
1 Operator Overloading

1.1 Introduction

Manipulations on objects were accomplished by sending messages (in the
form of member-function calls) to the object.

• Use operators with objects (operator overloading)

– Clearer than function calls for certain classes

– Operator sensitive to context

• Examples

– <<; Stream insertion, bitwise left-shift

– +; Performs arithmetic on multiple types (integers, floats, etc.)

1.2 Fundamentals of Operator Overloading

C++ programming is a type-sensitive and type-focused process. Operators
provide programmers with a concise notation for expressing manipulations
of objects of built-in types.

• Types

– Built in (int, char) or user-defined

– Can use existing operators with user-defined types; Cannot create
new operators

• Overloading operators

– Create a function for the class

– Name function operator followed by symbol; Operator+ for the
addition operator +

• Using operators on a class object

– It must be overloaded for that class

∗ Exceptions:

∗ Assignment operator, =; Memberwise assignment between
objects

∗ Address operator, &; Returns address of object

1



∗ Both can be overloaded

• Overloading provides concise notation

– object2 = object1.add(object2);

– object2 = object2 + object1;

Overloading is especially appropriate for mathematical classes. These often
require that a substantial set of operators be overloaded to ensure consis-
tency with the way these mathematical classes are handled in the real world.
Operator overloading is not automatic, however; the programmer must write
operator-overloading functions to perform the desired operations. Sometimes
these functions are best made member functions; sometimes they are best
as friend functions; occasionally the can be made non-member, non-friend
functions.

1.3 Restrictions on Operator Overloading

Most of C++’s operators can be overloaded.

• Cannot change

– How operators act on built-in data types; i.e., cannot change in-
teger addition

– Precedence of operator (order of evaluation); Use parentheses to
force order-of-operations

– Associativity (left-to-right or right-to-left)

– Number of operands; & is unitary, only acts on one operand

• Cannot create new operators

• Operators must be overloaded explicitly; Overloading + does not over-
load +=

1.4 Operator Functions As Class Members Vs. As

Friend Functions

• Operator functions

– Member functions

∗ Use this keyword to implicitly get argument

2



∗ Gets left operand for binary operators (like +)

∗ Leftmost object must be of same class as operator

– Non member functions

∗ Need parameters for both operands

∗ Can have object of different class than operator

∗ Must be a friend to access private or protected data

– Called when

∗ Left operand of binary operator of same class

∗ Single operand of unitary operator of same class

• Overloaded << operator

– Left operand of type ostream &; Such as cout object in cout
<< classObject

– Similarly, overloaded >> needs istream &

– Thus, both must be non-member functions

• Commutative operators

– May want + to be commutative; So both ”a + b” and ”b + a”
work

– Suppose we have two different classes

– Overloaded operator can only be member function when its class
is on left

∗ HugeIntClass + Long int

∗ Can be member function

– When other way, need a non-member overload function; Long int
+ HugeIntClass

1.5 Overloading Stream-Insertion and Stream-Extraction

Operators

• << and >>

– Already overloaded to process each built-in type

– Can also process a user-defined class

• Example program

3



– Class PhoneNumber; Holds a telephone number

– Print out formatted number automatically; (123) 456-7890

The program of Figs. 1-2 demonstrates overloading the stream-extraction
and stream-insertion operators to handle data of a user-defined telephone
number class called PhoneNumber.

Figure 1: Overloaded stream-insertion and stream extraction operators.
(part 1 of 2)

4



Figure 2: Overloaded stream-insertion and stream extraction operators.
(part 2 of 2)

5



1.6 Overloading Unary Operators

• Overloading unary operators

– Non-static member function, no arguments

– Non-member function, one argument; Argument must be class
object or reference to class object

– Remember, static functions only access static data

• Upcoming example (8.10)

– Overload ! to test for empty string

– If non-static member function, needs no arguments

∗ !s becomes s.operator!()

∗ class String { public: bool operator!() const; . . . };

• If non-member function, needs one argument

– s! becomes operator!(s)

– class String { friend bool operator!( const String & ) ...
}

1.7 Overloading Binary Operators

• Overloading binary operators

– Non-static member function, one argument

– Non-member function, two arguments

– One argument must be class object or reference

• Upcoming example

– If non-static member function, needs one argument

∗ class String {

∗ public:

∗ const String &operator+=( const String & );

∗ ...

∗ };

– y += z equivalent to y.operator+=( z )

6



1.8 Case Study: Array class

• Arrays in C++

– No range checking

– Cannot be compared meaningfully with ==

– No array assignment (array names const pointers)

– Cannot input/output entire arrays at once; One element at a time

• Example:Implement an Array class with

– Range checking

– Array assignment

– Arrays that know their size

– Outputting/inputting entire arrays with << and >>

– Array comparisons with == and !=

• Copy constructor

– Used whenever copy of object needed

∗ Passing by value (return value or parameter)

∗ Initializing an object with a copy of another; Array newAr-
ray( oldArray );

∗ newArray copy of oldArray

– Prototype for class Array

∗ Array( const Array & );

∗ Must take reference

· Otherwise, pass by value

· Tries to make copy by calling copy constructor . . .

· Infinite loop

The program of Figs. 3-11 demonstrates class Array and its overloaded
operators.

7



Figure 3: Array class definition with overloaded operators.

8



Figure 4: Array class member-and friend-function definitions. (part 1 of 4)

9



Figure 5: Array class member-and friend-function definitions. (part 2 of 4)

10



Figure 6: Array class member-and friend-function definitions. (part 3 of 4)

11



Figure 7: Overloaded stream-insertion and stream extraction operators.
(part 4 of 2)

12



Figure 8: Array class test program. (part 1 of 2)

13



Figure 9: Array class test program. (part 2 of 2)

14



Figure 10: Array class test program, output. (part 1 of 2)

15



Figure 11: Array class test program, output. (part 2 of 2)

16


	Operator Overloading
	Introduction
	Fundamentals of Operator Overloading
	Restrictions on Operator Overloading
	Operator Functions As Class Members Vs. As Friend Functions
	Overloading Stream-Insertion and Stream-Extraction Operators
	Overloading Unary Operators
	Overloading Binary Operators
	Case Study: Array class


