
1 Introduction, Classes and Data Abstrac-

tion

• Basic characteristics of O-O languages

– Everything is an object.

– Object-orientation is a natural way of thinking about the world
and of writing computer programs.

– Objects are all around us–people, animals, plants, cars, planes,
buildings, computers, etc.

– Abstractions allow us to view screen images as objects such as
people, planes, trees, etc. rather than as individual dots of color.

– Abstractions allow us to think in terms of beaches rather than
grains of sand, houses rather than bricks.

– All objects have attributes such as size, shape, color, weight, etc.

– All objects exhibit various behaviors. A baby cries, sleeps, crawls,
walks; a car accelerates, brakes, turns, etc.

– Humans learn about objects by studying their attributes and ob-
serving their behaviors.

– Different objects can have many of the same attributes and exhibit
similar behaviors.

∗ Comparisons can be made between babies and adults, and
between humans and chimpanzees.

∗ Cars, trucks, little red wagons, and roller blades have much
in common.

– Object-oriented programming (OOP) models real-world objects
with software counterparts.

∗ It takes advantage of class relationships where objects of a
certain class, such as a class of vehicles, have the same char-
acteristics.

∗ It takes advantage of inheritance relationships, and even mul-
tiple inheritance relationships, where newly created classes
are derived by inheriting characteristics of existing classes,
yet contain unique characteristics of their own.

– A program is a bunch of objects telling each other what to do, by
sending messages.

1

– Each object has its own memory, and is made up of other objects.

– Every object has a type (class).

– All objects of the same type can receive the same messages.

• Objects

– An object has an interface, determined by the class it’s an in-
stance of.

– A class is an abstract data type (or user-defined data type).

– Defining a class requires defining its interface.

– What about built-in types?

∗ Think of an int

∗ What’s its interface?

∗ How do you ”send it messages”?

∗ How do you make (construct) one?

• The interface is the critical part, but the details (implementation) are
important too

• Users use the interface (the ”public part”), the implementation is hid-
den by ”access control”.

• C libraries have always been like this, sort of:

– The library designer invents a useful struct.

– Then she provides some useful functions for the struct.

– The user creates an instance of the struct, then applies library
functions to it.

• C++ uses ”access specifiers”: public, protected, and private to
determine who can use the attribute or function.

• Two Ways of Reusing Classes

– Composition: One class has another as a ”part”.

– Inheritance: One class is a specialized version of another

• Polymorphism: Different subclasses respond to the same message,
possibly with different actions.

• Creating and Destroying Objects

2

– We usually get this for free with built-in types like int or char, we
just say

∗ int i;

∗ char c;

– With user-defined types (the ones we make), we need to be explicit
about what we want:

∗ constructor function

∗ destructor function

∗ C++ has new and delete (similar to malloc and free in C)

∗ This is a very important issue! What is a memory leak?

• A compiler typically does

– preprocessing

– first pass to make parse tree

– second pass to generate code

• The result is an object module (.obj file).

• A linker produces an .exe file by

– Resolving references between compilation units (i.e., separate source
files)

– Adding code from libraries

– Adding special startup code

– Building the final executable file

• In C++, variables and functions must be both declared and defined.
The rules:

– A declaration tells the compiler that you intend to use a vari-
able/function with a certain name.

– A variable declaration specifies the type (int, float, etc.) so the
compiler can check your usage.

– A variable declaration doesn’t allocate space for the variable.

– A function declaration specifies the function name, argument types,
and return type, so the compiler can check your usage.

– A function declaration doesn’t allocate space for the function code.

3

Figure 1: Survey of Programming Techniques; unstructured, procedural,
modular, and object-oriented programming.

– A variable definition causes memory to be allocated to hold its
value. This can only be done (must be done) exactly once in the
entire program. Why?

– And so for functions.

• Libraries are collections of compiled function definitions.

– Library header files (.h files, or files with no extension) are collec-
tions of (uncompiled e.g., ASCII) function declarations.

– #includeing a header file is a fast and painless way of providing
the declarations the compiler insists on.

– The compiler is happy, since it has declarations from the .h file(s)

– The linker is happy, because there is exactly one definition of a
library function.

– The linker resolves references to variables/functions that are spread
across files.

• Survey of Programming Techniques (see Fig. 1)

– Unstructured programming.

∗ Simple sequence of command statements.

∗ Operates directly on global data.

4

∗ Not good for large programs.

∗ Repetitive statement segments are copied over.

∗ The repetitive sequences extracted and named so that they
can be called and values returned leads to the idea of proce-
dures.

– Procedural programming.

∗ Combines returning sequences of statements into one func-
tion.

∗ Procedure calls are used to invoke procedures.

∗ Programs are now more structured.

∗ Errors are easier to detect.

∗ Combining procedures into modules is the next logical exten-
sion.

– Modular programming.

∗ Procedures with common functionality are grouped into mod-
ules.

∗ Main program coordinates calls to procedures within modules.

∗ Each module has its own data and isolated for other modules.

– Object-oriented programming.

∗ Data and the functions that operate on that data are com-
bined into an object.

∗ Programming is not function based but object based.

∗ Objects are base on three basic ideas: Encapsulation, Inheri-
tance and Polymorphism.

1.1 History: The Rise and Decline of Structured Pro-

gramming

For many years (roughly 1970 to 1990), structured programming was the most
common way to organize a program. This is characterized by a functional-
decomposition style - breaking the algorithms in to every smaller functions.
This technique was a great improvement over the ad hoc programming which
preceded it. However, as programs became larger, structured programming
was not able control the exponential increase in complexity.

5

1.1.1 The Problem - Complexity

Complexity measurements grow exponentially as the size of programs grow.
One measurement is coupling, or much different elements (modules, data
structures) interact with each other. The fewer the connections, the less
complex a program is. Low coupling is highly desirable.
There have been several post-structured programming attempts to control
complexity. One of these is to use software components - preconstructed
software “parts” to avoid programming. And when you have to program,
use object-oriented programming (OOP).
Bjarne Stroustrup of Bell Labs extended the C language to be capable of
Object-Oriented Programming (OOP), and it became popular in the 1990’s
as C++. There were several enhancements, but the central change was ex-
tending struct to allow it to contain functions and use inheritance. These
extended structs were later renamed classes. A C++ standard was estab-
lished in 1999, so there are variations in the exact dialect that is accepted by
pre-standard compilers.

1.2 Object-Oriented Programming (OOP)

Object-Oriented Programming groups related data and functions together
in a class, generally making data private and only some functions public.
Restricting access decreases coupling and increases cohesion. While it is not
a panacea, it has proven to be very effective in reducing the complexity in-
crease with large programs. For small programs may be difficult to see the
advantage of OOP over, eg, structured programming because there is little
complexity regardless of how it’s written. Many of the mechanics of OPP
are easy to demonstrate; it is somewhat harder to create small, convincing
examples.
OOP is often said to incorporate three techniques: inheritance, encapsula-
tion, and polymorphism. Of these, you should first devote yourself to choos-
ing the right classes (possibly difficult) and getting the encapsulation right
(fairly easy). Inheritance and polymorphism are not even present in many
programs, so you can ignore them at that start.

1.2.1 Encapsulation

Encapsulation is grouping data and functions together and keeping their
implementation details private. Greatly restricting access to functions and
data reduces coupling, which increases the ability to create large programs.
Classes also encourage coherence, which means that a given class does one

6

thing. By increasing coherence, a program becomes easier to understand,
more simply organized, and this better organization is reflected in a further
reduction in coupling.

1.2.2 Inheritance

Inheritance means that a new class can be defined in terms of an existing
class. There are three common terminologies for the new class: the derived

class, the child class, or the subclass. The original class is the base class, the
parent class, or the superclass. The new child class inherits all capabilities
of the parent class and adds its own fields and methods. Altho inheritance
is very important, especially in many libraries, is often not used in an appli-
cation.

1.2.3 Polymorphism

Polymorphism is the ability of different functions to be invoked with the
same name. There are two forms.
Static polymorphism is the common case of overriding a function by providing
additional definitions with different numbers or types of parameters. The
compiler matches the parameter list to the appropriate function.
Dynamic polymorphism is much different and relies on parent classes to define
virtual functions which child classes may redefine. When this virtual member
function is called for an object of the parent class, the execution dynamically
chooses the appropriate function to call - the parent function if the object
really is the parent type, or the child function if the object really is the child
type. This explanation is too brief to be useful without an example, but that
will have to be written latter.

1.2.4 Advantages of OOP

• Re-use of code. Linking of code to objects and explicit specification
of relations between objects allows related objects to share code. En-
capsulation and weak coupling between objects means class definitions
are more likely to be re-used in other applications. Objects as well
as procedures (focus of C libraries) become likely candidates for re-
use. The enforcement of a consistent interface to objects lessens code
duplication.

• Ease of comprehension. Structure of code and data structures in it
can be set up to closely mimic the generic application concepts and

7

processes. High-level code could make some sense even to a non-
programmer. The analysis/design/coding phases in development be-
come more seamless since they can all deal in the same concepts.

• Ease of fabrication and maintenance (redesign and extension) facili-
tated by encapsulation, data abstraction which allow for very clean
designs. When an object is going into disallowed states, only its meth-
ods need be investigated. This narrows down search for problems.

• C++ Objectives

– extend C to allow for object-oriented programming

– other improvements - some resulting in deprecation of some C
facilities

– remain compatible and comparable (syntax, performance, porta-
bility, design philosophy - don’t pay for what you don’t use, don’t
get stuck with things you don’t need) with C

– emphasize compile-time type checking

• C++ is multi-paradigm. It provides for the object-oriented approach
but doesn’t enforce its use. This makes it a good transition language
and gives it flexibility when a particular situation doesn’t fit the object-
oriented philosophy.

• With this object-oriented approach, C++ overcomes certain shortcom-
ings of C:

– Lack of encapsulation means that if an object is getting trashed,
it’s difficult to find the code responsible. Many procedures may
have had idiosyncratic interactions with the object.

– Doesn’t recognize relationships between types. Pointer casting
necessary. In C++, pointer casting can just about always be
dispensed with. Pointer casting is a kludge. Compiler can’t check
if you are doing it correctly. No type safety (see definition below).

– Not easy to extend existing libraries; for example, make it so
printf() can handle new types.

– Except for FILEs, there are no well-developed objects (like stacks
and lists) in the standard libraries.

• C’s future is as a portable ”universal” assembler, a back end for code
generators.

8

• While any C++ compiler should be able to compile a C program suc-
cessfully with minor changes, several aspects of C programming are
discarded in the transition to C++: new facilities are supplied for I/O,
memory allocation and error handling; macros and pointer casts be-
come obsolete for the most part.

1.2.5 OOP Terminology

Along with each programming revolution comes a new set of terminology.
There are some new OOP concepts, but many have a simple analog in pre-
OOP practice.
OOP Term Definition

method Same as function, but the typical OO notation is used for the call,
ie, f(x,y) is written x.f(y) where x is an object of class that contains
this f method.

send a message Call a function (method).

instantiate Allocate a class/struct object (ie, instance) with new.

class A struct with both data and functions.

object Memory allocated to a class/struct. Often allocated with new.

member A field or function is a member of a class if it’s defined in that class

constructor Function-like code that initializes new objects (structs) when they
instantiated (allocated with new).

destructor Function-like code that is called when an object is deleted to free
any resources (eg, memory) that is has pointers to.

inheritance Defining a class (child) in terms of another class (parent). All of the
public members of the public class are available in the child class.

polymorphism Defining functions with the same name, but different parameters.

overload A function is overloaded if there is more than one definition. See
polymorphism.

override Redefine a function from a parent class in a child class.

subclass Same as child, derived, or inherited class.

superclass Same as parent or base class.

attribute Same as data member or member field.

1.2.6 Other Object-Oriented Languages

• Objective C

• CLOS (Common Lisp Object System)

• Ada 9X

• FORTRAN 90

9

• Smalltalk

• Modula-3

• Eiffel

2 Structure Definitions

• Structures, Aggregate data types built using elements of other types

struct Time{ //structure tag

int hour; //structure members

int minute; //structure members

int second; //structure members

};

• Structure member naming

– In same struct: must have unique names

– In different structs: can share name

• struct definition must end with semicolon

• Self-referential structure

– Structure member cannot be instance of enclosing struct

– Structure member can be pointer to instance of enclosing struct
(self-referential structure), Used for linked lists, queues, stacks and
trees

• struct definition

– Creates new data type used to declare variables

– Structure variables declared like variables of other types

– Examples:

Time timeObject;

Time timeArray[10];

Time *timePtr;

Time \&timeRef = timeObject;

10

3 Accessing Structure Members

• Member access operators

– Dot operator (.) for structure and class members

– Arrow operator (− >) for structure and class members via pointer
to object

– Print member hour of timeObject:

cout << timeObject.hour;

OR

timePtr = &timeObject;

cout << timePtr->hour;}

– timePtr− >hour same as (*timePtr).hour

∗ Parentheses required, * lower precedence than .

4 Implementing a User-Defined Type Time

with a struct

• Default: structures passed by value

– Pass structure by reference; Avoid overhead of copying structure

• C-style structures

– No interface; If implementation changes, all programs using that
struct must change accordingly

– Cannot print as unit; Must print/format member by member

– Cannot compare in entirety; Must compare member by member

5 Implementing a Time Abstract Data Type

with a class

• Classes

– Model objects

∗ Attributes (data members)

11

Figure 2: Creating a structure, setting its members and printing the structure
(part 1 of 2).

12

Figure 3: Creating a structure, setting its members and printing the structure
(part 2 of 2).

∗ Behaviors (member functions)

– Defined using keyword class

– Member functions

∗ Methods

∗ Invoked in response to messages

• Member access specifiers

– public: Accessible wherever object of class in scope

– private: Accessible only to member functions of class

– protected:

• Constructor function

– Special member function

∗ Initializes data members

13

∗ Same name as class

– Called when object instantiated

– Several constructors; Function overloading

– No return type

1 class Time {

2

3 public:

4 Time(); // constructor

5 void setTime(int, int, int); // set hour, minute, second

6 void printUniversal(); // print universal-time format

7 void printStandard(); // print standard-time format

8

9 private:

10 int hour; // 0 - 23 (24-hour clock format)

11 int minute; // 0 - 59

12 int second; // 0 - 59

13

14 }; // end class Time

• Objects of class

– After class definition

∗ Class name new type specifier; C++ extensible language

∗ Object, array, pointer and reference declarations

– Example:

Time sunset;

Time arrayofTimes[5];

Time *pointerToTime;

Time \&dinnerTime = sunset;

• Member functions defined outside class

– Binary scope resolution operator (::)

∗ Ties member name to class name

∗ Uniquely identify functions of particular class

∗ Different classes can have member functions with same name

– Format for defining member functions

14

ReturnType ClassName::MemberFunctionName(){

.

.

.

}

– Does not change whether function public or private

• Member functions defined inside class

– Do not need scope resolution operator, class name

– Compiler attempts inline; Outside class, inline explicitly with
keyword inline

• Destructors

– Same name as class; Preceded with tilde (˜)

– No arguments

– Cannot be overloaded

– Performs termination housekeeping

• Advantages of using classes

– Simplify programming

– Interfaces; Hide implementation

– Software reuse

∗ Composition (aggregation); Class objects included as mem-
bers of other classes

∗ Inheritance; New classes derived from old

6 Class Scope and Accessing Class Members

• Class scope

– Data members, member functions

– Within class scope

∗ Class members; Immediately accessible by all member func-
tions, Referenced by name

– Outside class scope

15

Figure 4: Time abstract data type implementation as a class, (part 1 of 3).

16

Figure 5: Time abstract data type implementation as a class, (part 2 of 3).

17

Figure 6: Time abstract data type implementation as a class, (part 3 of 3).

∗ Referenced through handles; Object name, reference to ob-
ject, pointer to object

• File scope

– Nonmember functions

• Function scope

– Variables declared in member function

– Only known to function

– Variables with same name as class-scope variables

∗ Class-scope variable hidden ; Access with scope resolution
operator (::)

ClassName::classVariableName

– Variables only known to function they are defined in

– Variables are destroyed after function completion

18

• Operators to access class members

– Identical to those for structs

– Dot member selection operator (.)

∗ Object

∗ Reference to object

– Arrow member selection operator (− >)

∗ pointers

7 Separating Interface from Implementation

(see Figs 8-11)

• Separating interface from implementation

– Advantage; Easier to modify programs

– Disadvantage

∗ Header files

∗ Portions of implementation; Inline member functions

∗ Hints about other implementation; private members

∗ Can hide more with proxy class

• Header files

– Class definitions and function prototypes

– Included in each file using class; #include

– File extension .h

• Source-code files

– Member function definitions

– Same base name; Convention

– Compiled and linked

19

Figure 7: Demonstrating the class member access operators. and − >

20

Figure 8: Time class definition

8 Controlling Access to Members (see Fig.

12)

• Access modes

– private

∗ Default access mode

∗ Accessible to member functions and friends

– public

∗ Accessible to any function in program with handle to class
object

∗ protected ; (discuss later)

• Class member access

– Default private

– Explicitly set to private, public, protected

21

Figure 9: Time class member-function definitions (part 1 of 2).

22

Figure 10: Time class member-function definitions (part 2 of 2).

• struct member access

– Default public

– Explicitly set to private, public, protected

• Access to class’s private data

– Controlled with access functions (accessor methods)

∗ Get function; Read private data

∗ Set function; Modify private data

23

Figure 11: Program to test class Time.

24

Figure 12: private members of a class are not accessible outside the class.

25

	Introduction, Classes and Data Abstraction
	History: The Rise and Decline of Structured Programming
	The Problem - Complexity

	Object-Oriented Programming (OOP)
	Encapsulation
	Inheritance
	Polymorphism
	Advantages of OOP
	OOP Terminology
	Other Object-Oriented Languages

	Structure Definitions
	Accessing Structure Members
	Implementing a User-Defined Type Time with a struct
	Implementing a Time Abstract Data Type with a class
	Class Scope and Accessing Class Members
	Separating Interface from Implementation (see Figs 8-11)
	Controlling Access to Members (see Fig. 12)

