the address of the terminating null
character in the internal static-duration object. Otherwise, it stores a null character in the element
whose address is end. Then it stores the address of the next element after end in the internal
static-duration object (so that a subsequent search beginning with that address will continue with
the remaining elements of the string) and returns begin.

3.

strxfrm

size_t strxfrm(char *s1, const char *s2, size_t n);

The function stores a string in the array of char whose first element has the address s1. It stores no more
than n characters, including the terminating null character, and returns the number of characters needed
to represent the entire string, not including the terminating null character. If the value returned is n or
greater, the values stored in the array are indeterminate. (If n is zero, s1 can be a null pointer.)

strxfrm generates the string it stores from the string s2 by using a transformation rule that depends on
the current locale. For example, if x is a transformation of s1 and y is a transformation of s2, then
strcmp(x, y) returns the same value as strcoll(s1, s2).

See also the Table of Contents and the Index.

Copyright © 1989-1996 by P.J. Plauger and Jim Brodie. All rights reserved.

<time.h>

#define CLOCKS_PER_SEC <integer constant expression > 0>
#define NULL <either 0, 0L, or (void *)0> [0 in C++]
char *asctime(const struct tm *tptr);
clock_t clock(void);
typedef a-type clock_t;
char *ctime(const time_t *tod);
double difftime(time_t t1, time_t t0);
struct tm *gmtime(const time_t *tod);
struct tm *localtime(const time_t *tod);
time_t mktime(struct tm *tptr);
typedef ui-type size_t;
size_t strftime(char *s, size_t n, const char *format, const struct tm
*tptr);
time_t time(time_t *tod);
typedef a-type time_t;
struct tm;

Include the standard header <time.h> to declare several functions that help you manipulate times. The
following diagram summarizes the functions and the object types that they convert between:

The functions share two static-duration objects that hold values computed by the functions:

a time string of type array of char●

a time structure of type struct tm●

A call to one of these functions can alter the value that was stored earlier in a static-duration object by
another of these functions.

http://www.dinkumware.com/

CLOCKS_PER_SEC

#define CLOCKS_PER_SEC <integer constant expression > 0>

The macro yields the number of clock ticks, returned by clock, in one second.

NULL

#define NULL <either 0, 0L, or (void *)0> [0 in C++]

The macro yields a null pointer constant that is usable as an address constant expression.

asctime

char *asctime(const struct tm *tptr);

The function stores in the static-duration time string a 26-character English-language representation of
the time encoded in *tptr. It returns the address of the static-duration time string. The text
representation takes the form:

Sun Dec 2 06:55:15 1979\n\0

clock

clock_t clock(void);

The function returns the number of clock ticks of elapsed processor time, counting from a time related to
program startup, or it returns -1 if the target environment cannot measure elapsed processor time.

clock_t

typedef a-type clock_t;

The type is the arithmetic type a-type of an object that you declare to hold the value returned by
clock, representing elapsed processor time.

ctime

char *ctime(const time_t *tod);

The function converts the calendar time in *tod to a text representation of the local time in the
static-duration time string. It returns the address of that string. It is equivalent to
asctime(localtime(tod)).

difftime

double difftime(time_t t1, time_t t0);

The function returns the difference t1 - t0, in seconds, between the calendar time t0 and the
calendar time t1.

gmtime

struct tm *gmtime(const time_t *tod);

The function stores in the static-duration time structure an encoding of the calendar time in *tod,
expressed as Universal Time Coordinated, or UTC. (UTC was formerly Greenwich Mean Time, or
GMT). It returns the address of that structure.

localtime

struct tm *localtime(const time_t *tod);

The function stores in the static-duration time structure an encoding of the calendar time in *tod,
expressed as local time. It returns the address of that structure.

mktime

time_t mktime(struct tm *tptr);

The function alters the values stored in *tptr to represent an equivalent encoded local time, but with
the values of all members within their normal ranges. It then determines the values tptr->wday and
tptr->yday from the values of the other members. It returns the calendar time equivalent to the
encoded time, or it returns a value of -1 if the calendar time cannot be represented.

size_t

typedef ui-type size_t;

The type is the unsigned integer type ui-type of an object that you declare to store the result of the
sizeof operator.

strftime

size_t strftime(char *s, size_t n, const char *format, const struct tm
*tptr);

The function generates formatted text, under the control of the format format and the values stored in
the time structure *tptr. It stores each generated character in successive locations of the array object of
size n whose first element has the address s. The function then stores a null character in the next location
of the array. It returns x, the number of characters generated, if x < n; otherwise, it returns zero, and
the values stored in the array are indeterminate.

For each multibyte character other than % in the format, the function stores that multibyte character in the
array object. Each occurrence of % followed by another character in the format is a conversion specifier.
For each conversion specifier, the function stores a replacement character sequence.

The following table lists all conversion specifiers defined for strftime. Example replacement
character sequences in parentheses follow each conversion specifier. All examples are for the "C"
locale, using the date and time Sunday, 2 December 1979 at 06:55:15 AM EST.

 %a abbreviated weekday name (Sun)
 %A full weekday name (Sunday)
 %b abbreviated month name (Dec)
 %B full month name (December)
 %c date and time (Dec 2 06:55:15 1979)
 %d day of the month (02)
 %H hour of the 24-hour day (06)
 %I hour of the 12-hour day (06)
 %j day of the year, from 001 (335)
 %m month of the year, from 01 (12)
 %M minutes after the hour (55)
 %p AM/PM indicator (AM)
 %S seconds after the minute (15)
 %U Sunday week of the year, from 00 (48)
 %w day of the week, from 0 for Sunday (6)
 %W Monday week of the year, from 00 (47)
 %x date (Dec 2 1979)
 %X time (06:55:15)
 %y year of the century, from 00 (79)
 %Y year (1979)
 %Z time zone name, if any (EST)
 %% percent character %

The current locale category LC_TIME can affect these replacement character sequences.

time

time_t time(time_t *tod);

If tod is not a null pointer, the function stores the current calendar time in *tod. The function returns
the current calendar time, if the target environment can determine it; otherwise, it returns -1.

time_t

typedef a-type time_t;

The type is the arithmetic type a-type of an object that you declare to hold the value returned by
time. The value represents calendar time.

tm

struct tm {
 int tm_sec; seconds after the minute (from 0)
 int tm_min; minutes after the hour (from 0)
 int tm_hour; hour of the day (from 0)
 int tm_mday; day of the month (from 1)
 int tm_mon; month of the year (from 0)
 int tm_year; years since 1900 (from 0)
 int tm_wday; days since Sunday (from 0)
 int tm_yday; day of the year (from 0)
 int tm_isdst; Daylight Saving Time flag
 };

struct tm contains members that describe various properties of the calendar time. The members
shown above can occur in any order, interspersed with additional members. The comment following each
member briefly describes its meaning.

The member tm_isdst contains:

a positive value if Daylight Saving Time is in effect●

zero if Daylight Saving Time is not in effect●

a negative value if the status of Daylight Saving Time is not known (so the target environment
should attempt to determine its status)

●

See also the Table of Contents and the Index.

Copyright © 1989-1996 by P.J. Plauger and Jim Brodie. All rights reserved.

<wchar.h> [Added with
Amendment 1]

btowc · fgetwc · fgetws · fputwc · fputws · fwide · fwprintf · fwscanf
· getwc · getwchar · mbrlen · mbrtowc · mbsinit · mbsrtowcs ·
mbstate_t · NULL · putwc · putwchar · size_t · swprintf · swscanf · tm
· ungetwc · vfwprintf · vswprintf · vwprintf · WCHAR_MAX · WCHAR_MIN ·
wchar_t · wcrtomb · wcscat · wcschr · wcscmp · wcscoll · wcscpy ·
wcscspn · wcsftime · wcslen · wcsncat · wcsncmp · wcsncpy · wcspbrk ·
wcsrchr · wcsrtombs · wcsspn · wcsstr · wcstod · wcstok · wcstol ·
wcstoul · wcsxfrm · wctob · WEOF · wint_t · wmemchr · wmemcmp ·
wmemcpy · wmemmove · wmemset · wprintf · wscanf

#define NULL <either 0, 0L, or (void *)0> [0 in C++]
#define WCHAR_MAX <#if expression >= 127>
#define WCHAR_MIN <#if expression <= 0>
#define WEOF <wint_t constant expression>
wint_t btowc(int c);
wint_t fgetwc(FILE *stream);
wchar_t *fgetws(wchar_t *s, int n, FILE *stream);
wint_t fputwc(wchar_t c, FILE *stream);
int fputws(const wchar_t *s, FILE *stream);
int fwide(FILE *stream, int mode);
int fwprintf(FILE *stream, const wchar_t *format, ...);
int fwscanf(FILE *stream, const wchar_t *format, ...);
wint_t getwc(FILE *stream);
wint_t getwchar(void);
size_t mbrlen(const char *s, size_t n, mbstate_t *ps);
size_t mbrtowc(wchar_t *pwc, const char *s, size_t n, mbstate_t *ps);
int mbsinit(const mbstate_t *ps);
size_t mbsrtowcs(wchar_t *dst, const char **src, size_t len, mbstate_t
*ps);
typedef o-type mbstate_t;
wint_t putwc(wchar_t c, FILE *stream);
wint_t putwchar(wchar_t c);

http://www.dinkumware.com/

typedef ui-type size_t;
int swprintf(wchar_t *s, size_t n, const wchar_t *format, ...);
int swscanf(const wchar_t *s, const wchar_t *format, ...);
struct tm;
wint_t ungetwc(wint_t c, FILE *stream);
int vfwprintf(FILE *stream, const wchar_t *format, va_list arg);
int vswprintf(wchar_t *s, size_t n, const wchar_t *format, va_list
arg);
int vwprintf(const wchar_t *format, va_list arg);
typedef i-type wchar_t; [keyword in C++]
size_t wcrtomb(char *s, wchar_t wc, mbstate_t *ps);
wchar_t *wcscat(wchar_t *s1, const wchar_t *s2);
wchar_t *wcschr(const wchar_t *s, wchar_t c);
int wcscmp(const wchar_t *s1, const wchar_t *s2);
int wcscoll(const wchar_t *s1, const wchar_t *s2);
wchar_t *wcscpy(wchar_t *s1, const wchar_t *s2);
size_t wcscspn(const wchar_t *s1, const wchar_t *s2);
size_t wcsftime(wchar_t *s, size_t maxsize, const wchar_t *format,
const struct tm *timeptr);
size_t wcslen(const wchar_t *s);
wchar_t *wcsncat(wchar_t *s1, const wchar_t *s2, size_t n);
int wcsncmp(const wchar_t *s1, const wchar_t *s2, size_t n);
wchar_t *wcsncpy(wchar_t *s1, const wchar_t *s2, size_t n);
wchar_t *wcspbrk(const wchar_t *s1, const wchar_t *s2);
wchar_t *wcsrchr(const wchar_t *s, wchar_t c);
size_t wcsrtombs(char *dst, const wchar_t **src, size_t len, mbstate_t
*ps);
size_t wcsspn(const wchar_t *s1, const wchar_t *s2);
wchar_t *wcsstr(const wchar_t *s1, const wchar_t *s2);
double wcstod(const wchar_t *nptr, wchar_t **endptr);
wchar_t *wcstok(wchar_t *s1, const wchar_t *s2, wchar_t **ptr);
long wcstol(const wchar_t *nptr, wchar_t **endptr, int base);
unsigned long wcstoul(const wchar_t *nptr, wchar_t **endptr, int
base);
size_t wcsxfrm(wchar_t *s1, const wchar_t *s2, size_t n);
int wctob(wint_t c);
typedef i_type wint_t;
wchar_t *wmemchr(const wchar_t *s, wchar_t c, size_t n); [not in C++]
const wchar_t *wmemchr(const wchar_t *s, wchar_t c, size_t n); [C++
only]
wchar_t *wmemchr(wchar_t *s, wchar_t c, size_t n); [C++ only]

int wmemcmp(const wchar_t *s1, const wchar_t *s2, size_t n);
wchar_t *wmemcpy(wchar_t *s1, const wchar_t *s2, size_t n);
wchar_t *wmemmove(wchar_t *s1, const wchar_t *s2, size_t n);
wchar_t *wmemset(wchar_t *s, wchar_t c, size_t n);
int wprintf(const wchar_t *format, ...);
int wscanf(const wchar_t *format, ...);

Include the standard header <wchar.h> so that you can perform input and output operations on wide
streams or manipulate wide strings.

NULL

#define NULL <either 0, 0L, or (void *)0> [0 in C++]

The macro yields a null pointer constant that is usable as an address constant expression.

WCHAR_MAX

#define WCHAR_MAX <#if expression >= 127>

The macro yields the maximum value for type wchar_t.

WCHAR_MIN

#define WCHAR_MIN <#if expression <= 0>

The macro yields the minimum value for type wchar_t.

WEOF

#define WEOF <wint_t constant expression>

The macro yields the return value, of type wint_t, used to signal the end of a wide stream or to report
an error condition.

btowc

wint_t btowc(int c);

The function returns WEOF if c equals EOF. Otherwise, it converts (unsigned char)c as a one-byte
multibyte character beginning in the initial conversoon state, as if by calling mbrtowc. If the conversion
succeeds, the function returns the wide-character conversion. Otherwise, it returns WEOF.

fgetwc

wint_t fgetwc(FILE *stream);

The function reads the next wide character c (if present) from the input stream stream, advances the
file-position indicator (if defined), and returns (wint_t)c. If the function sets either the end-of-file
indicator or the error indicator, it returns WEOF.

fgetws

wchar_t *fgetws(wchar_t *s, int n, FILE *stream);

The function reads wide characters from the input stream stream and stores them in successive
elements of the array beginning at s and continuing until it stores n - 1 wide characters, stores an NL
wide character, or sets the end-of-file or error indicators. If fgetws stores any wide characters, it
concludes by storing a null wide character in the next element of the array. It returns s if it stores any
wide characters and it has not set the error indicator for the stream; otherwise, it returns a null pointer. If
it sets the error indicator, the array contents are indeterminate.

fputwc

wint_t fputwc(wchar_t c, FILE *stream);

The function writes the wide character c to the output stream stream, advances the file-position
indicator (if defined), and returns (wint_t)c. If the function sets the error indicator for the stream, it
returns WEOF.

fputws

int fputws(const wchar_t *s, FILE *stream);

The function accesses wide characters from the string s and writes them to the output stream stream.
The function does not write the terminating null wide character. It returns a nonnegative value if it has
not set the error indicator; otherwise, it returns WEOF.

fwide

int fwide(FILE *stream, int mode);

The function determines the orientation of the stream stream. If mode is greater than zero, it first
attempts to make the stream wide oriented. If mode is less than zero, it first attempts to make the stream
byte oriented. In any event, the function returns:

a value greater than zero if the stream is left wide oriented●

zero if the stream is left unbound●

a value less than zero if the stream is left byte oriented●

In no event will the function alter the orientation of a stream once it has been oriented.

fwprintf

int fwprintf(FILE *stream, const wchar_t *format, ...);

The function generates formatted text, under the control of the format format and any additional
arguments, and writes each generated wide character to the stream stream. It returns the number of
wide characters generated, or it returns a negative value if the function sets the error indicator for the
stream.

fwscanf

int fwscanf(FILE *stream, const wchar_t *format, ...);

The function scans formatted text, under the control of the format format and any additional
arguments. It obtains each scanned character from the stream stream. It returns the number of input
items matched and assigned, or it returns EOF if the function does not store values before it sets the
end-of-file or error indicator for the stream.

getwc

wint_t getwc(FILE *stream);

The function has the same effect as fgetwc(stream) except that a macro version of getwc can
evaluate stream more than once.

getwchar

wint_t getwchar(void);

The function has the same effect as fgetwc(stdin).

mbrlen

size_t mbrlen(const char *s, size_t n, mbstate_t *ps);

The function is equivalent to the call:

mbrtowc(0, s, n, ps != 0 ? ps : &internal)

where internal is an object of type mbstate_t internal to the mbrlen function. At program
startup, internal is initialized to the initial conversion state. No other library function alters the value
stored in internal.

The function returns:

(size_t)-2 if, after converting all n characters, the resulting conversion state indicates an
incomplete multibyte character

●

(size_t)-1 if the function detects an encoding error before completing the next multibyte
character, in which case the function stores the value EILSEQ in errno and leaves the resulting
conversion state undefined

●

zero, if the next completed character is a null character, in which case the resulting conversion
state is the initial conversion state

●

x, the number of bytes needed to complete the next muitibyte character, in which case the
resulting conversion state indicates that x bytes have been converted

●

Thus, mbrlen effectively returns the number of bytes that would be consumed in successfully
converting a multibyte character to a wide character (without storing the converted wide character), or an
error code if the conversion cannot succeed.

mbrtowc

size_t mbrtowc(wchar_t *pwc, const char *s, size_t n, mbstate_t *ps);

The function determines the number of bytes in a multibyte string that completes the next multibyte
character, if possible.

If ps is not a null pointer, the conversion state for the multibyte string is assumed to be *ps. Otherwise,
it is assumed to be &internal, where internal is an object of type mbstate_t internal to the
mbrtowc function. At program startup, internal is initialized to the initial conversion state. No other
library function alters the value stored in internal.

If s is not a null pointer, the function determines x, the number of bytes in the multibyte string s that
complete or contribute to the next multibyte character. (x cannot be greater than n.) Otherwise, the
function effectively returns mbrtowc(0, "", 1, ps), ignoring pwc and n. (The function thus
returns zero only if the conversion state indicates that no incomplete multibyte character is pending from
a previous call to mbrlen, mbrtowc, or mbsrtowcs for the same string and conversion state.)

If pwc is not a null pointer, the function converts a completed multibyte character to its corresponding
wide-character value and stores that value in *pwc.

The function returns:

(size_t)-2 if, after converting all n characters, the resulting conversion state indicates an
incomplete multibyte character

●

(size_t)-1 if the function detects an encoding error before completing the next multibyte●

character, in which case the function stores the value EILSEQ in errno and leaves the resulting
conversion state undefined

zero, if the next completed character is a null character, in which case the resulting conversion
state is the initial conversion state

●

x, the number of bytes needed to complete the next muitibyte character, in which case the
resulting conversion state indicates that x bytes have been converted

●

mbsinit

int mbsinit(const mbstate_t *ps);

The function returns a nonzero value if ps is a null pointer or if *ps designates an initial conversion
state. Otherwise, it returns zero.

mbsrtowcs

size_t mbsrtowcs(wchar_t *dst, const char **src, size_t len, mbstate_t
*ps);

The function converts the multibyte string beginning at *src to a sequence of wide characters as if by
repeated calls of the form:

x = mbrtowc(dst, *src, n, ps != 0 ? ps : &internal)

where n is some value > 0 and internal is an object of type mbstate_t internal to the mbsrtowcs
function. At program startup, internal is initialized to the initial conversion state. No other library
function alters the value stored in internal.

If dst is not a null pointer, the mbsrtowcs function stores at most len wide characters by calls to
mbrtowc. The function effectively increments dst by one and *src by x after each call to mbrtowc
that stores a converted wide character. After a call that returns zero, mbsrtowcs stores a null wide
character at dst and stores a null pointer at *src.

If dst is a null pointer, len is effectively assigned a large value.

The function returns:

(size_t)-1, if a call to mbrtowc returns (size_t)-1, indicating that it has detected an
encoding error before completing the next multibyte character

●

the number of multibyte characters successfully converted, not including the terminating null
character

●

mbstate_t

typedef o-type mbstate_t;

The type is an object type o-type that can represent a conversion state for any of the functions mbrlen,
mbrtowc, mbsrtowcs, wcrtomb, or wcsrtombs. A definition of the form:

mbstate_t mbst = {0};

ensures that mbst represents the initial conversion state. Note, however, that other values stored in an
object of type mbstate_t can also represent this state. To test safely for this state, use the function
mbsinit.

putwc

wint_t putwc(wchar_t c, FILE *stream);

The function has the same effect as fputwc(c, stream) except that a macro version of putwc can
evaluate stream more than once.

putwchar

wint_t putwchar(wchar_t c);

The function has the same effect as fputwc(c, stdout).

size_t

typedef ui-type size_t;

The type is the unsigned integer type ui-type of an object that you declare to store the result of the
sizeof operator.

swprintf

int swprintf(wchar_t *s, size_t n, const wchar_t *format, ...);

The function generates formatted text, under the control of the format format and any additional
arguments, and stores each generated character in successive locations of the array object whose first
element has the address s. The function concludes by storing a null wide character in the next location of
the array. It returns the number of wide characters generated -- not including the null wide character.

swscanf

int swscanf(const wchar_t *s, const wchar_t *format, ...);

The function scans formatted text, under the control of the format format and any additional
arguments. It accesses each scanned character from successive locations of the array object whose first
element has the address s. It returns the number of items matched and assigned, or it returns EOF if the
function does not store values before it accesses a null wide character from the array.

tm

struct tm;

struct tm contains members that describe various properties of the calendar time. The declaration in
this header leaves struct tm an incomplete type. Include the header <time.h> to complete the type.

ungetwc

wint_t ungetwc(wint_t c, FILE *stream);

If c is not equal to WEOF, the function stores (wchar_t)c in the object whose address is stream and
clears the end-of-file indicator. If c equals WEOF or the store cannot occur, the function returns WEOF;
otherwise, it returns (wchar_t)c. A subsequent library function call that reads a wide character from
the stream stream obtains this stored value, which is then forgotten.

Thus, you can effectively push back a wide character to a stream after reading a wide character.

vfwprintf

int vfwprintf(FILE *stream, const wchar_t *format, va_list arg);

The function generates formatted text, under the control of the format format and any additional
arguments, and writes each generated wide character to the stream stream. It returns the number of
wide characters generated, or it returns a negative value if the function sets the error indicator for the
stream.

The function accesses additional arguments by using the context information designated by ap. The
program must execute the macro va_start before it calls the function, and then execute the macro
va_end after the function returns.

vswprintf

int vswprintf(wchar_t *s, size_t n, const wchar_t *format, va_list
arg);

The function generates formatted text, under the control of the format format and any additional
arguments, and stores each generated wide character in successive locations of the array object whose
first element has the address s. The function concludes by storing a null wide character in the next
location of the array. It returns the number of characters generated -- not including the null wide
character.

The function accesses additional arguments by using the context information designated by ap. The
program must execute the macro va_start before it calls the function, and then execute the macro
va_end after the function returns.

vwprintf

int vwprintf(const wchar_t *format, va_list arg);

The function generates formatted text, under the control of the format format and any additional
arguments, and writes each generated wide character to the stream stdout. It returns the number of
characters generated, or a negative value if the function sets the error indicator for the stream.

The function accesses additional arguments by using the context information designated by ap. The
program must execute the macro va_start before it calls the function, and then execute the macro
va_end after the function returns.

wchar_t

typedef i-type wchar_t; [keyword in C++]

The type is the integer type i-type of a wide-character constant, such as L'X'. You declare an object
of type wchar_t to hold a wide character.

wcrtomb

size_t wcrtomb(char *s, wchar_t wc, mbstate_t *ps);

The function determines the number of bytes needed to represent the wide character wc as a multibyte
character, if possible. (Not all values representable as type wchar_t are necessarily valid
wide-character codes.)

If ps is not a null pointer, the conversion state for the multibyte string is assumed to be *ps. Otherwise,
it is assumed to be &internal, where internal is an object of type mbstate_t internal to the

wcrtomb function. At program startup, internal is initialized to the initial conversion state. No other
library function alters the value stored in internal.

If s is not a null pointer and wc is a valid wide-character code, the function determines x, the number of
bytes needed to represent wc as a multibyte character, and stores the converted bytes in the array of char
beginning at s. (x cannot be greater than MB_CUR_MAX.) If wc is a null wide character, the function
stores any shift sequence needed to restore the initial shift state. followed by a null byte. The resulting
conversion state is the initial conversion state.

If s is a null pointer, the function effectively returns wcrtomb(buf, L'\0', ps), where buf is a
buffer internal to the function. (The function thus returns the number of bytes needed to restore the initial
conversion state and to terminate the multibyte string pending from a previous call to wcrtomb or
wcsrtombs for the same string and conversion state.)

The function returns:

(size_t)-1 if wc is an invalid wide-character code, in which case the function stores the value
EILSEQ in errno and leaves the resulting conversion state undefined

●

x, the number of bytes needed to complete the next muitibyte character, in which case the resulting
conversion state indicates that x bytes have been generated

●

wcscat

wchar_t *wcscat(wchar_t *s1, const wchar_t *s2);

The function copies the wide string s2, including its terminating null wide character, to successive
elements of the array that stores the wide string s1, beginning with the element that stores the
terminating null wide character of s1. It returns s1.

wcschr

wchar_t *wcschr(const wchar_t *s, wchar_t c);

The function searches for the first element of the wide string s that equals c. It considers the terminating
null wide character as part of the wide string. If successful, the function returns the address of the
matching element; otherwise, it returns a null pointer.

wcscmp

int wcscmp(const wchar_t *s1, const wchar_t *s2);

The function compares successive elements from two wide strings, s1 and s2, until it finds elements
that are not equal.

If all elements are equal, the function returns zero.●

If the differing element from s1 is greater than the element from s2, the function returns a●

positive number.

Otherwise, the function returns a negative number.●

wcscoll

int wcscoll(const wchar_t *s1, const wchar_t *s2);

The function compares two wide strings, s1 and s2, using a comparison rule that depends on the current
locale. If s1 compares greater than s2 by this rule, the function returns a positive number. If the two
wide strings compare equal, it returns zero. Otherwise, it returns a negative number.

wcscpy

wchar_t *wcscpy(wchar_t *s1, const wchar_t *s2);

The function copies the wide string s2, including its terminating null wide character, to successive
elements of the array whose first element has the address s1. It returns s1.

wcscspn

size_t wcscspn(const wchar_t *s1, const wchar_t *s2);

The function searches for the first element s1[i] in the wide string s1 that equals any one of the
elements of the wide string s2 and returns i. Each terminating null wide character is considered part of
its wide string.

wcsftime

size_t wcsftime(wchar_t *s, size_t maxsize, const wchar_t *format,
const struct tm *timeptr);

The function generates formatted text, under the control of the format format and the values stored in
the time structure *tptr. It stores each generated wide character in successive locations of the array
object of size n whose first element has the address s. The function then stores a null wide character in
the next location of the array. It returns x, the number of wide characters generated, if x < n; otherwise,
it returns zero, and the values stored in the array are indeterminate.

For each wide character other than % in the format, the function stores that wide character in the array
object. Each occurrence of % followed by another character in the format is a conversion specifier. For
each conversion specifier, the function stores a replacement wide character sequence. Conversion
specifiers are the same as for the function strftime. The current locale category LC_TIME can affect
these replacement character sequences.

wcslen

size_t wcslen(const wchar_t *s);

The function returns the number of wide characters in the wide string s, not including its terminating null
wide character.

wcsncat

wchar_t *wcsncat(wchar_t *s1, const wchar_t *s2, size_t n);

The function copies the wide string s2, not including its terminating null wide character, to successive
elements of the array that stores the wide string s1, beginning with the element that stores the
terminating null wide character of s1. The function copies no more than n wide characters from s2. It
then stores a null wide character, in the next element to be altered in s1, and returns s1.

wcsncmp

int wcsncmp(const wchar_t *s1, const wchar_t *s2, size_t n);

The function compares successive elements from two wide strings, s1 and s2, until it finds elements
that are not equal or until it has compared the first n elements of the two wide strings.

If all elements are equal, the function returns zero.●

If the differing element from s1 is greater than the element from s2, the function returns a
positive number.

●

Otherwise, it returns a negative number.●

wcsncpy

wchar_t *wcsncpy(wchar_t *s1, const wchar_t *s2, size_t n);

The function copies the wide string s2, not including its terminating null wide character, to successive
elements of the array whose first element has the address s1. It copies no more than n wide characters
from s2. The function then stores zero or more null wide characters in the next elements to be altered in
s1 until it stores a total of n wide characters. It returns s1.

wcspbrk

wchar_t *wcspbrk(const wchar_t *s1, const wchar_t *s2);

The function searches for the first element s1[i] in the wide string s1 that equals any one of the
elements of the wide string s2. It considers each terminating null wide character as part of its wide
string. If s1[i] is not the terminating null wide character, the function returns &s1[i]; otherwise, it

returns a null pointer.

wcsrchr

wchar_t *wcsrchr(const wchar_t *s, wchar_t c);

The function searches for the last element of the wide string s that equals c. It considers the terminating
null wide character as part of the wide string. If successful, the function returns the address of the
matching element; otherwise, it returns a null pointer.

wcsrtombs

size_t wcsrtombs(char *dst, const wchar_t **src, size_t len, mbstate_t
*ps);

The function converts the wide-character string beginning at *src to a sequence of multibyte characters
as if by repeated calls of the form:

x = wcrtomb(dst ? dst : buf, *src, ps != 0 ? ps : &internal)

where buf is an array of type char and internal is an object of type mbstate_t, both internal to
the wcsrtombs function. At program startup, internal is initialized to the initial conversion state.
No other library function alters the value stored in internal.

If dst is not a null pointer, the wcsrtombs function stores at most len bytes by calls to wcrtomb.
The function effectively increments dst by x and *src by one after each call to wcrtomb that stores a
complete converted multibyte character in the remaining space available. After a call that stores a
complete null multibyte character at dst (including any shift sequence needed to restore the initial shift
state), the function stores a null pointer at *src.

If dst is a null pointer, len is effectively assigned a large value.

The function returns:

(size_t)-1, if a call to wcrtomb returns (size_t)-1, indicating that it has detected an
invalid wide-character code

●

the number of bytes successfully converted, not including the terminating null byte●

wcsspn

size_t wcsspn(const wchar_t *s1, const wchar_t *s2);

The function searches for the first element s1[i] in the wide string s1 that equals none of the elements
of the wide string s2 and returns i. It considers the terminating null wide character as part of the wide
string s1 only.

wcsstr

wchar_t *wcsstr(const wchar_t *s1, const wchar_t *s2);

The function searches for the first sequence of elements in the wide string s1 that matches the sequence
of elements in the wide string s2, not including its terminating null wide character. If successful, the
function returns the address of the matching first element; otherwise, it returns a null pointer.

wcstod

double wcstod(const wchar_t *nptr, wchar_t **endptr);

The function converts the initial wide characters of the wide string s to an equivalent value x of type
double. If endptr is not a null pointer, the function stores a pointer to the unconverted remainder of the
wide string in *endptr. The function then returns x.

The initial wide characters of the wide string s must match the same pattern as recognized by the
function strtod, where each wide character wc is converted as if by calling wctob(wc)).

If the wide string s matches this pattern, its equivalent value is the value returned by strtod for the
converted sequence. If the wide string s does not match a valid pattern, the value stored in *endptr is
s, and x is zero. If a range error occurs, wcstod behaves exactly as the functions declared in
<math.h>.

wcstok

wchar_t *wcstok(wchar_t *s1, const wchar_t *s2, wchar_t **ptr);

If s1 is not a null pointer, the function begins a search of the wide string s1. Otherwise, it begins a
search of the wide string whose address was last stored in *ptr on an earlier call to the function, as
described below. The search proceeds as follows:

The function searches the wide string for begin, the address of the first element that equals none
of the elements of the wide string s2 (a set of token separators). It considers the terminating null
character as part of the search wide string only.

1.

If the search does not find an element, the function stores the address of the terminating null wide
character in *ptr (so that a subsequent search beginning with that address will fail) and returns a
null pointer. Otherwise, the function searches from begin for end, the address of the first
element that equals any one of the elements of the wide string s2. It again considers the
terminating null wide character as part of the search string only.

2.

If the search does not find an element, the function stores the address of the terminating null wide
character in *ptr. Otherwise, it stores a null wide character in the element whose address is
end. Then it stores the address of the next element after end in *ptr (so that a subsequent
search beginning with that address will continue with the remaining elements of the string) and
returns begin.

3.

wcstol

long wcstol(const wchar_t *nptr, wchar_t **endptr, int base);

The function converts the initial wide characters of the wide string s to an equivalent value x of type
long. If endptr is not a null pointer, the function stores a pointer to the unconverted remainder of the
wide string in *endptr. The function then returns x.

The initial wide characters of the wide string s must match the same pattern as recognized by the
function strtol, with the same base argument, where each wide character wc is converted as if by
calling wctob(wc)).

If the wide string s matches this pattern, its equivalent value is the value returned by strtol, with the
same base argument, for the converted sequence. If the wide string s does not match a valid pattern, the
value stored in *endptr is s, and x is zero. If the equivalent value is too large in magnitude to
represent as type long, wcstol stores the value of ERANGE in errno and returns either LONG_MAX if
x is positive or LONG_MIN if x is negative.

wcstoul

unsigned long wcstoul(const wchar_t *nptr, wchar_t **endptr, int
base);

The function converts the initial wide characters of the wide string s to an equivalent value x of type
unsigned long. If endptr is not a null pointer, it stores a pointer to the unconverted remainder of the
wide string in *endptr. The function then returns x.

wcstoul converts strings exactly as does wcstol, but checks only if the equivalent value is too large
to represent as type unsigned long. In this case, wcstoul stores the value of ERANGE in errno and
returns ULONG_MAX.

wcsxfrm

size_t wcsxfrm(wchar_t *s1, const wchar_t *s2, size_t n);

The function stores a wide string in the array whose first element has the address s1. It stores no more
than n wide characters, including the terminating null wide character, and returns the number of wide
characters needed to represent the entire wide string, not including the terminating null wide character. If
the value returned is n or greater, the values stored in the array are indeterminate. (If n is zero, s1 can be
a null pointer.)

wcsxfrm generates the wide string it stores from the wide string s2 by using a transformation rule that
depends on the current locale. For example, if x is a transformation of s1 and y is a transformation of
s2, then wcscmp(x, y) returns the same value as wcscoll(s1, s2).

wctob

int wctob(wint_t c);

The function determines whether c can be represented as a one-byte multibyte character x, beginning in
the initial shift state. (It effectively calls wcrtomb to make the conversion.) If so, the function returns x.
Otherwise, it returns WEOF.

wint_t

typedef i_type wint_t;

The type is the integer type i_type that can represent all values of type wchar_t as well as the value
of the macro WEOF, and that doesn't change when promoted.

wmemchr

wchar_t *wmemchr(const wchar_t *s, wchar_t c, size_t n); [not in C++]
const wchar_t *wmemchr(const wchar_t *s, wchar_t c, size_t n); [C++
only]
wchar_t *wmemchr(wchar_t *s, wchar_t c, size_t n); [C++ only]

The function searches for the first element of an array beginning at the address s with size n, that equals
c. If successful, it returns the address of the matching element; otherwise, it returns a null pointer.

wmemcmp

int wmemcmp(const wchar_t *s1, const wchar_t *s2, size_t n);

The function compares successive elements from two arrays beginning at the addresses s1 and s2 (both
of size n), until it finds elements that are not equal:

If all elements are equal, the function returns zero.●

If the differing element from s1 is greater than the element from s2, the function returns a
positive number.

●

Otherwise, the function returns a negative number.●

wmemcpy

wchar_t *wmemcpy(wchar_t *s1, const wchar_t *s2, size_t n);

The function copies the array beginning at the address s2 to the array beginning at the address s1 (both
of size n). It returns s1. The elements of the arrays can be accessed and stored in any order.

wmemmove

wchar_t *wmemmove(wchar_t *s1, const wchar_t *s2, size_t n);

The function copies the array beginning at s2 to the array beginning at s1 (both of size n). It returns s1.
If the arrays overlap, the function accesses each of the element values from s2 before it stores a new
value in that element, so the copy is not corrupted.

wmemset

wchar_t *wmemset(wchar_t *s, wchar_t c, size_t n);

The function stores c in each of the elements of the array beginning at s, with size n. It returns s.

wprintf

int wprintf(const wchar_t *format, ...);

The function generates formatted text, under the control of the format format and any additional
arguments, and writes each generated wide character to the stream stdout. It returns the number of
wide characters generated, or it returns a negative value if the function sets the error indicator for the
stream.

wscanf

int wscanf(const wchar_t *format, ...);

The function scans formatted text, under the control of the format format and any additional
arguments. It obtains each scanned wide character from the stream stdin. It returns the number of input
items matched and assigned, or it returns EOF if the function does not store values before it sets the
end-of-file or error indicators for the stream.

See also the Table of Contents and the Index.

Copyright © 1989-1996 by P.J. Plauger and Jim Brodie. All rights reserved.

<wctype.h> [Added with
Amendment 1]

int iswalnum(wint_t c);
int iswalpha(wint_t c);
int iswcntrl(wint_t c);
int iswctype(wint_t c, wctype_t category);
int iswdigit(wint_t c);
int iswgraph(wint_t c);
int iswlower(wint_t c);
int iswprint(wint_t c);
int iswpunct(wint_t c);
int iswspace(wint_t c);
int iswupper(wint_t c);
int iswxdigit(wint_t c);
wint_t towctrans(wint_t c, wctrans_t category);
wint_t towlower(wint_t c);
wint_t towupper(wint_t c);
wctrans_t wctrans(const char *property);
typedef s_type wctrans_t;
wctype_t wctype(const char *property);
typedef s_type wctype_t;
typedef i_type wint_t;

Include the standard header <wctype.h> to declare several functions that are useful for classifying and
mapping codes from the target wide-character set.

Every function that has a parameter of type wint_t can accept the value of the macro WEOF or any
valid wide-character code (of type wchar_t). Thus, the argument can be the value returned by any of
the functions: btowc, fgetwc, fputwc, getwc, getwchar, putwc, putwchar, towctrans,
towlower, towupper, or ungetwc. You must not call these functions with other wide-character
argument values.

The wide-character classification functions are strongly related to the (byte) character classification
functions. Each function isXXX has a corresponding wide-character classification function iswXXX.
Moreover, the wide-character classification functions are interrelated much the same way as their
corresponding byte functions, with two added provisos:

http://www.dinkumware.com/

The function iswprint, unlike isprint, can return a nonzero value for additional space
characters besides the wide-character equivalent of space (L' '). Any such additional
characters return a nonzero value for iswspace and return zero for iswgraph or iswpunct.

●

The characters in each wide-character class are a superset of the characters in the corresponding
byte class. If the call isXXX(c) returns a nonzero value, then the corresponding call
iswXXX(btowc(c)) also returns a nonzero value.

●

An implementation can define additional characters that return nonzero for some of these functions. Any
character set can contain additional characters that return nonzero for:

iswpunct (provided the characters cause iswalnum to return zero)●

iswcntrl (provided the characters cause iswprint to return zero)●

Moreover, a locale other than the "C" locale can define additional characters for:

iswalpha, iswupper, and iswlower (provided the characters cause iswcntrl,
iswdigit, iswpunct, and iswspace to return zero)

●

iswspace (provided the characters cause iswpunct to return zero)●

Note that the last rule differs slightly from the corresponding rule for the function isspace, as
indicated above. Note also that an implementation can define a locale other than the "C" locale in which
a character can cause iswalpha (and hence iswalnum) to return nonzero, yet still cause iswupper
and iswlower to return zero.

WEOF

#define WEOF <wint_t constant expression>

The macro yields the return value, of type wint_t, used to signal the end of a wide stream or to report
an error condition.

iswalnum

int iswalnum(wint_t c);

The function returns nonzero if c is any of:

a b c d e f g h i j k l m n o p q r s t u v w x y z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
o 1 2 3 4 5 6 7 8 9

or any other locale-specific alphabetic character.

iswalpha

int iswalpha(wint_t c);

The function returns nonzero if c is any of:

a b c d e f g h i j k l m n o p q r s t u v w x y z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

or any other locale-specific alphabetic character.

iswcntrl

int iswcntrl(wint_t c);

The function returns nonzero if c is any of:

BEL BS CR FF HT NL VT

or any other implementation-defined control character.

iswctype

int iswctype(wint_t c, wctype_t category);

The function returns nonzero if c is any character in the category category. The value of category
must have been returned by an earlier successful call to wctype.

iswdigit

int iswdigit(wint_t c);

The function returns nonzero if c is any of:

0 1 2 3 4 5 6 7 8 9

iswgraph

int iswgraph(wint_t c);

The function returns nonzero if c is any character for which either iswalnum or iswpunct returns
nonzero.

iswlower

int iswlower(wint_t c);

The function returns nonzero if c is any of:

a b c d e f g h i j k l m n o p q r s t u v w x y z

or any other locale-specific lowercase character.

iswprint

int iswprint(wint_t c);

The function returns nonzero if c is space, a character for which iswgraph returns nonzero, or an
implementation-defined subset of the characters for which iswspace returns nonzero.

iswpunct

int iswpunct(wint_t c);

The function returns nonzero if c is any of:

! " # % & ' () ; <
= > ? [\] * + , -
. / : ^ _ { | } ~

or any other implementation-defined punctuation character.

iswspace

int iswspace(wint_t c);

The function returns nonzero if c is any of:

CR FF HT NL VT space

or any other locale-specific space character.

iswupper

int iswupper(wint_t c);

The function returns nonzero if c is any of:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

or any other locale-specific uppercase character.

iswxdigit

int iswxdigit(wint_t c);

The function returns nonzero if c is any of

0 1 2 3 4 5 6 7 8 9 a b c d e f A B C D E F

towctrans

wint_t towctrans(wint_t c, wctrans_t category);

The function returns the transformation of the character c, using the transform in the category
category. The value of category must have been returned by an earlier successful call to
wctrans.

towlower

wint_t towlower(wint_t c);

The function returns the corresponding lowercase letter if one exists and if iswupper(c); otherwise, it
returns c.

towupper

wint_t towupper(wint_t c);

The function returns the corresponding uppercase letter if one exists and if iswlower(c); otherwise, it
returns c.

wctrans

wctrans_t wctrans(const char *property);

The function determines a mapping from one set of wide-character codes to another. If the LC_CTYPE
category of the current locale does not define a mapping whose name matches the property string
property, the function returns zero. Otherwise, it returns a nonzero value suitable for use as the
second argument to a subsequent call to towctrans.

The following pairs of calls have the same behavior in all locales (but an implementation can define
additional mappings even in the "C" locale):

towlower(c) same as towctrans(c, wctrans("tolower"))
towupper(c) same as towctrans(c, wctrans("toupper"))

wctrans_t

typedef s_type wctrans_t;

The type is the scalar type s-type that can represent locale-specific character mappings, as specified by
the return value of wctrans.

wctype

wctype_t wctype(const char *property);

wctrans_t wctrans(const char *property);

The function determines a classification rule for wide-character codes. If the LC_CTYPE category of the
current locale does not define a classification rule whose name matches the property string property,
the function returns zero. Otherwise, it returns a nonzero value suitable for use as the second argument to
a subsequent call to towctrans.

The following pairs of calls have the same behavior in all locales (but an implementation can define
additional classification rules even in the "C" locale):

iswalnum(c) same as iswctype(c, wctype("alnum"))
iswalpha(c) same as iswctype(c, wctype("alpha"))
iswcntrl(c) same as iswctype(c, wctype("cntrl"))
iswdigit(c) same as iswctype(c, wctype("digit"))
iswgraph(c) same as iswctype(c, wctype("graph"))
iswlower(c) same as iswctype(c, wctype("lower"))
iswprint(c) same as iswctype(c, wctype("print"))
iswpunct(c) same as iswctype(c, wctype("punct"))
iswspace(c) same as iswctype(c, wctype("space"))
iswupper(c) same as iswctype(c, wctype("upper"))
iswxdigit(c) same as iswctype(c, wctype("xdigit"))

wctype_t

typedef s_type wctype_t;

The type is the scalar type s-type that can represent locale-specific character classifications, as
specified by the return value of wctype.

wint_t

typedef i_type wint_t;

The type is the integer type i_type that can represent all values of type wchar_t as well as the value
of the macro WEOF, and that doesn't change when promoted.

See also the Table of Contents and the Index.

Copyright © 1989-1996 by P.J. Plauger and Jim Brodie. All rights reserved.

<fstream.h>

#include <fstream>
using namespace std;

Include the traditional header <fstream.h> to effectively include the standard header <fstream>
and hoist its names outside the std namespace.

In this implementation, all names are hoisted, to provide a more traditional library environment.

See also the Table of Contents and the Index.

Copyright © 1992-1996 by P.J. Plauger. All rights reserved.

http://www.dinkumware.com/

<iomanip.h>

#include <iomanip>
using namespace std;

Include the traditional header <iomanip.h> to effectively include the standard header <iomanip>
and hoist its names outside the std namespace.

In this implementation, all names are hoisted, to provide a more traditional library environment.

See also the Table of Contents and the Index.

Copyright © 1992-1996 by P.J. Plauger. All rights reserved.

http://www.dinkumware.com/

<iostream.h>

#include <iostream>
using namespace std;

Include the traditional header <iostream.h> to effectively include the standard header <iostream>
and hoist its names outside the std namespace.

In this implementation, all names are hoisted, to provide a more traditional library environment.
Moreover, <iostream.h> does not declare the wide oriented stream objects wcin, wcout, wcerr,
and wclog.

See also the Table of Contents and the Index.

Copyright © 1992-1996 by P.J. Plauger. All rights reserved.

http://www.dinkumware.com/

<new.h>

#include <new>
using namespace std;

Include the traditional header <new.h> to effectively include the standard header <new> and hoist its
names outside the std namespace.

In this implementation, all names are hoisted, to provide a more traditional library environment.

See also the Table of Contents and the Index.

Copyright © 1992-1996 by P.J. Plauger. All rights reserved.

http://www.dinkumware.com/

<stl.h>

#include <stl>
using namespace std;

Include the traditional header <stl.h> to effectively include all the standard headers that constitute the
Standard Template Library (STL) and hoist their names outside the std namespace. The header also
redefines the STL container template classes to match their more traditional definitions.

<stl.h> is an unsupported header supplied to aid the migration of existing code that uses STL to
standard-conforming form.

A few special conventions are introduced into this document specifically for this particular
implementation of the Standard Template library. Because the draft C++ Standard is still changing, not
all implementations support all the features described here. Hence, this implementation introduces
macros, or alternative declarations, where necessary to provide reasonable substitutes for the capabilities
required by the current draft C++ Standard.

See also the Table of Contents and the Index.

Copyright © 1992-1996 by P.J. Plauger. Portions derived from work copyright © 1994 by
Hewlett-Packard Company. All rights reserved.

http://www.dinkumware.com/

Characters

Character Sets · Character Sets and Locales · Escape Sequences · Numeric Escape Sequences ·
Trigraphs · Multibyte Characters · Wide-Character Encoding

Characters play a central role in Standard C. You represent a C program as one or more source files. The
translator reads a source file as a text stream consisting of characters that you can read when you display
the stream on a terminal screen or produce hard copy with a printer. You often manipulate text when a C
program executes. The program might produce a text stream that people can read, or it might read a text
stream entered by someone typing at a keyboard or from a file modified using a text editor. This
document describes the characters that you use to write C source files and that you manipulate as streams
when executing C programs.

Character Sets
When you write a program, you express C source files as text lines containing characters from the source
character set. When a program executes in the target environment, it uses characters from the target
character set. These character sets are related, but need not have the same encoding or all the same
members.

Every character set contains a distinct code value for each character in the basic C character set. A
character set can also contain additional characters with other code values. For example:

The character constant 'x' becomes the value of the code for the character corresponding to x
in the target character set.

●

The string literal "xyz" becomes a sequence of character constants stored in successive bytes of
memory, followed by a byte containing the value zero:
{'x', 'y', 'z', '\0'}

●

A string literal is one way to specify a null-terminated string, an array of zero or more bytes followed
by a byte containing the value zero.

Visible graphic characters in the basic C character set:

Form Members
letter A B C D E F G H I J K L M
 N O P Q R S T U V W X Y Z
 a b c d e f g h i j k l m
 n o p q r s t u v w x y z

http://www.dinkumware.com/

digit 0 1 2 3 4 5 6 7 8 9

underscore _

punctuation ! " # % & ' () * + , - . / :
 ; < = > ? [\] ^ { | } ~

Additional graphic characters in the basic C character set:

Character Meaning
space leave blank space
BEL signal an alert (BELl)
BS go back one position (BackSpace)
FF go to top of page (Form Feed)
NL go to start of next line (NewLine)
CR go to start of this line (Carriage Return)
HT go to next Horizontal Tab stop
VT go to next Vertical Tab stop

The code value zero is reserved for the null character which is always in the target character set. Code
values for the basic C character set are positive when stored in an object of type char. Code values for
the digits are contiguous, with increasing value. For example, '0' + 5 equals '5'. Code values for
any two letters are not necessarily contiguous.

Character Sets and Locales

An implementation can support multiple locales, each with a different character set. A locale summarizes
conventions peculiar to a given culture, such as how to format dates or how to sort names. To change
locales and, therefore, target character sets while the program is running, use the function setlocale.
The translator encodes character constants and string literals for the "C" locale, which is the locale in
effect at program startup.

Escape Sequences
Within character constants and string literals, you can write a variety of escape sequences. Each escape
sequence determines the code value for a single character. You use escape sequences to represent
character codes:

you cannot otherwise write (such as \n)●

that can be difficult to read properly (such as \t)●

that might change value in different target character sets (such as \a)●

that must not change in value among different target environments (such as \0)●

An escape sequence takes the form:

Mnemonic escape sequences help you remember the characters they represent:

Character Escape Sequence
" \"
' \'
? \?
\ \\
BEL \a
BS \b
FF \f
NL \n
CR \r
HT \t
VT \v

Numeric Escape Sequences

You can also write numeric escape sequences using either octal or hexadecimal digits. An octal escape
sequence takes one of the forms:

 \d or \dd or \ddd

The escape sequence yields a code value that is the numeric value of the 1-, 2-, or 3-digit octal number
following the backslash (\). Each d can be any digit in the range 0-7.

A hexadecimal escape sequence takes one of the forms:

 \xh or \xhh or ...

The escape sequence yields a code value that is the numeric value of the arbitrary-length hexadecimal
number following the backslash (\). Each h can be any decimal digit 0-9, or any of the letters a-f or
A-F. The letters represent the digit values 10-15, where either a or A has the value 10.

A numeric escape sequence terminates with the first character that does not fit the digit pattern. Here are
some examples:

You can write the null character as '\0'.●

You can write a newline character (NL) within a string literal by writing:
"hi\n" which becomes the array

●

{'h', 'i', '\n', 0}

You can write a string literal that begins with a specific numeric value:
"\3abc" which becomes the array
{3, 'a', 'b', 'c', 0}

●

You can write a string literal that contains the hexadecimal escape sequence \xF followed by the
digit 3 by writing two string literals:
"\xF" "3" which becomes the array
{0xF, '3', 0}

●

Trigraphs
A trigraph is a sequence of three characters that begins with two question marks (??). You use trigraphs
to write C source files with a character set that does not contain convenient graphic representations for
some punctuation characters. (The resultant C source file is not necessarily more readable, but it is
unambiguous.)

The list of all defined trigraphs is:

Character Trigraph
[??(
\ ??/
] ??)
^ ??'
{ ??<
| ??!
} ??>
~ ??-
??=

These are the only trigraphs. The translator does not alter any other sequence that begins with two
question marks.

For example, the expression statements:

 printf("Case ??=3 is done??/n");
 printf("You said what????/n");

are equivalent to:

 printf("Case #3 is done\n");
 printf("You said what??\n");

The translator replaces each trigraph with its equivalent single character representation in an early phase
of translation. You can always treat a trigraph as a single source character.

Multibyte Characters
A source character set or target character set can also contain multibyte characters (sequences of one or
more bytes). Each sequence represents a single character in the extended character set. You use
multibyte characters to represent large sets of characters, such as Kanji. A multibyte character can be a
one-byte sequence that is a character from the basic C character set, an additional one-byte sequence that
is implementation defined, or an additional sequence of two or more bytes that is implementation
defined.

Any multibyte encoding that contains sequences of two or more bytes depends, for its interpretation
between bytes, on a conversion state determined by bytes earlier in the sequence of characters. In the
initial conversion state if the byte immediately following matches one of the characters in the basic C
character set, the byte must represent that character.

For example, the EUC encoding is a superset of ASCII. A byte value in the interval [0xA1, 0xFE] is the
first of a two-byte sequence (whose second byte value is in the interval [0x80, 0xFF]). All other byte
values are one-byte sequences. Since all members of the basic C character set have byte values in the
range [0x00, 0x7F] in ASCII, EUC meets the requirements for a multibyte encoding in Standard C. Such
a sequence is not in the initial conversion state immediately after a byte value in the interval [0xA1,
0xFe]. It is ill-formed if a second byte value is not in the interval [0x80, 0xFF].

Multibyte characters can also have a state-dependent encoding. How you interpret a byte in such an
encoding depends on a conversion state that involves both a parse state, as before, and a shift state,
determined by bytes earlier in the sequence of characters. The initial shift state, at the beginning of a
new multibyte character, is also the initial conversion state. A subsequent shift sequence can determine
an alternate shift state, after which all byte sequences (including one-byte sequences) can have a
different interpretation. A byte containing the value zero, however, always represents the null character.
It cannot occur as any of the bytes of another multibyte character.

For example, the JIS encoding is another superset of ASCII. In the initial shift state, each byte represents
a single character, except for two three-byte shift sequences:

The three-byte sequence "\x1B$B" shifts to two-byte mode. Subsequently, two successive bytes
(both with values in the range [0x21, 0x7E]) constitute a single multibyte character.

●

The three-byte sequence "\x1B(B" shifts back to the initial shift state.●

JIS also meets the requirements for a multibyte encoding in Standard C. Such a sequence is not in the
initial conversion state when partway through a three-byte shift sequence or when in two-byte mode.

(Amendment 1 adds the type mbstate_t, which describes an object that can store a conversion state. It
also relaxes the above rules for generalized multibyte characters, which describe the encoding rules for a
broad range of wide streams.)

You can write multibyte characters in C source text as part of a comment, a character constant, a string
literal, or a filename in an include directive. How such characters print is implementation defined. Each
sequence of multibyte characters that you write must begin and end in the initial shift state. The program
can also include multibyte characters in null-terminated C strings used by several library functions,

including the format strings for printf and scanf. Each such character string must begin and end in
the initial shift state.

Wide-Character Encoding

Each character in the extended character set also has an integer representation, called a wide-character
encoding. Each extended character has a unique wide-character value. The value zero always
corresponds to the null wide character. The type definition wchar_t specifies the integer type that
represents wide characters.

You write a wide-character constant as L'mbc', where mbc represents a single multibyte character.
You write a wide-character string literal as L"mbs", where mbs represents a sequence of zero or more
multibyte characters. The wide-character string literal L"xyz" becomes a sequence of wide-character
constants stored in successive bytes of memory, followed by a null wide character:
{L'x', L'y', L'z', L'\0'}

The following library functions help you convert between the multibyte and wide-character
representations of extended characters: btowc, mblen, mbrlen, mbrtowc, mbsrtowcs,
mbstowcs, mbtowc, wcrtomb, wcsrtombs, wcstombs, wctob, and wctomb.

The macro MB_LEN_MAX specifies the length of the longest possible multibyte sequence required to
represent a single character defined by the implementation across supported locales. And the macro
MB_CUR_MAX specifies the length of the longest possible multibyte sequence required to represent a
single character defined for the current locale.

For example, the string literal "hello" becomes an array of six char:

 {'h', 'e', 'l', 'l', 'o', 0}

while the wide-character string literal L"hello" becomes an array of six integers of type wchar_t:

 {L'h', L'e', L'l', L'l', L'o', 0}

See also the Table of Contents and the Index.

Copyright © 1989-1996 by P.J. Plauger and Jim Brodie. All rights reserved.

Formatted Output

Print Formats · Print Functions · Print Conversion Specifiers

Several library functions help you convert data values from encoded internal representations to text
sequences that are generally readable by people. You provide a format string as the value of the format
argument to each of these functions, hence the term formatted output. The functions fall into two
categories:

The byte print functions (declared in <stdio.h>) convert internal representations to sequences
of type char, and help you compose such sequences for display: fprintf, printf, sprintf, vfprintf,
vprintf, and vsprintf. For these function, a format string is a multibyte string that begins and ends
in the initial shift state.

●

The wide print functions (declared in <wchar.h> and hence added with Amendment 1)
convert internal representations to sequences of type wchar_t, and help you compose such
sequences for display: fwprintf, swprintf, wprintf, vfwprintf, vswprintf, and vwprintf. For these
functions, a format string is a wide-character string. In the descriptions that follow, a wide
character wc from a format string or a stream is compared to a specific (byte) character c as if by
evaluating the expression wctob(wc) == c.

●

Print Formats
A format string has the same syntax for both the print functions and the scan functions:

A format string consists of zero or more conversion specifications interspersed with literal text and
white space. White space is a sequence of one or more characters c for which the call isspace(c)
returns nonzero. (The characters defined as white space can change when you change the LC_CTYPE
locale category.) For the print functions, a conversion specification is one of the print conversion
specifications described below.

http://www.dinkumware.com/

A print function scans the format string once from beginning to end to determine what conversions to
perform. Every print function accepts a varying number of arguments, either directly or under control of
an argument of type va_list. Some print conversion specifications in the format string use the next
argument in the list. A print function uses each successive argument no more than once. Trailing
arguments can be left unused.

In the description that follows:

integer conversions are the conversion specifiers that end in d, i, o, u, x, or X●

floating-point conversions are the conversion specifiers that end in e, E, f, g, or G●

Print Functions
For the print functions, literal text or white space in a format string generates characters that match the
characters in the format string. A print conversion specification typically generates characters by
converting the next argument value to a corresponding text sequence. A print conversion specification
has the format:

Following the percent character (%) in the format string, you can write zero or more format flags:

- -- to left-justify a conversion●

+ -- to generate a plus sign for signed values that are positive●

space -- to generate a space for signed values that have neither a plus nor a minus sign●

-- to prefix 0 on an o conversion, to prefix 0x on an x conversion, to prefix 0X on an X
conversion, or to generate a decimal point and fraction digits that are otherwise suppressed on a
floating-point conversion

●

0 -- to pad a conversion with leading zeros after any sign or prefix, in the absence of a minus (-)
format flag or a specified precision

●

Following any format flags, you can write a field width that specifies the minimum number of characters
to generate for the conversion. Unless altered by a format flag, the default behavior is to pad a short
conversion on the left with space characters. If you write an asterisk (*) instead of a decimal number
for a field width, then a print function takes the value of the next argument (which must be of type int) as
the field width. If the argument value is negative, it supplies a - format flag and its magnitude is the field
width.

Following any field width, you can write a dot (.) followed by a precision that specifies one of the
following: the minimum number of digits to generate on an integer conversion; the number of fraction
digits to generate on an e, E, or f conversion; the maximum number of significant digits to generate on a
g or G conversion; or the maximum number of characters to generate from a C string on an s conversion.

If you write an * instead of a decimal number for a precision, a print function takes the value of the next
argument (which must be of type int) as the precision. If the argument value is negative, the default
precision applies. If you do not write either an * or a decimal number following the dot, the precision is
zero.

Print Conversion Specifiers
Following any precision, you must write a one-character print conversion specifier, possibly preceded
by a one-character qualifier. Each combination determines the type required of the next argument (if any)
and how the library functions alter the argument value before converting it to a text sequence. The
integer and floating-point conversions also determine what base to use for the text representation. If a
conversion specifier requires a precision p and you do not provide one in the format, then the conversion
specifier chooses a default value for the precision. The following table lists all defined combinations and
their properties.

Conversion Argument Converted Default
 Specifier Type Value Base Precision
 %c int x (unsigned char)x
 %lc wint_t x wchar_t a[2] = {x}
 %d int x (int)x 10 1
 %hd int x (short)x 10 1
 %ld long x (long)x 10 1
 %e double x (double)x 10 6
 %Le long double x (long double)x 10 6
 %E double x (double)x 10 6
 %E long double x (long double)x 10 6
 %f double x (double)x 10 6
 %Lf long double x (long double)x 10 6
 %g double x (double)x 10 6
 %Lg long double x (long double)x 10 6
 %G double x (double)x 10 6
 %LG long double x (long double)x 10 6
 %i int x (int)x 10 1
 %hi int x (short)x 10 1
 %li long x (long)x 10 1
 %n int *x
 %hn short *x
 %ln long *x
 %o int x (unsigned int)x 8 1
 %ho int x (unsigned short)x 8 1
 %lo long x (unsigned long)x 8 1
 %p void *x (void *)x
 %s char x[] x[0]... large
 %ls wchar_t x[] x[0]... large

 %u int x (unsigned int)x 10 1
 %hu int x (unsigned short)x 10 1
 %lu long x (unsigned long)x 10 1
 %x int x (unsigned int)x 16 1
 %hx int x (unsigned short)x 16 1
 %lx long x (unsigned long)x 16 1
 %X int x (unsigned int)x 16 1
 %hX int x (unsigned short)x 16 1
 %lX long x (unsigned long)x 16 1
 %% none '%'

The print conversion specifier determines any behavior not summarized in this table. In the following
descriptions, p is the precision. Examples follow each of the print conversion specifiers. A single
conversion can generate up to 509 characters.

You write %c to generate a single character from the converted value. For a wide stream, conversion of
the character x occurs as if by calling btowc(x).

 printf("%c", 'a') generates a
 printf("<%3c|%-3c>", 'a', 'b') generates < a|b >
 wprintf(L"%c", 'a') generates (wide) btowc(a)

You write %lc to generate a single character from the converted value. Conversion of the character x
occurs as if it is followed by a null character in an array of two elements of type wchar_t converted by
the conversion specification ls.

 printf("%lc", L'a') generates a
 wprintf(L"lc", L'a') generates (wide) L'a'

You write %d, %i, %o, %u, %x, or %X to generate a possibly signed integer representation. %d or %i
specifies signed decimal representation, %o unsigned octal, %u unsigned decimal, %x unsigned
hexadecimal using the digits 0-9 and a-f, and %X unsigned hexadecimal using the digits 0-9 and A-F.
The conversion generates at least p digits to represent the converted value. If p is zero, a converted value
of zero generates no digits.

 printf("%d %o %x", 31, 31, 31) generates 31 37 1f
 printf("%hu", 0xffff) generates 65535
 printf("%#X %+d", 31, 31) generates 0X1F +31

You write %e or %E to generate a signed fractional representation with an exponent. The generated text
takes the form ±d.dddE±dd, where ± is either a plus or minus sign, d is a decimal digit, the dot (.) is the
decimal point for the current locale, and E is either e (for %e conversion) or E (for %E conversion). The
generated text has one integer digit, a decimal point if p is nonzero or if you specify the # format flag, p
fraction digits, and at least two exponent digits. The result is rounded. The value zero has a zero
exponent.

 printf("%e", 31.4) generates 3.140000e+01
 printf("%.2E", 31.4) generates 3.14E+01

You write %f to generate a signed fractional representation with no exponent. The generated text takes
the form ±d.ddd, where ± is either a plus or minus sign, d is a decimal digit, and the dot (.) is the decimal
point for the current locale. The generated text has at least one integer digit, a decimal point if p is
nonzero or if you specify the # format flag, and p fraction digits. The result is rounded.

 printf("%f", 31.4) generates 31.400000
 printf("%.0f %#.0f", 31.0, 31.0) generates 31 31.

You write %g or %G to generate a signed fractional representation with or without an exponent, as
appropriate. For %g conversion, the generated text takes the same form as either %e or %f conversion.
For %G conversion, it takes the same form as either %E or %f conversion. The precision p specifies the
number of significant digits generated. (If p is zero, it is changed to 1.) If %e conversion would yield an
exponent in the range [-4, p), then %f conversion occurs instead. The generated text has no trailing zeros
in any fraction and has a decimal point only if there are nonzero fraction digits, unless you specify the #
format flag.

 printf("%.6g", 31.4) generates 31.4
 printf("%.1g", 31.4) generates 3.14e+01

You write %n to store the number of characters generated (up to this point in the format) in the object of
type int whose address is the value of the next successive argument.

 printf("abc%n", &x) stores 3

You write %p to generate an external representation of a pointer to void. The conversion is
implementation defined.

 printf("%p", (void *)&x) generates, e.g. F4C0

You write %s to generate a sequence of characters from the values stored in the argument C string. For a
wide stream, conversion occurs as if by repeatedly calling mbrtowc, beginning in the initial conversion
state. The conversion generates no more than p characters, up to but not including the terminating null
character.

 printf("%s", "hello") generates hello
 printf("%.2s", "hello") generates he
 wprintf(L"%s", "hello") generates (wide) hello

You write %ls to generate a sequence of characters from the values stored in the argument
wide-character string. For a byte stream, conversion occurs as if by repeatedly calling wcrtomb,
beginning in the initial conversion state, so long as complete multibyte characters can be generated. The
conversion generates no more than p characters, up to but not including the terminating null character.

 printf("%ls", L"hello") generates hello
 wprintf(L"%.2s", L"hello") generates (wide) he

You write %% to generate the percent character (%).

 printf("%%") generates %

See also the Table of Contents and the Index.

Copyright © 1989-1996 by P.J. Plauger and Jim Brodie. All rights reserved.

Formatted Input

Scan Formats · Scan Functions · Scan Conversion Specifiers

Several library functions help you convert data values from text sequences that are generally readable by people
to encoded internal representations. You provide a format string as the value of the format argument to each of
these functions, hence the term formatted input. The functions fall into two categories:

The byte scan functions (declared in <stdio.h>) convert sequences of type char to internal
representations, and help you scan such sequences that you read: fscanf, scanf, and sscanf. For these
function, a format string is a multibyte string that begins and ends in the initial shift state.

●

The wide scan functions (declared in <wchar.h> and hence added with Amendment 1) convert
sequences of type wchar_t, to internal representations, and help you scan such sequences that you read:
fwscanf, wscanf and swscanf. For these functions, a format string is a wide-character string. In the
descriptions that follow, a wide character wc from a format string or a stream is compared to a specific
(byte) character c as if by evaluating the expression wctob(wc) == c.

●

Scan Formats
A format string has the same general syntax for the scan functions as for the print functions: zero or more
conversion specifications, interspersed with literal text and white space. For the scan functions, however, a
conversion specification is one of the scan conversion specifications described below.

A scan function scans the format string once from beginning to end to determine what conversions to perform.
Every scan function accepts a varying number of arguments, either directly or under control of an argument of
type va_list. Some scan conversion specifications in the format string use the next argument in the list. A scan
function uses each successive argument no more than once. Trailing arguments can be left unused.

In the description that follows, the integer conversions and floating-point conversions are the same as for the
print functions.

Scan Functions
For the scan functions, literal text in a format string must match the next characters to scan in the input text.
White space in a format string must match the longest possible sequence of the next zero or more white-space
characters in the input. Except for the scan conversion specifier %n (which consumes no input), each scan
conversion specification determines a pattern that one or more of the next characters in the input must match.
And except for the scan conversion specifiers c, n, and [, every match begins by skipping any white space
characters in the input.

A scan function returns when:

http://www.dinkumware.com/

it reaches the terminating null in the format string●

it cannot obtain additional input characters to scan (input failure)●

a conversion fails (matching failure)●

A scan function returns EOF if an input failure occurs before any conversion. Otherwise it returns the number of
converted values stored. If one or more characters form a valid prefix but the conversion fails, the valid prefix is
consumed before the scan function returns. Thus:

 scanf("%i", &i) consumes 0X from the field 0XZ
 scanf("%f", &f) consumes 3.2E from the field 3.2EZ

A scan conversion specification typically converts the matched input characters to a corresponding encoded
value. The next argument value must be the address of an object. The conversion converts the encoded
representation (as necessary) and stores its value in the object. A scan conversion specification has the format:

Following the percent character (%) in the format string, you can write an asterisk (*) to indicate that the
conversion should not store the converted value in an object.

Following any *, you can write a nonzero field width that specifies the maximum number of input characters to
match for the conversion (not counting any white space that the pattern can first skip).

Scan Conversion Specifiers
Following any field width, you must write a one-character scan conversion specifier, either a one-character code
or a scan set, possibly preceded by a one-character qualifier. Each combination determines the type required of
the next argument (if any) and how the scan functions interpret the text sequence and converts it to an encoded
value. The integer and floating-point conversions also determine what base to assume for the text representation.
(The base is the base argument to the functions strtol and strtoul.) The following table lists all defined
combinations and their properties.

Conversion Argument Conversion
 Specifier Type Function Base
 %c char x[]
 %lc wchar_t x[]
 %d int *x strtol 10
 %hd short *x strtol 10
 %ld long *x strtol 10
 %e float *x strtod 10
 %le double *x strtod 10
 %Le long double *x strtod 10
 %E float *x strtod 10

 %lE double *x strtod 10
 %LE long double *x strtod 10
 %f float *x strtod 10
 %lf double *x strtod 10
 %Lf long double *x strtod 10
 %g float *x strtod 10
 %lg double *x strtod 10
 %Lg long double *x strtod 10
 %G float *x strtod 10
 %lG double *x strtod 10
 %LG long double *x strtod 10
 %i int *x strtol 0
 %hi short *x strtol 0
 %li long *x strtol 0
 %n int *x
 %hn short *x
 %ln long *x
 %o unsigned int *x strtoul 8
 %ho unsigned short *x strtoul 8
 %lo unsigned long *x strtoul 8
 %p void **x
 %s char x[]
 %ls wchar_t x[]
 %u unsigned int *x strtoul 10
 %hu unsigned short *x strtoul 10
 %lu unsigned long *x strtoul 10
 %x unsigned int *x strtoul 16
 %hx unsigned short *x strtoul 16
 %lx unsigned long *x strtoul 16
 %X unsigned int *x strtoul 16
 %hX unsigned short *x strtoul 16
 %lX unsigned long *x strtoul 16
 %[...] char x[]
%l[...] wchar_t x[]
 %% none

The scan conversion specifier (or scan set) determines any behavior not summarized in this table. In the
following descriptions, examples follow each of the scan conversion specifiers. In each example, the function
sscanf matches the bold characters.

You write %c to store the matched input characters in an array object. If you specify no field width w, then w has
the value one. The match does not skip leading white space. Any sequence of w characters matches the
conversion pattern. For a wide stream, conversion occurs as if by repeatedly calling wcrtomb, beginning in the
initial conversion state.

sscanf("129E-2", "%c", &c) stores '1'
sscanf("129E-2", "%2c", &c[0]) stores '1', '2'
swscanf(L"129E-2", L"%c", &c) stores '1'

You write %lc to store the matched input characters in an array object, with elements of type wchar_t. If you
specify no field width w, then w has the value one. The match does not skip leading white space. Any sequence
of w characters matches the conversion pattern. For a byte stream, conversion occurs as if by repeatedly calling
mbrtowc, beginning in the initial conversion state.

sscanf("129E-2", "%lc", &c) stores L'1'
sscanf("129E-2", "%2lc", &c) stores L'1', L'2'
swscanf(L"129E-2", L"%lc", &c) stores L'1'

You write %d, %i, %o, %u, %x, or %X to convert the matched input characters as a signed integer and store the
result in an integer object.

sscanf("129E-2", "%o%d%x", &i, &j, &k) stores 10, 9, 14

You write %e, %E, %f, %g, or %G to convert the matched input characters as a signed fraction, with an optional
exponent, and store the result in a floating-point object.

sscanf("129E-2", "%e", &f) stores 1.29

You write %n to store the number of characters matched (up to this point in the format) in an integer object. The
match does not skip leading white space and does not match any input characters.

sscanf("129E-2", "12%n", &i) stores 2

You write %p to convert the matched input characters as an external representation of a pointer to void and store
the result in an object of type pointer to void. The input characters must match the form generated by the %p print
conversion specification.

sscanf("129E-2", "%p", &p) stores, e.g. 0x129E

You write %s to store the matched input characters in an array object, followed by a terminating null character. If
you do not specify a field width w, then w has a large value. Any sequence of up to w non white-space characters
matches the conversion pattern. For a wide stream, conversion occurs as if by repeatedly calling wcrtomb
beginning in the initial conversion state.

sscanf("129E-2", "%s", &s[0]) stores "129E-2"
swscanf(L"129E-2", L"%s", &s[0]) stores "129E-2"

You write %ls to store the matched input characters in an array object, with elements of type wchar_t, followed
by a terminating null wide character. If you do not specify a field width w, then w has a large value. Any
sequence of up to w non white-space characters matches the conversion pattern. For a byte stream, conversion
occurs as if by repeatedly calling mbrtowc, beginning in the initial conversion state.

sscanf("129E-2", "%ls", &s[0]) stores L"129E-2"
swscanf(L"129E-2", L"%ls", &s[0]) stores L"129E-2"

You write %[to store the matched input characters in an array object, followed by a terminating null character. If
you do not specify a field width w, then w has a large value. The match does not skip leading white space. A

sequence of up to w characters matches the conversion pattern in the scan set that follows. To complete the scan
set, you follow the left bracket ([) in the conversion specification with a sequence of zero or more match
characters, terminated by a right bracket (]).

If you do not write a caret (^) immediately after the [, then each input character must match one of the match
characters. Otherwise, each input character must not match any of the match characters, which begin with the
character following the ^. If you write a] immediately after the [or [^, then the] is the first match character,
not the terminating]. If you write a minus (-) as other than the first or last match character, an implementation
can give it special meaning. It usually indicates a range of characters, in conjunction with the characters
immediately preceding or following, as in 0-9 for all the digits.) You cannot specify a null match character.

For a wide stream, conversion occurs as if by repeatedly calling wcrtomb, beginning in the initial conversion
state.

sscanf("129E-2", "[54321]", &s[0]) stores "12"
swscanf(L"129E-2", L"[54321]", &s[0]) stores "12"

You write %l[to store the matched input characters in an array object, with elements of type wchar_t, followed
by a terminating null wide character. If you do not specify a field width w, then w has a large value. The match
does not skip leading white space. A sequence of up to w characters matches the conversion pattern in the scan
set that follows.

For a byte stream, conversion occurs as if by repeatedly calling mbrtowc, beginning in the initial conversion
state.

sscanf("129E-2", "l[54321]", &s[0]) stores L"12"
swscanf(L"129E-2", L"l[54321]", &s[0]) stores L"12"

You write %% to match the percent character (%). The function does not store a value.

sscanf("% 0XA", "%% %i") stores 10

See also the Table of Contents and the Index.

Copyright © 1989-1996 by P.J. Plauger and Jim Brodie. All rights reserved.

STL Conventions

Algorithm Conventions
Iterator Conventions

The Standard Template Library, or STL, establishes uniform standards for the application of iterators to
STL containers or other sequences that you define, by STL algorithms or other functions that you define.
This document summarizes many of the conventions used widely throughout the Standard Template
Library.

Iterator Conventions

The STL facilities make widespread use of iterators, to mediate between the various algorithms and the
sequences upon which they act. For brevity in the remainder of this document, the name of an iterator
type (or its prefix) indicates the category of iterators required for that type. In order of increasing power,
the categories are summarized here as:

OutIt -- An output iterator X can only have a value V stored indirect on it, after which it must
be incremented before the next store, as in (*X++ = V), (*X = V, ++X), or (*X = V,
X++).

●

InIt -- An input iterator X can represent a singular value that indicates end-of-sequence. If such
an iterator does not compare equal to its end-of-sequence value, it can have a value V accessed
indirect on it any number of times, as in (V = *X). To progress to the next value, or
end-of-sequence, you increment it, as in ++X, X++, or (V = *X++). Once you increment any
copy of an input iterator, none of the other copies can safely be compared, dereferenced, or
incremented thereafter.

●

FwdIt -- A forward iterator X can take the place of an output iterator (for writing) or an input
iterator (for reading). You can, however, read (via V = *X) what you just wrote (via *X = V)
through a forward iterator. And you can make multiple copies of a forward iterator, each of which
can be dereferenced and incremented independently.

●

BidIt -- A bidirectional iterator X can take the place of a forward iterator. You can, however,
also decrement a bidirectional iterator, as in --X, X--, or (V = *X--).

●

RanIt -- A random-access iterator X can take the place of a bidirectional iterator. You can also
perform much the same integer arithmetic on a random-access iterator that you can on an object
pointer. For N an integer object, you can write x[N], x + N, x - N, and N + X.

●

Note that an object pointer can take the place of a random-access iterator, or any other for that matter.

The hierarchy of iterator categories can be summarize by showing three sequences. For write-only access

http://www.dinkumware.com/

to a sequence, you can use any of:

output iterator ->
 forward iterator ->
 bidirectional iterator ->
 random-access iterator

The right arrow means ``can be replaced by.'' So any algorithm that calls for an output iterator should
work nicely with a forward iterator, for example, but not the other way around.

For read-only access to a sequence, you can use any of:

input iterator ->
 forward iterator ->
 bidirectional iterator ->
 random-access iterator

An input iterator is the weakest of all categories, in this case.

Finally, for read/write access to a sequence, you can use any of:

forward iterator ->
 bidirectional iterator ->
 random-access iterator

Remember that an object pointer can always serve as a random-access iterator. Hence, it can serve as any
category of iterator, so long as it supports the proper read/write access to the sequence it designates.

This ``algebra'' of iterators is fundamental to practically everything else in the Standard Template
Library. It is important to understand the promises, and limitations, of each iterator category to see how
iterators are used by containers and algorithms in STL.

Algorithm Conventions

The descriptions of the algorithm template functions employ several shorthand phrases:

The phrase ``in the range [A, B)'' means the sequence of zero or more discrete values beginning
with A up to but not including B. A range is valid only if B is reachable from A -- you can store A
in an object N (N = A), increment the object zero or more times (++N), and have the object
compare equal to B after a finite number of increments (N == B).

●

The phrase ``each N in the range [A, B)'' means that N begins with the value A and is
incremented zero or more times until it equals the value B. The case N == B is not in the range.

●

The phrase ``the lowest value of N in the range [A, B) such that X'' means that the condition
X is determined for each N in the range [A, B) until the condition X is met.

●

The phrase ``the highest value of N in the range [A, B) such that X'' usually means that X is
determined for each N in the range [A, B). The function stores in K a copy of N each time the
condition X is met. If any such store occurs, the function replaces the final value of N (which
equals B) with the value of K. For a bidirectional or random-access iterator, however, it can also

●

mean that N begins with the highest value in the range and is decremented over the range until the
condition X is met.

Expressions such as X - Y, where X and Y can be iterators other than random-access iterators, are
intended in the mathematical sense. The function does not necessarily evaluate operator- if it
must determine such a value. The same is also true for expressions such as X + N and X - N,
where N is an integer type.

●

Several algorithms make use of a predicate that must impose a strict weak ordering on pairs of elements
from a sequence. For the predicate pr(X, Y):

``strict'' means that pr(X, X) is false●

``weak'' means that X and Y have an equivalent ordering if !pr(X, Y) && !pr(Y, X) (X
== Y need not be defined)

●

``ordering'' means that pr(X, Y) && pr(Y, Z) implies pr(X, Z)●

Some of these algorithms implicitly use the predicate X < Y. Other predicates that typically satisfy the
``strict weak ordering'' requirement are X > Y, less(X, Y), and greater(X, Y). Note, however,
that predicates such as X <= Y and X >= Y do not satisfy this requirement.

A sequence of elements designated by iterators in the range [first, last) is ``a sequence ordered
by operator<'' if, for each N in the range [0, last - first) and for each M in the range (N,
last - first) the predicate !(*(first + M) < *(first + N)) is true. (Note that the
elements are sorted in ascending order.) The predicate function operator<, or any replacement for it,
must not alter either of its operands. Moreover, it must impose a strict weak ordering on the operands it
compares.

A sequence of elements designated by iterators in the range [first, last) is ``a heap ordered by
operator<'' if, for each N in the range [1, last - first) the predicate !(*first <
*(first + N)) is true. (The first element is the largest.) Its internal structure is otherwise known
only to the template functions make_heap, pop_heap, and push_heap. As with an ordered
sequence, the predicate function operator<, or any replacement for it, must not alter either of its
operands, and it must impose a strict weak ordering on the operands it compares.

See also the Table of Contents and the Index.

Copyright © 1992-1996 by P.J. Plauger. All rights reserved.

Containers

namespace std {
template<class T, class A>
 class Cont;
// TEMPLATE FUNCTIONS
template<class T, class A>
 bool operator==(
 const Cont<T, A>& lhs,
 const Cont<T, A>& rhs);
template<class T, class A>
 bool operator!=(
 const Cont<T, A>& lhs,
 const Cont<T, A>& rhs);
template<class T, class A>
 bool operator<(
 const Cont<T, A>& lhs,
 const Cont<T, A>& rhs);
template<class T, class A>
 bool operator>(
 const Cont<T, A>& lhs,
 const Cont<T, A>& rhs);
template<class T, class A>
 bool operator<=(
 const Cont<T, A>& lhs,
 const Cont<T, A>& rhs);
template<class T, class A>
 bool operator>=(
 const Cont<T, A>& lhs,
 const Cont<T, A>& rhs);
template<class T, class A>
 void swap(
 const Cont<T, A>& lhs,
 const Cont<T, A>& rhs);
 };

A container is an STL template class that manages a sequence of elements. Such elements can be of any
object type that supplies a default constructor, a destructor, and an assignment operator. This document
describes the properties required of all such containers, in terms of a generic template class Cont. An
actual container template class may have additional template parameters. It will certainly have additional

http://www.dinkumware.com/

member functions.

The STL template container classes are:

 deque
 list
 map
 multimap
 multiset
 set
 vector

(The Standard C++ library template class basic_string also meets the requirements for a template
container class.)

Cont

allocator_type · begin · clear · const_iterator · const_reference ·
const_reverse_iterator · difference_type · empty · end · erase ·
get_allocator · iterator · max_size · rbegin · reference · rend ·
reverse_iterator · size · size_type · swap · value_type

template<class T, class A = allocator<T> >
 class Cont {
public:
 typedef A allocator_type;
 typedef T0 size_type;
 typedef T1 difference_type;
 typedef T2 reference;
 typedef T3 const_reference;
 typedef T4 value_type;
 typedef T5 iterator;
 typedef T6 const_iterator;
 typedef T7 reverse_iterator;
 typedef T8 const_reverse_iterator;
 iterator begin();
 const_iterator begin() const;
 iterator end();
 iterator end() const;
 reverse_iterator rbegin();
 const_reverse_iterator rbegin() const;

 reverse_iterator rend();
 const_reverse_iterator rend() const;
 size_type size() const;
 size_type max_size() const;
 bool empty() const;
 A get_allocator() const;
 iterator erase(iterator it);
 iterator erase(iterator first, iterator last);
 void clear();
 void swap(Cont x);
protected:
 A allocator;
 };

The template class describes an object that controls a varying-length sequence of elements, typically of
type T. The sequence is stored in different ways, depending on the actual container.

The object allocates and frees storage for the sequence it controls through a protected object named
allocator, of class A. Such an allocator object must have the same external interface as an object of
template class allocator. Note that allocator is not copied when the object is assigned. All
constructors store an allocator argument (or, for the copy constructor, x.get_allocator()) in
allocator and initialize the controlled sequence.

Cont::allocator_type

typedef A allocator_type;

The type is a synonym for the template parameter A.

Cont::begin

const_iterator begin() const;
iterator begin();

The member function returns an iterator that points at the first element of the sequence (or just beyond
the end of an empty sequence).

Cont::clear

void clear() const;

The member function calls erase(begin(), end()).

Cont::const_iterator

typedef T6 const_iterator;

The type describes an object that can serve as a constant iterator for the controlled sequence. It is
described here as a synonym for the unspecified type T6.

Cont::const_reference

typedef T3 const_reference;

The type describes an object that can serve as a constant reference to an element of the controlled
sequence. It is described here as a synonym for the unspecified type T3 (typically
A::const_reference).

Cont::const_reverse_iterator

typedef T8 const_reverse_iterator;

The type describes an object that can serve as a constant reverse iterator for the controlled sequence. It is
described here as a synonym for the unspecified type T8 (typically reverse_iterator or
reverse_bidirectional_iterator).

Cont::difference_type

typedef T1 difference_type;

The signed integer type describes an object that can represent the difference between the addresses of any
two elements in the controlled sequence. It is described here as a synonym for the unspecified type T1
(typically A::difference_type).

Cont::empty

bool empty() const;

The member function returns true for an empty controlled sequence.

Cont::end

const_iterator end() const;
iterator end();

The member function returns an iterator that points just beyond the end of the sequence.

Cont::erase

iterator erase(iterator it);
iterator erase(iterator first, iterator last);

The first member function removes the element of the controlled sequence pointed to by it. The second
member function removes the elements of the controlled sequence in the range [first, last). Both
return an iterator that designates the first element remaining beyond any elements removed, or end() if
no such element exists.

Cont::get_allocator

A get_allocator() const;

The member function returns allocator.

Cont::iterator

typedef T5 iterator;

The type describes an object that can serve as an iterator for the controlled sequence. It is described here
as a synonym for the unspecified type T5.

Cont::max_size

size_type max_size() const;

The member function returns the length of the longest sequence that the object can control.

Cont::rbegin

const_reverse_iterator rbegin() const;
reverse_iterator rbegin();

The member function returns a reverse iterator that points just beyond the end of the controlled sequence.
Hence, it designates the beginning of the reverse sequence.

Cont::reference

typedef T2 reference;

The type describes an object that can serve as a reference to an element of the controlled sequence. It is
described here as a synonym for the unspecified type T2 (typically A::reference).

Cont::rend

const_reverse_iterator rend() const;
reverse_iterator rend();

The member function returns a reverse iterator that points at the first element of the sequence (or just
beyond the end of an empty sequence). Hence, it designates the end of the reverse sequence.

Cont::reverse_iterator

typedef T7 reverse_iterator;

The type describes an object that can serve as a reverse iterator for the controlled sequence. It is
described here as a synonym for the unspecified type T7 (typically reverse_iterator or
reverse_bidirectional_iterator).

The required pointer type is described here as the unspecified type T7 (typically A::pointer).

Cont::size

size_type size() const;

The member function returns the length of the controlled sequence.

Cont::size_type

typedef T0 size_type;

The unsigned integer type describes an object that can represent the length of any controlled sequence. It
is described here as a synonym for the unspecified type T0 (typically A::size_type).

Cont::swap

void swap(Cont& str);

The member function swaps the controlled sequences between *this and str. If allocator ==
str.allocator, it does so in constant time. Otherwise, it performs a number of element assignments
and constructor calls proportional to the number of elements in the two controlled sequences.

Cont::value_type

typedef T4 value_type;

The type is a synonym for the template parameter T. It is described here as a synonym for the unspecified
type T4 (typically A::value_type).

operator!=

template<class T, class A>
 bool operator!=(
 const Cont <T, A>& lhs,
 const Cont <T, A>& rhs);

The template function returns !(lhs == rhs).

operator==

template<class T, class A>
 bool operator==(
 const Cont <T, A>& lhs,
 const Cont <T, A>& rhs);

The template function overloads operator== to compare two objects of template class Cont. The
function returns lhs.size() == rhs.size() && equal(lhs. begin(), lhs. end(),
rhs.begin()).

operator<

template<class T, class A>
 bool operator<(
 const Cont <T, A>& lhs,
 const Cont <T, A>& rhs);

The template function overloads operator< to compare two objects of template class Cont. The
function returns lexicographical_compare(lhs. begin(), lhs. end(),
rhs.begin(), rhs.end()).

operator<=

template<class T, class A>
 bool operator<=(
 const Cont <T, A>& lhs,
 const Cont <T, A>& rhs);

The template function returns !(rhs < lhs).

operator>

template<class T, class A>
 bool operator*gt;(
 const Cont <T, A>& lhs,
 const Cont <T, A>& rhs);

The template function returns rhs < lhs.

operator>=

template<class T, class A>
 bool operator>=(
 const Cont <T, A>& lhs,
 const Cont <T, A>& rhs);

The template function returns !(lhs < rhs).

swap

template<class T, class A>
 void swap(
 const Cont <T, A>& lhs,
 const Cont <T, A>& rhs);

The template function executes lhs.swap(rhs).

See also the Table of Contents and the Index.

Copyright © 1992-1996 by P.J. Plauger. Portions derived from work copyright © 1994 by
Hewlett-Packard Company. All rights reserved.

Copyright Notice

This Reference is derived in part from books copyright © 1992-1996 by P.J. Plauger, marked with a * in
the References below. Each copy of this Reference must be licensed by an authorized Licensee. This
on-line copy of the Reference is for access only. You are not to copy it in whole or in part.

Dinkumware, Ltd. and P.J. Plauger retain exclusive ownership of the Reference.●

You are entitled to access the on-line copy, but you may not make any copies for use by yourself
or others.

●

You have a moral reponsibility not to aid or abet illegal copying by others.●

The author recognizes that this HTML format is particularly conducive to sharing within multiuser
sytems and across networks. The licensing for such use is available from Dinkumware, Ltd. The use of
the on-line Reference is for access only. In particular, please note that the ability to access this Reference
does not imply permission to copy it. Please note also that the author has expended considerable
professional effort in the production of this Reference, and continues to do so to keep it current.

DINKUMWARE, LTD. AND P.J. PLAUGER MAKE NO REPRESENTATIONS OR WARRANTIES
ABOUT THE SUITABILITY OF THE REFERENCE, EITHER EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. DINKUMWARE, LTD.
AND P.J. PLAUGER SHALL NOT BE LIABLE FOR ANY DAMAGES SUFFERED BY LICENSEE
AS A RESULT OF ACCESSING THIS REFERENCE.

By accessing this Reference, you agree to abide by the intellectual property laws, and all other applicable
laws of the USA, and the terms of this Limited Access Notice. You may be held legally responsible for
any infringement that is caused or encouraged by your failure to abide by the terms of this Notice.

Dinkumware, Ltd. retains the right to terminate access to this Reference immediately, and without notice.

References
ANSI Standard X3.159-1989 (New York NY: American National Standards Institute, 1989). The
original C Standard, developed by the ANSI-authorized committee X3J11. The Rationale that
accompanies the C Standard explains many of the decisions that went into it, if you can get your
hands on a copy.

●

ISO/IEC Standard 9899:1990 (Geneva: International Standards Organization, 1990). The official
C Standard around the world. Aside from formatting details and section numbering, the ISO C
Standard is identical to the ANSI C Standard.

●

ISO/IEC Amendment 1 to Standard 9899:1990 (Geneva: International Standards Organization,
1995). The first (and only) amendment to the C Standard. It provides substantial support for

●

http://www.dinkumware.com/

manipulating large character sets.

ISO/IEC Standard 14882:199X (Geneva: International Standards Organization, 199X). Once
adopted, the official C++ Standard around the world. Currently still in draft form, this document
reflects changes through October 1996.

●

* P.J. Plauger, The Standard C Library (Englewood Cliffs NJ: Prentice Hall, 1992). Contains a
complete implementation of the Standard C library, as well as text from the library portion of the
C Standard and guidance in using the Standard C library.

●

* P.J. Plauger, The Draft Standard C++ Library (Englewood Cliffs NJ: Prentice Hall, 1995).
Contains a complete implementation of the draft Standard C++ library as of early 1994.

●

Bug Reports
The author welcomes reports of any errors or omissions. Please send them to:

 P.J. Plauger
 Dinkumware, Ltd.
 398 Main Street
 Concord MA 01742-2321
 USA

 +1-978-371-2773
 +1-978-371-9014 fax

 pjp@plauger.com

See also the Table of Contents and the Index.

Copyright © 1992-1996 by P.J. Plauger. All rights reserved.

mailto:pjp@plauger.com

Dinkum C/C++ Library
Reference Index

TO
ORDERA B C D E F G H I J K L M N O P Q R S T U V W X Y Z

%% · %% · %[
A
abort · abs · abs · abs · accessor objects · accumulate · acos · acos
· acosf · acosl · _ADDFAC · adjacent_difference · advance · Algorithm
Conventions · allocator · allocator object · allocator::address ·
allocator::allocate · allocator::allocator · allocator::const_pointer
· allocator::const_reference · allocator::construct ·
allocator::deallocate · allocator::destroy ·
allocator::difference_type · allocator<void> · allocator::max_size ·
allocator::operator= · allocator::other · allocator::pointer ·
allocator::rebind · allocator::reference · allocator::size_type ·
allocator::value_type · Amendment 1 · and · and_eq · asctime · asin ·
asin · asinf · asinl · atan · atan · atan2 · atan2 · atan2f · atan2l ·
atanf · atanl · atexit · atof · atoi · atol · atomic operation ·
auto_ptr · auto_ptr::auto_ptr · auto_ptr::~auto_ptr ·
auto_ptr::element_type · auto_ptr::get · auto_ptr::operator* ·
auto_ptr::operator= · auto_ptr::operator-> · auto_ptr::release
B
back_inserter · back_insert_iterator ·
back_insert_iterator::back_insert_iterator ·
back_insert_iterator::container · back_insert_iterator::container_type
· back_insert_iterator::operator* · back_insert_iterator::operator++ ·
back_insert_iterator::operator= · back_insert_iterator::value_type ·
bad_alloc · bad_cast · bad_typeid · basic_ios · basic_ios::bad ·
basic_ios::basic_ios · basic_ios::char_type · basic_ios::clear ·
basic_ios::copyfmt · basic_ios::eof · basic_ios::exceptions ·
basic_ios::fail · basic_ios::fill · basic_ios::good · basic_ios::imbue
· basic_ios::init · basic_ios::int_type · basic_ios::narrow ·
basic_ios::off_type · basic_ios::operator! · basic_ios::operator void
* · basic_ios::pos_type · basic_ios::rdbuf · basic_ios::rdstate ·

http://www.dinkumware.com/
https://secure.dinkumware.com/asp/orderform.asp

basic_ios::setstate · basic_ios::tie · basic_iostream ·
basic_ios::widen · basic_istream · basic_istream::basic_istream ·
basic_istream::char_type · basic_istream::gcount · basic_istream::get
· basic_istream::getline · basic_istream::ignore ·
basic_istream::int_type · basic_istream::ipfx · basic_istream::isfx ·
basic_istream::off_type · basic_istream::operator>> ·
basic_istream::peek · basic_istream::pos_type · basic_istream::putback
· basic_istream::read · basic_istream::readsome · basic_istream::seekg
· basic_istream::sentry · basic_istream::sync · basic_istream::tellg ·
basic_istream::traits_type · basic_istream::unget ·
basic_istringstream · basic_istringstream::basic_istringstream ·
basic_istringstream::char_type · basic_istringstream::int_type ·
basic_istringstream::off_type · basic_istringstream::pos_type ·
basic_istringstream::rdbuf · basic_istringstream::str ·
basic_istringstream::traits_type · basic_istrstream::char_type ·
basic_istrstream::int_type · basic_istrstream::off_type ·
basic_istrstream::pos_type · basic_ostream ·
basic_ostream::basic_ostream · basic_ostream::char_type ·
basic_ostream::flush · basic_ostream::int_type ·
basic_ostream::off_type · basic_ostream::operator<< ·
basic_ostream::opfx · basic_ostream::osfx · basic_ostream::pos_type ·
basic_ostream::put · basic_ostream::seekp · basic_ostream::sentry ·
basic_ostream::tellp · basic_ostream::traits_type ·
basic_ostream::write · basic_ostringstream ·
basic_ostringstream::basic_ostringstream ·
basic_ostringstream::char_type · basic_ostringstream::int_type ·
basic_ostringstream::off_type · basic_ostringstream::pos_type ·
basic_ostringstream::rdbuf · basic_ostringstream::str ·
basic_ostringstream::traits_type · basic_ostrstream::char_type ·
basic_ostrstream::int_type · basic_ostrstream::off_type ·
basic_ostrstream::pos_type · basic_streambuf ·
basic_streambuf::basic_streambuf · basic_streambuf::char_type ·
basic_streambuf::eback · basic_streambuf::egptr ·
basic_streambuf::epptr · basic_streambuf::gbump ·
basic_streambuf::getloc · basic_streambuf::gptr ·
basic_streambuf::imbue · basic_streambuf::in_avail ·
basic_streambuf::int_type · basic_streambuf::off_type ·
basic_streambuf::overflow · basic_streambuf::pbackfail ·
basic_streambuf::pbase · basic_streambuf::pbump ·
basic_streambuf::pos_type · basic_streambuf::pptr ·

basic_streambuf::pubimbue · basic_streambuf::pubseekoff ·
basic_streambuf::pubseekpos · basic_streambuf::pubsetbuf ·
basic_streambuf::pubsync · basic_streambuf::sbumpc ·
basic_streambuf::seekoff · basic_streambuf::seekpos ·
basic_streambuf::setbuf · basic_streambuf::setg ·
basic_streambuf::setp · basic_streambuf::sgetc ·
basic_streambuf::sgetn · basic_streambuf::showmanyc ·
basic_streambuf::snextc · basic_streambuf::sputbackc ·
basic_streambuf::sputc · basic_streambuf::sputn ·
basic_streambuf::sungetc · basic_streambuf::sync ·
basic_streambuf::traits_type · basic_streambuf::uflow ·
basic_streambuf::underflow · basic_streambuf::xsgetn ·
basic_streambuf::xsputn · basic_string · basic_string::allocator ·
basic_string::allocator_type · basic_string::append ·
basic_string::assign · basic_string::at · basic_string::basic_string ·
basic_string::begin · basic_stringbuf ·
basic_stringbuf::basic_stringbuf · basic_stringbuf::char_type ·
basic_stringbuf::int_type · basic_stringbuf::off_type ·
basic_stringbuf::overflow · basic_stringbuf::pbackfail ·
basic_stringbuf::pos_type · basic_stringbuf::seekoff ·
basic_stringbuf::seekpos · basic_stringbuf::str ·
basic_stringbuf::traits_type · basic_stringbuf::underflow ·
basic_string::capacity · basic_string::char_type ·
basic_string::compare · basic_string::const_iterator ·
basic_string::const_pointer · basic_string::const_reference ·
basic_string::const_reverse_iterator · basic_string::copy ·
basic_string::c_str · basic_string::data ·
basic_string::difference_type · basic_string::empty ·
basic_string::end · basic_string::erase · basic_string::find ·
basic_string::find_first_not_of · basic_string::find_first_of ·
basic_string::find_last_not_of · basic_string::find_last_of ·
basic_string::get_allocator · basic_string::insert ·
basic_string::iterator · basic_string::length · basic_string::max_size
· basic_string::npos · basic_string::operator+= ·
basic_string::operator= · basic_string::operator[] ·
basic_string::pointer · basic_string::rbegin · basic_string::reference
· basic_string::rend · basic_string::replace · basic_string::reserve ·
basic_string::resize · basic_string::reverse_iterator ·
basic_string::rfind · basic_string::size · basic_string::size_type ·
basic_stringstream · basic_stringstream::basic_stringstream ·

basic_stringstream::char_type · basic_stringstream::int_type ·
basic_stringstream::off_type · basic_stringstream::pos_type ·
basic_stringstream::rdbuf · basic_stringstream::str ·
basic_stringstream::traits_type · basic_string::substr ·
basic_string::swap · basic_string::traits_type ·
basic_string::value_type · basic_strstreambuf::char_type ·
basic_strstreambuf::int_type · basic_strstreambuf::off_type ·
basic_strstreambuf::pos_type · bidirectional_iterator_tag · BidIt ·
binary stream · bitand · bitor · _Bool · boolalpha · _Boolarray ·
boolean input field · boolean output field · bsearch · btowc · BUFSIZ
· _Bvector · Byte and Wide Streams · byte oriented · byte print
functions · byte read functions · byte scan functions · byte stream ·
byte write functions
C
%c · %c · C++ Library Conventions · C Library Conventions · C++
Library Overview · C Library Overview · C locale · C++ Program Startup
and Termination · C Program Startup and Termination · C string ·
callback event · callback stack · calloc · ceil · ceilf · ceill · cerr
· character traits · CHAR_BIT · CHAR_MAX · CHAR_MIN · char_traits ·
char_traits::assign · char_traits::char_type · char_traits::compare ·
char_traits::copy · char_traits::eof · char_traits::eq ·
char_traits::eq_int_type · char_traits::find · char_traits::int_type ·
char_traits::length · char_traits::lt · char_traits<char> ·
char_traits<wchar_t> · char_traits::move · char_traits::not_eof ·
char_traits::off_type · char_traits::pos_type ·
char_traits::state_type · char_traits::to_char_type ·
char_traits::to_int_type · cin · clearerr · clock · CLOCKS_PER_SEC ·
clock_t · clog · codecvt · codecvt::always_noconv · codecvt_base ·
codecvt_base::error · codecvt_base::noconv · codecvt_base::ok ·
codecvt_base::partial · codecvt_base::result · codecvt_byname ·
codecvt::codecvt · codecvt::do_always_noconv · codecvt::do_encoding ·
codecvt::do_in · codecvt::do_length · codecvt::do_max_length ·
codecvt::do_out · codecvt::encoding · codecvt::from_type · codecvt::id
· codecvt::in · codecvt::length · codecvt::max_length · codecvt::out ·
codecvt::state_type · codecvt::to_type · collate · collate_byname ·
collate::char_type · collate::collate · collate::compare ·
collate::do_compare · collate::do_hash · collate::do_transform ·
collate::hash · collate::id · collate::string_type ·
collate::transform · collating order for types · command line ·
command processor · compl · constructing iostreams · Cont · Containers
· Cont::allocator · Cont::allocator_type · Cont::begin · Cont::clear ·

Cont::const_iterator · Cont::const_reference ·
Cont::const_reverse_iterator · Cont::difference_type · Cont::empty ·
Cont::end · Cont::erase · Cont::get_allocator · Cont::iterator ·
Cont::max_size · Cont::rbegin · Cont::reference · Cont::rend ·
Cont::reverse_iterator · Controlling Streams · Cont::size ·
Cont::size_type · Cont::swap · Cont::value_type · conversion
specification · conversion specifier · conversion specifier ·
conversion specifiers · cos · cos · cosf · cosh · cosh · coshf · coshl
· cosl · cout · ctime · ctype · ctype mask table · ctype_base ·
ctype_base::alnum · ctype_base::alpha · ctype_base::cntrl ·
ctype_base::digit · ctype_base::graph · ctype_base::lower ·
ctype_base::mask · ctype_base::print · ctype_base::punct ·
ctype_base::space · ctype_base::upper · ctype_base::xdigit ·
ctype_byname · ctype::char_type · ctype::ctype · ctype::do_is ·
ctype::do_narrow · ctype::do_scan_is · ctype::do_scan_not ·
ctype::do_tolower · ctype::do_toupper · ctype::do_widen · ctype::id ·
ctype::is · ctype<char> · ctype<char>::classic_table ·
ctype<char>::table · ctype<char>::table_size · ctype::narrow ·
ctype::scan_is · ctype::scan_not · ctype::tolower · ctype::toupper ·
ctype::widen · currency_symbol
D
%d · %d · date input field · Daylight Saving Time · dec ·
decimal_point · define directive · delete expression · delete[]
expression · difftime · directives · display precision · _Distance ·
distance · _Dist_type · div · div_t · domain error · domain_error ·
dynamic cast
E
%E · %e · %E · %e · encapsulated wchar_t · endl · end-of-file
indicator · ends · environment list · EOF · equivalent ordering ·
error indicator · exception mask · exit · EXIT_FAILURE · EXIT_SUCCESS
· exp · exp · expf · expl · extensible arrays · extern "C" · extern
"C++" · extraction count
F
%f · %f · fabs · fabsf · fabsl · far heap · fclose · feof · ferror ·
fflush · fgetc · fgetpos · fgets · fgetwc · fgetws · field width ·
__FILE__ · FILE · file buffer · file close · file open · filename ·
FILENAME_MAX · file-position indicator · files · Files and Streams ·
fill character · fixed · floating-point conversions · floating-point
input field · floating-point output field · float_round_style ·
float_round_style::round_indeterminate ·
float_round_style::round_to_nearest ·

float_round_style::round_toward_infinity ·
float_round_style::round_toward_neg_infinity ·
float_round_style::round_toward_zero · floor · floorf · floorl · flush
· fmod · fmodf · fmodl · fopen · FOPEN_MAX · format flag · format
flags · format string · Formatted Input · formatted input functions ·
Formatted Output · formatted output functions · formatting information
· forward_iterator_tag · fpos · fpos::fpos · fpos::get_fpos_t ·
fpos::operator!= · fpos::operator+ · fpos::operator+= ·
fpos::operator- · fpos::operator-= · fpos::operator== · fpos::operator
streamoff · fpos::state · fpos_t · fprintf · fputc · fputs · fputwc ·
fputws · frac_digits · fread · free · freestanding implementation ·
freestanding implementation · freopen · frexp · frexpf · frexpl ·
front_inserter · front_insert_iterator ·
front_insert_iterator::container ·
front_insert_iterator::container_type ·
front_insert_iterator::front_insert_iterator ·
front_insert_iterator::operator* · front_insert_iterator::operator++ ·
front_insert_iterator::operator= · front_insert_iterator::value_type ·
fscanf · fseek · fsetpos · ftell · full buffering · FwdIt · fwide ·
fwprintf · fwrite · fwscanf
G
%G · %g · %G · %g · garbage collection · generalized multibyte
characters · getc · getchar · getenv · getline · gets ·
get_temporary_buffer · getwc · getwchar · global locale · gmtime ·
grouping · gslice · gslice_array · gslice_array::fill ·
gslice_array::operator%= · gslice_array::operator*= ·
gslice_array::operator+= · gslice_array::operator-= ·
gslice_array::operator/= · #gslice_array::operator= ·
gslice_array::operator= · gslice_array::operator^= ·
gslice_array::operator|= · gslice_array::operator&= ·
gslice_array::operator>>= · gslice_array::operator<<= ·
gslice_array::value_type · gslice::gslice · gslice::size ·
gslice::start · gslice::stride
H
_HAS · has_facet · heap ordering · hex · hosted implementation ·
hosted implementation · HUGE_VAL
I
%i · %i · IEC 559 · IEEE 754 · if directive · if expression ·
implementation · implementation · include directive · indirect_array ·
indirect_array::fill · indirect_array::operator%= ·
indirect_array::operator*= · indirect_array::operator+= ·

indirect_array::operator-= · indirect_array::operator/= ·
#indirect_array::operator= · indirect_array::operator= ·
indirect_array::operator^= · indirect_array::operator|= ·
indirect_array::operator&= · indirect_array::operator>>= ·
indirect_array::operator<<= · indirect_array::value_type · InIt ·
inner_product · input buffer · input failure · input_iterator_tag ·
inserter · insert_iterator · insert_iterator::container ·
insert_iterator::container_type · insert_iterator::insert_iterator ·
insert_iterator::iter · insert_iterator::operator* ·
insert_iterator::operator++ · insert_iterator::operator= ·
insert_iterator::value_type · int_curr_symbol · integer conversions ·
integer input field · integer output field · interactive files ·
internal · int_frac_digits · INT_MAX · INT_MIN · invalid list
iterators · invalid vector iterators · invalid_argument · _IOFBF ·
_IOLBF · <iomanip> · <iomanip.h> · _IONBF · ios · ios_base ·
ios_base::adjustfield · ios_base::app · ios_base::ate ·
ios_base::badbit · ios_base::basefield · ios_base::beg ·
ios_base::binary · ios_base::boolalpha · ios_base::copyfmt_event ·
ios_base::cur · ios_base::dec · ios_base::end · ios_base::eofbit ·
ios_base::erase_event · ios_base::event · ios_base::event_callback ·
ios_base::failbit · ios_base::failure · ios_base::fixed ·
ios_base::flags · ios_base::floatfield · ios_base::fmtflags ·
ios_base::getloc · ios_base::goodbit · ios_base::hex · ios_base::imbue
· ios_base::imbue_event · ios_base::in · ios_base::Init ·
ios_base::internal · ios_base::ios_base · ios_base::iostate ·
ios_base::iword · ios_base::left · ios_base::oct · ios_base::openmode
· ios_base::operator= · ios_base::out · ios_base::precision ·
ios_base::pword · ios_base::register_callback · ios_base::right ·
ios_base::scientific · ios_base::seekdir · ios_base::setf ·
ios_base::showbase · ios_base::showpoint · ios_base::showpos ·
ios_base::skipws · ios_base::sync_with_stdio · ios_base::trunc ·
ios_base::unitbuf · ios_base::unsetf · ios_base::uppercase ·
ios_base::width · ios_base::xalloc · <iosfwd> · <ios> · iostream ·
<iostream> · <iostream.h> · iostreams · isalnum · isalpha · iscntrl ·
isdigit · isgraph · islower · <iso646.h> · isprint · ispunct · isspace
· istream · istreambuf_iterator · istreambuf_iterator::char_type ·
istreambuf_iterator::equal · istreambuf_iterator::int_type ·
istreambuf_iterator::istreambuf_iterator ·
istreambuf_iterator::istream_type · istreambuf_iterator::operator* ·
istreambuf_iterator::operator++ · istreambuf_iterator::operator-> ·

istreambuf_iterator::streambuf_type · istreambuf_iterator::traits_type
· <istream> · istream_iterator · istream_iterator::char_type ·
istream_iterator::istream_iterator · istream_iterator::istream_type ·
istream_iterator::operator* · istream_iterator::operator++ ·
istream_iterator::operator-> · istream_iterator::traits_type ·
istream_iterator::value_type · istringstream · istrstream ·
istrstream::istrstream · istrstream::rdbuf · istrstream::str · isupper
· iswalnum · iswalpha · iswcntrl · iswctype · iswdigit · iswgraph ·
iswlower · iswprint · iswpunct · iswspace · iswupper · iswxdigit ·
isxdigit · iterator · Iterator Conventions · iterator::distance_type ·
<iterator> · iterator::iterator_category · iterators · iterator_traits
· iterator_traits::distance_type · iterator_traits::iterator_category
· iterator_traits::value_type · iterator::value_type · _Iter_cat
J
jmp_buf
K

L
%l[· labs · %lc · %lc · LC_ALL · LC_COLLATE · LC_CTYPE · LC_MONETARY
· LC_NUMERIC · lconv · LC_TIME · ldexp · ldexpf · ldexpl · ldiv ·
ldiv_t · left · length error · length_error · <limits> · <limits.h> ·
__LINE__ · line buffering · line directive · link time · list · list
reallocation · list::allocator · list::allocator_type · list::assign ·
list::back · list::begin · list::clear · list::const_iterator ·
list::const_reference · list::const_reverse_iterator ·
list::difference_type · list::empty · list::end · list::erase ·
list::front · list::get_allocator · <list> · list::insert ·
list::iterator · list::list · list::max_size · list::merge ·
list::pop_back · list::pop_front · list::push_back · list::push_front
· list::rbegin · list::reference · list::remove · list::remove_if ·
list::rend · list::resize · list::reverse · list::reverse_iterator ·
list::size · list::size_type · list::sort · list::splice · list::swap
· list::unique · list::value_type · locale · locale · locale category
· locale facet · locale name · locale object · locale::all ·
locale::category · locale::classic · locale::collate · localeconv ·
locale::ctype · locale::empty · locale::facet · locale::global ·
<locale> · <locale.h> · locale::id · locale::locale · locale::messages
· locale::monetary · locale::name · locale::none · locale::numeric ·
locale::operator!= · locale::operator() · locale::operator== ·
locale::time · localtime · log · log · log10 · log10 · log10f · log10l
· logf · logic_error · logl · longjmp · LONG_MAX · LONG_MIN · %ls ·

%ls · L_tmpnam
M
macros · main · make_pair · malloc · manipulators · map ·
map::allocator · map::allocator_type · map::begin · map::clear ·
map::const_iterator · map::const_reference ·
map::const_reverse_iterator · map::count · map::difference_type ·
map::empty · map::end · map::equal_range · map::erase · map::find ·
map::get_allocator · <map> · map::insert · map::iterator ·
map::key_comp · map::key_compare · map::key_type · map::lower_bound ·
map::map · map::max_size · map::operator[] · map::rbegin ·
map::reference · map::referent_type · map::rend ·
map::reverse_iterator · map::size · map::size_type · map::swap ·
map::upper_bound · map::value_comp · map::value_compare ·
map::value_compare::comp · map::value_type · mask_array ·
mask_array::fill · mask_array::operator%= · mask_array::operator*= ·
mask_array::operator+= · mask_array::operator-= ·
mask_array::operator/= · #mask_array::operator= ·
mask_array::operator= · mask_array::operator^= ·
mask_array::operator|= · mask_array::operator&= ·
mask_array::operator>>= · mask_array::operator<<= ·
mask_array::value_type · masking macro · masking macro · matching
failure · <math.h> · max · MB_CUR_MAX · mblen · MB_LEN_MAX · mbrlen ·
mbrtowc · mbsinit · mbsrtowcs · mbstate_t · mbstowcs · mbtowc · memchr
· memcmp · memcpy · memmove · <memory> · memset · message catalog ·
messages · messages_base · messages_base::catalog · messages_byname ·
messages::char_type · messages::close · messages::do_close ·
messages::do_get · messages::do_open · messages::get · messages::id ·
messages::messages · messages::open · messages::string_type · min ·
mktime · modf · modff · modfl · modulo representation ·
mon_decimal_point · monetary input field · monetary output field ·
money_base · money_base::field · money_base::none · money_base::part ·
money_base::pattern · money_base::sign · money_base::space ·
money_base::symbol · money_base::value · money_get ·
money_get::char_type · money_get::do_get · money_get::get ·
money_get::id · money_get::iter_type · money_get::money_get ·
money_get::string_type · moneypunct · moneypunct_byname ·
moneypunct::char_type · moneypunct::curr_symbol ·
moneypunct::decimal_point · moneypunct::do_curr_symbol ·
moneypunct::do_decimal_point · moneypunct::do_frac_digits ·
moneypunct::do_grouping · moneypunct::do_negative_sign ·
moneypunct::do_neg_format · moneypunct::do_pos_format ·

moneypunct::do_positive_sign · moneypunct::do_thousands_sep ·
moneypunct::frac_digits · moneypunct::grouping · moneypunct::id ·
moneypunct::intl · moneypunct::moneypunct · moneypunct::negative_sign
· moneypunct::neg_format · moneypunct::pos_format ·
moneypunct::positive_sign · moneypunct::string_type ·
moneypunct::thousands_sep · money_put · money_put::char_type ·
money_put::do_put · money_put::id · money_put::iter_type ·
money_put::money_put · money_put::put · money_put::string_type ·
mon_grouping · month input field · mon_thousands_sep · multibyte
string · multimap · multimap::allocator · multimap::allocator_type ·
multimap::begin · multimap::clear · multimap::const_iterator ·
multimap::const_reference · multimap::const_reverse_iterator ·
multimap::count · multimap::difference_type · multimap::empty ·
multimap::end · multimap::equal_range · multimap::erase ·
multimap::find · multimap::get_allocator · multimap::insert ·
multimap::iterator · multimap::key_comp · multimap::key_compare ·
multimap::key_type · multimap::lower_bound · multimap::max_size ·
multimap::multimap · multimap::rbegin · multimap::reference ·
multimap::referent_type · multimap::rend · multimap::reverse_iterator
· multimap::size · multimap::size_type · multimap::swap ·
multimap::upper_bound · multimap::value_comp · multimap::value_compare
· multimap::value_compare::comp · multimap::value_type · multiset ·
multiset::allocator · multiset::allocator_type · multiset::begin ·
multiset::clear · multiset::const_iterator · multiset::const_reference
· multiset::const_reverse_iterator · multiset::count ·
multiset::difference_type · multiset::empty · multiset::end ·
multiset::equal_range · multiset::erase · multiset::find ·
multiset::get_allocator · multiset::insert · multiset::iterator ·
multiset::key_comp · multiset::key_compare · multiset::key_type ·
multiset::lower_bound · multiset::max_size · multiset::multiset ·
multiset::rbegin · multiset::reference · multiset::rend ·
multiset::reverse_iterator · multiset::size · multiset::size_type ·
multiset::swap · multiset::upper_bound · multiset::value_comp ·
multiset::value_compare · multiset::value_type
N
%n · %n · names for types · namespaces · native locale · n_cs_precedes
· negative_sign · new expression · new[] expression · new handler ·
<new> · new_handler · <new.h> · no buffering · noboolalpha ·
noshowbase · noshowpoint · noshowpos · noskipws · not · not_eq ·
nothrow · nothrow_t · nounitbuf · nouppercase · n_sep_by_space ·
n_sign_posn · NULL · NULL · NULL · NULL · NULL · NULL · NULL · null

string · <numeric> · numeric_limits · numeric_limits::denorm_min ·
numeric_limits::digits · numeric_limits::digits10 ·
numeric_limits::epsilon · numeric_limits::has_denorm ·
numeric_limits::has_denorm_loss · numeric_limits::has_infinity ·
numeric_limits::has_quiet_NaN · numeric_limits::has_signaling_NaN ·
numeric_limits::infinity · numeric_limits::is_bounded ·
numeric_limits::is_exact · numeric_limits::is_iec559 ·
numeric_limits::is_integer · numeric_limits::is_modulo ·
numeric_limits::is_signed · numeric_limits::is_specialized ·
numeric_limits::max · numeric_limits::max_exponent ·
numeric_limits::max_exponent10 · numeric_limits::min ·
numeric_limits::min_exponent · numeric_limits::min_exponent10 ·
numeric_limits::quiet_NaN · numeric_limits::radix ·
numeric_limits::round_error · numeric_limits::round_style ·
numeric_limits::signaling_NaN · numeric_limits::tinyness_before ·
numeric_limits::traps · num_get · num_get::char_type · num_get::do_get
· num_get::get · num_get::id · num_get::iter_type · num_get::num_get ·
numpunct · numpunct_byname · numpunct::char_type ·
numpunct::decimal_point · numpunct::do_decimal_point ·
numpunct::do_falsename · numpunct::do_grouping ·
numpunct::do_thousands_sep · numpunct::do_truename ·
numpunct::falsename · numpunct::grouping · numpunct::id ·
numpunct::numpunct · numpunct::string_type · numpunct::thousands_sep ·
numpunct::truename · num_put · num_put::char_type · num_put::do_put ·
num_put::id · num_put::iter_type · num_put::num_put · num_put::put
O
%o · %o · oct · offsetof · opening mode · operand sequence ·
operator!= · operator+ · operator- · operator== · operator!= ·
operator== · operator!= · operator== · operator!= · operator== ·
operator!= · operator== · operator!= · operator== · operator!= ·
operator== · operator!= · operator== · operator!= · operator+ ·
operator== · operator!= · operator== · operator!= · operator% ·
operator* · operator+ · operator- · operator/ · operator== · operator^
· operator| · operator|| · operator!= · operator== · operator delete ·
operator delete[] · operator delete · operator delete[] · operator new
· operator new[] · operator new · operator new[] · operator& ·
operator&& · operator> · operator>= · operator> · operator>= ·
operator> · operator>= · operator> · operator>= · operator> ·
operator>= · operator> · operator>= · operator> · operator>= ·
operator> · operator>= · operator> · operator>= · operator> ·
operator>= · operator> · operator>= · operator>> · operator>> ·

operator>> · operator< · operator<= · operator< · operator<= ·
operator< · operator<= · operator< · operator<= · operator< ·
operator<= · operator< · operator<= · operator< · operator<= ·
operator< · operator<= · operator< · operator<= · operator< ·
operator<= · operator< · operator<= · operator<< · operator<< ·
operator<< · or · or_eq · ostream · ostreambuf_iterator ·
ostreambuf_iterator::char_type · ostreambuf_iterator::failed ·
ostreambuf_iterator::operator* · ostreambuf_iterator::operator++ ·
ostreambuf_iterator::operator= ·
ostreambuf_iterator::ostreambuf_iterator ·
ostreambuf_iterator::ostream_type ·
ostreambuf_iterator::streambuf_type · ostreambuf_iterator::traits_type
· <ostream> · ostream_iterator · ostream_iterator::char_type ·
ostream_iterator::operator* · ostream_iterator::operator++ ·
ostream_iterator::operator= · ostream_iterator::ostream_iterator ·
ostream_iterator::ostream_type · ostream_iterator::traits_type ·
ostream_iterator::value_type · ostringstream · ostrstream ·
ostrstream::freeze · ostrstream::ostrstream · ostrstream::pcount ·
ostrstream::rdbuf · ostrstream::str · OutIt · out_of_range ·
out-of-range error · output buffer · output_iterator_tag ·
overflow_error · ownership indicator
P
%p · %p · padding · pair · pair::first · pair::first_type ·
pair::second · pair::second_type · partial_sum · p_cs_precedes ·
perror · Phases of Translation · placement delete expression ·
placement delete[] expression · placement new expression · placement
new[] expression · POD · position argument · position functions ·
positive_sign · pow · pow · powf · powl · precision · Preprocessing ·
print conversion specification · Print Conversion Specifiers · print
field width · Print Formats · Print Functions · printf ·
priority_queue · priority_queue::allocator_type · priority_queue::c ·
priority_queue::comp · priority_queue::empty ·
priority_queue::get_allocator · priority_queue::pop ·
priority_queue::priority_queue · priority_queue::push ·
priority_queue::size · priority_queue::size_type · priority_queue::top
· priority_queue::value_type · private heap · program · program
arguments · program startup · program termination · p_sep_by_space ·
p_sign_posn · ptrdiff_t · push back · putback position · putc ·
putchar · puts · putwc · putwchar
Q
qsort · queue · queue::allocator_type · queue::back · queue::c ·

queue::empty · queue::front · queue::get_allocator · <queue> ·
queue::pop · queue::push · queue::queue · queue::size ·
queue::size_type · queue::top · queue::value_type · quiet NaN
R
raise · rand · RAND_MAX · random_access_iterator_tag · range error ·
range_error · RanIt · raw_storage_iterator ·
raw_storage_iterator::element_type ·
raw_storage_iterator::iterator_type · raw_storage_iterator::operator*
· raw_storage_iterator::operator++ · raw_storage_iterator::operator= ·
raw_storage_iterator::raw_storage_iterator · read position · realloc ·
rel_ops · remove · rename · replaceable functions · reserved names ·
resetiosflags · return_temporary_buffer ·
reverse_bidirectional_iterator · reverse_bidirectional_iterator::base
· reverse_bidirectional_iterator::current ·
reverse_bidirectional_iterator::distance_type ·
reverse_bidirectional_iterator::iter_type ·
reverse_bidirectional_iterator::operator* ·
reverse_bidirectional_iterator::operator++ ·
reverse_bidirectional_iterator::operator-- ·
reverse_bidirectional_iterator::operator-> ·
reverse_bidirectional_iterator::pointer_type ·
reverse_bidirectional_iterator::reference_type ·
reverse_bidirectional_iterator::reverse_bidirectional_iterator ·
reverse_bidirectional_iterator::value_type · reverse_iterator ·
reverse_iterator::base · reverse_iterator::current ·
reverse_iterator::distance_type · reverse_iterator::iter_type ·
reverse_iterator::operator* · reverse_iterator::operator+ ·
reverse_iterator::operator++ · reverse_iterator::operator+= ·
reverse_iterator::operator- · reverse_iterator::operator-- ·
reverse_iterator::operator-= · reverse_iterator::operator[] ·
reverse_iterator::operator-> · reverse_iterator::pointer_type ·
reverse_iterator::reference_type · reverse_iterator::reverse_iterator
· reverse_iterator::value_type · rewind · right · runtime_error
S
%s · %s · scan conversion specification · Scan Conversion Specifiers ·
scan field width · Scan Formats · Scan Functions · scan set · scanf ·
SCHAR_MAX · SCHAR_MIN · scientific · seek mode · SEEK_CUR · SEEK_END ·
SEEK_SET · sequence ordering · set · set::allocator ·
set::allocator_type · setbase · set::begin · setbuf · set::clear ·
set::const_iterator · set::const_reference ·
set::const_reverse_iterator · set::count · set::difference_type ·

set::empty · set::end · set::equal_range · set::erase · setfill ·
set::find · set::get_allocator · <set> · set::insert · setiosflags ·
set::iterator · setjmp · <setjmp.h> · set::key_comp · set::key_compare
· set::key_type · setlocale · set::lower_bound · set::max_size ·
set_new_handler · setprecision · set::rbegin · set::reference ·
set::rend · set::reverse_iterator · set::set · set::size ·
set::size_type · set::swap · set::upper_bound · set::value_comp ·
set::value_compare · set::value_type · setvbuf · setw · shared memory
· showbase · showpoint · showpos · SHRT_MAX · SHRT_MIN · SIGABRT ·
sig_atomic_t · SIG_DFL · SIG_ERR · SIGFPE · SIG_IGN · SIGILL · SIGINT
· signal · signal handler · <signal.h> · signaling NaN · signals ·
SIGSEGV · SIGTERM · sin · sin · sinf · sinh · sinh · sinhf · sinhl ·
sinl · size_t · size_t · size_t · size_t · size_t · size_t · skipws ·
slice · slice_array · slice_array::fill · slice_array::operator%= ·
slice_array::operator*= · slice_array::operator+= ·
slice_array::operator-= · slice_array::operator/= ·
#slice_array::operator= · slice_array::operator= ·
slice_array::operator^= · slice_array::operator|= ·
slice_array::operator&= · slice_array::operator>>= ·
slice_array::operator<<= · slice_array::value_type · slice::size ·
slice::slice · slice::start · slice::stride · sprintf · sqrt · sqrt ·
sqrtf · sqrtl · srand · sscanf · <sstream> · stack ·
stack::allocator_type · stack::c · stack::empty · stack::get_allocator
· <stack> · stack::pop · stack::push · stack::size · stack::size_type
· stack::stack · stack::top · stack::value_type · Standard C++ headers
· Standard C Library · Standard C++ Library · standard error ·
standard header · standard headers · standard input · standard output
· standard streams · Standard Template Library · std · std namespace ·
<stdarg.h> · <stddef.h> · stderr · <stdexcept> · stdin · stdio sync
flag · <stdio.h> · <stdlib.h> · stdout · STL · STL Conventions ·
<stl.h> · strcat · strchr · strcmp · strcoll · strcpy · strcspn ·
stream · stream buffer · stream buffer · stream buffer · stream buffer
pointer · stream state information · Stream States · streambuf ·
<streambuf> · streamoff · streampos · streamsize · strerror · strftime
· strict weak ordering · string · stringbuf · stringbuf mode ·
<string> · <string.h> · strings · stringstream · strlen · strncat ·
strncmp · strncpy · strpbrk · strrchr · strspn · strstr · strstream ·
strstreambuf · strstreambuf allocation · strstreambuf mode ·
strstreambuf::freeze · strstreambuf::overflow ·
strstreambuf::pbackfail · strstreambuf::pcount · strstreambuf::seekoff

· strstreambuf::seekpos · strstreambuf::str ·
strstreambuf::strstreambuf · strstreambuf::underflow ·
strstream::freeze · <strstream> · strstream::pcount · strstream::rdbuf
· strstream::str · strstream::strstream · strtod · strtok · strtol ·
strtoul · strxfrm · swap · swap · swap · swap · swap · swap · swprintf
· swscanf · system
T
Table of Contents · tan · tan · tanf · tanh · tanh · tanhf · tanhl ·
tanl · Text and Binary Streams · text lines · text stream ·
thousands_sep · tie pointer · time · time input field · time string ·
time structure · time_base · time_base::dateorder · time_base::dmy ·
time_base::mdy · time_base::no_order · time_base::ydm · time_base::ymd
· time_get · time_get_byname · time_get::char_type ·
time_get::date_order · time_get::do_date_order · time_get::do_get_date
· time_get::do_get_month · time_get::do_get_time ·
time_get::do_get_weekday · time_get::do_get_year · time_get::get_date
· time_get::get_month · time_get::get_time · time_get::get_weekday ·
time_get::get_year · time_get::id · time_get::iter_type ·
time_get::time_get · <time.h> · time_put · time_put_byname ·
time_put::char_type · time_put::do_put · time_put::id ·
time_put::iter_type · time_put::put · time_put::time_put · time_t · tm
· tm · tmpfile · TMP_MAX · tmpnam · tolower · total ordering · toupper
· towctrans · towlower · towupper · translation unit · transparent
locale · typeid · type_info · type_info::before · <typeinfo> ·
type_info::name · type_info::operator!= · type_info::operator==
U
%u · %u · UCHAR_MAX · UINT_MAX · ULONG_MAX · unbound stream · undef
directive · underflow_error · unformatted input functions ·
unformatted output functions · ungetc · ungetwc · uninitialized fill ·
uninitialized_copy · uninitialized_fill_n · unitbuf · Universal Time
Coordinated · uppercase · _USE · _USEFAC · use_facet · USHRT_MAX ·
Using Standard C++ Headers · Using Standard C Headers · <utility>
V
va_arg · va_end · valarray · valarray::apply · valarray::cshift ·
valarray::fill · valarray::free · <valarray> · valarray<bool> ·
valarray::max · valarray::min · valarray::operator! ·
valarray::operator%= · valarray::operator*= · valarray::operator+ ·
valarray::operator+= · valarray::operator- · valarray::operator-= ·
valarray::operator/= · valarray::operator= · valarray::operator[] ·
valarray::operator^= · valarray::operator|= · valarray::operator~ ·
valarray::operator T * · valarray::operator&= · valarray::operator>>=

· valarray::operator<<= · valarray::resize · valarray::shift ·
valarray::size · valarray::sum · valarray::valarray ·
valarray::value_type · va_list · _Val_type · varying number of
arguments · va_start · vector · vector reallocation ·
vector::allocator · vector::allocator_type · vector::assign ·
vector::at · vector::back · vector::begin · vector::capacity ·
vector::clear · vector::const_iterator · vector::const_reference ·
vector::const_reverse_iterator · vector::difference_type ·
vector::empty · vector::end · vector::erase · vector::front ·
vector::get_allocator · <vector> · vector::insert · vector::iterator ·
vector<bool, A> · vector<bool, A>::const_iterator · vector<bool,
A>::const_reference · vector<bool, A>::flip · vector<bool,
A>::iterator · vector<bool, A>::reference · vector<bool, A>::swap ·
vector::max_size · vector::operator[] · vector::pop_back ·
vector::push_back · vector::rbegin · vector::reference · vector::rend
· vector::reserve · vector::resize · vector::reverse_iterator ·
vector::size · vector::size_type · vector::swap · vector::value_type ·
vector::vector · vfprintf · vfwprintf · vprintf · vsprintf · vswprintf
· vwprintf
W
wcerr · <wchar.h> · WCHAR_MAX · WCHAR_MIN · wchar_t · wchar_t ·
wchar_t · wcin · wclog · wcout · wcrtomb · wcscat · wcschr · wcscmp ·
wcscoll · wcscpy · wcscspn · wcsftime · wcslen · wcsncat · wcsncmp ·
wcsncpy · wcspbrk · wcsrchr · wcsrtombs · wcsspn · wcsstr · wcstod ·
wcstok · wcstol · wcstombs · wcstoul · wcsxfrm · wctob · wctomb ·
wctrans · wctrans_t · wctype · <wctype.h> · wctype_t · weekday input
field · WEOF · WEOF · white space · wide oriented · wide print
functions · wide read functions · wide scan functions · wide stream ·
wide write functions · wide-character classification · wide-character
string · wint_t · wint_t · wios · wiostream · wistream ·
wistringstream · wmemchr · wmemcmp · wmemcpy · wmemmove · wmemset ·
wostream · wostringstream · wprintf · write position · ws · wscanf ·
wstreambuf · wstreampos · wstring · wstringbuf · wstringstream
X
%X · %x · %X · %x · xor · xor_eq
Y
year input field
Z

See also the Table of Contents.

Copyright © 1989-1996 by P.J. Plauger. All rights reserved.

back to Dinkumware, Ltd. --
Genuine Software

http://www.dinkumware.com/index.html

Copyright Notice

This material is derived from books copyright © 1989-1996 by P.J. Plauger and Jim Brodie, marked with
a * in the References below. Each copy of this Reference must be licensed by an authorized Licensee.
This on-line copy of the Reference is for access only. You are not to copy it in whole or in part.

Dinkumware, Ltd., P.J. Plauger, and Jim Brodie retain exclusive ownership of the Reference.●

You are entitled to access the on-line copy, but you may not make any copies for use by yourself
or others.

●

You have a moral reponsibility not to aid or abet illegal copying by others.●

The authors recognize that this HTML format is particularly conducive to sharing within multiuser
sytems and across networks. The licensing for such use is available from Dinkumware, Ltd. The use of
the on-line Reference is for access only. In particular, please note that the ability to access this Reference
does not imply permission to copy it. Please note also that the authors have expended considerable
professional effort in the production of this Reference, and continue to do so to keep it current.

DINKUMWARE, LTD., P.J. PLAUGER, AND JIM BRODIE MAKE NO REPRESENTATIONS OR
WARRANTIES ABOUT THE SUITABILITY OF THE REFERENCE, EITHER EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.
DINKUMWARE, LTD., P.J. PLAUGER, AND JIM BRODIE SHALL NOT BE LIABLE FOR ANY
DAMAGES SUFFERED BY LICENSEE AS A RESULT OF ACCESSING THIS REFERENCE.

By accessing this Reference, you agree to abide by the intellectual property laws, and all other applicable
laws of the USA, and the terms of this Limited Access Notice. You may be held legally responsible for
any infringement that is caused or encouraged by your failure to abide by the terms of this Notice.

Dinkumware, Ltd. retains the right to terminate access to this Reference immediately, and without notice.

References
ANSI Standard X3.159-1989 (New York NY: American National Standards Institute, 1989). The
original C Standard, developed by the ANSI-authorized committee X3J11. The Rationale that
accompanies the C Standard explains many of the decisions that went into it, if you can get your
hands on a copy.

●

ISO/IEC Standard 9899:1990 (Geneva: International Standards Organization, 1990). The official
C Standard around the world. Aside from formatting details and section numbering, the ISO C
Standard is identical to the ANSI C Standard.

●

ISO/IEC Amendment 1 to Standard 9899:1990 (Geneva: International Standards Organization,
1995). The first (and only) amendment to the C Standard. It provides substantial support for

●

http://www.dinkumware.com/

manipulating large character sets.

P.J. Plauger, The Standard C Library (Englewood Cliffs NJ: Prentice Hall, 1992). Contains a
complete implementation of the Standard C library, as well as text from the library portion of the
C Standard and guidance in using the Standard C library.

●

* P.J. Plauger and Jim Brodie, Standard C: A Programmer's Reference (Redmond WA:
Microsoft Press, 1989). The first complete but succinct reference to the entire C Standard. It covers
both the language and the library.

●

* P.J. Plauger and Jim Brodie, ANSI and ISO Standard C: Programmer's Reference (Redmond
WA: Microsoft Press, 1992). An update to the above book.

●

* P.J. Plauger and Jim Brodie, Standard C (Englewood Cliffs NJ: PTR Prentice Hall, 1996). An
update to the above two books and the principal source book for this material. It includes a
complete description of Amendment 1.

●

Bug Reports
The authors welcome reports of any errors or omissions. Please send them to:

 P.J. Plauger
 Dinkumware, Ltd.
 398 Main Street
 Concord MA 01742-2321
 USA

 +1-978-371-2773
 +1-978-371-9014 fax

 pjp@plauger.com

See also the Table of Contents and the Index.

Copyright © 1989-1996 by P.J. Plauger and Jim Brodie. All rights reserved.

mailto:pjp@plauger.com

Hewlett-Packard Notice

This material is derived in part from software and documentation bearing the following restrictions:

Copyright © 1994
Hewlett-Packard Company

Permission to use, copy, modify, distribute and sell this software and its documentation for any purpose
is hereby granted without fee, provided that the above copyright notice appear in all copies and that both
that copyright notice and this permission notice appear in supporting documentation. Hewlett-Packard
Company makes no representations about the suitability of this software for any purpose. It is provided
``as is'' without express or implied warranty.

See also the Table of Contents and the Index.

Copyright © 1994 by Hewlett-Packard Company.

http://www.dinkumware.com/

Functions

You write functions to specify all the actions that a program performs when it executes. The type of a
function tells you the type of result it returns (if any). It can also tell you the types of any arguments that
the function expects when you call it from within an expression.

This document describes briefly just those aspect of functions most relevant to the use of the Standard C
library:

Argument promotion occurs when the type of the function fails to provide any information about an
argument. Promotion occurs if the function declaration is not a function prototype or if the argument is
one of the unnamed arguments in a varying number of arguments. In this instance, the argument must be
an rvalue expression. Hence:

An integer argument type is promoted.●

An lvalue of type array of T becomes an rvalue of type pointer to T.●

A function designator of type function returning T becomes an rvalue of type pointer to function
returning T.

●

An argument of type float is converted to double.●

A do statement executes a statement one or more times, while its test-context expression has a nonzero
value:

 do
 statement
 while (test);

An expression statement evaluates an expression in a side-effects context:

 printf("hello\n"); call a function
 y = m * x + b; store a value
 ++count; alter a stored value

A for statement executes a statement zero or more times, while the optional test-context expression
test has a nonzero value. You can also write two expressions, se-1 and se-2, in a for statement that
are each in a side-effects context:

 for (se-1; test; se-2)
 statement

An if statement executes a statement only if the test-context expression has a nonzero value:

http://www.dinkumware.com/

 if (test)
 statement

An if-else statement executes one of two statements, depending on whether the test-context expression
has a nonzero value:

 if (test)
 statement-1
 else
 statement-2

A return statement terminates execution of the function and transfers control to the expression that
called the function. If you write the optional rvalue expression within the return statement, the result
must be assignment-compatible with the type returned by the function. The program converts the value
of the expression to the type returned and returns it as the value of the function call:

 return expression;

An expression that occurs in a side-effects context specifies no value and designates no object or
function. Hence, it can have type void. You typically evaluate such an expression for its side effects --
any change in the state of the program that occurs when evaluating an expression. Side effects occur
when the program stores a value in an object, accesses a value from an object of volatile qualified type,
or alters the state of a file.

A switch statement jumps to a place within a controlled statement, depending on the value of an integer
expression:

 switch (expr)
 {
 case val-1:
 stat-1;
 break;
 case val-2:
 stat-2; falls through to next
 default:
 stat-n
 }

In a test-context expression the value of an expression causes control to flow one way within the
statement if the computed value is nonzero or another way if the computed value is zero. You can write
only an expression that has a scalar rvalue result, because only scalars can be compared with zero.

A while statement executes a statement zero or more times, while the test-context expression has a
nonzero value:

 while (test)
 statement

See also the Table of Contents and the Index.

Copyright © 1989-1996 by P.J. Plauger and Jim Brodie. All rights reserved.

	dinkumware.com
	Dinkum C/C++ Library Reference
	C++ Library Overview
	C Library Overview
	Preprocessing
	Files and Streams
	<stdio.h>
	Expressions
	<algorithm>
	<bitset>
	<complex>
	<deque>
	<exception>
	<fstream>
	<functional>
	<iomanip>
	<ios>
	<iosfwd>
	<iostream>
	<istream>
	<iterator>
	<limits>
	<list>
	<locale>
	<map>
	<memory>
	<new>
	<numeric>
	<ostream>
	<queue>
	<set>
	<sstream>
	<stack>
	<stdexcept>
	<streambuf>
	<string>
	<strstream>
	<typeinfo>
	<utility>
	<valarray>
	<vector>
	<cassert>
	<cctype>
	<cerrno>
	<cfloat>
	<ciso646>
	<climits>
	<clocale>
	<cmath>
	<csetjmp>
	<csignal>
	<cstdarg>
	<cstddef>
	<cstdio>
	<cstdlib>
	<cstring>
	<ctime>
	<cwchar>
	<cwctype>
	<assert.h>
	<ctype.h>
	<errno.h>
	<float.h>
	<iso646.h>
	<limits.h>
	<locale.h>
	<math.h>
	<setjmp.h>
	<signal.h>
	<stdarg.h>
	<stddef.h>
	<stdlib.h>
	<string.h>
	<time.h>
	<wchar.h>
	<wctype.h>
	<fstream.h>
	<iomanip.h>
	<iostream.h>
	<new.h>
	<stl.h>
	Characters
	Formatted Output
	Formatted Input
	STL Conventions
	<Cont>
	Copyright Notice
	Dinkum C/C++ Library Reference Index
	Copyright Notice
	Hewlett-Packard Notice
	Functions

