
© Copyright 2002 by Deitel & Associates, Inc. All Rights Reserved.

1
Deitel® Dive-Into™ Series:
Dive-Into Cygwin and GNU

C++

Objectives
• To be able to use Cygwin, a UNIX simulator.
• To be able to use a text editor to create C++ source

files
• To be able to use GCC to compile and execute C++

applications with single source files.
• To be able to use GCC to compile and execute C++

applications with multiple source files.
• To be able to use GDB to debug a C++ program.

2 Deitel® Dive-Into™ Series: Dive-Into Cygwin and GNU C++

© Copyright 2002 by Deitel & Associates, Inc. All Rights Reserved.

1.1 Introduction
Welcome to the Cygwin UNIX simulating environment. In this chapter you will learn how
to compile and execute C++ programs using the powerful C++ development tool from
GNU—GCC. When you complete this chapter, you will be able to use GCC to begin run-
ning applications. This guide is suitable for use as a companion text in a first year university
C++ programming course sequence.

This guide does not teach C++; rather, it is intended to be used as a companion to our
textbook C++ How To Program, Fourth Edition or any other ANSI/ISO C++ textbook.
Many of our readers have asked us to provide a supplement that would introduce the fun-
damental command line concepts using GCC and a basic overview of the Cygwin environ-
ment. Our readers asked us to use the same “live-code” approach with outputs that we
employ in all our How to Program Series textbooks.

Before proceeding with this chapter, you should be familiar with the topics in Chapter
1, “Introduction to Computers and C++ Programming”, Chapter 2, “Control Structures”,
Chapter 3, “Functions” and Chapter 6, “Classes and Data Abstraction” of C++ How to Pro-
gram, Fourth Edition. We hope you enjoy learning about the Cygwin environment and the
GCC command line compiler with this textbook.

1.2 Installing Cygwin
Cygwin is a Windows program that emulates a UNIX environment. It can be used to run
UNIX programs and operate the computer as if it were setup as a UNIX machine. The pro-
gram is command line based so there is no graphical user interface. Navigation and execu-
tion of programs is the same as any UNIX operating system.

1. The necessary setup files can be obtained from the Cygwin Web site at
www.cygwin.com. Download and Save the file to a known place on the local
hard drive or simply click Open to execute the file after download is complete.

2. The setup file can be run by clicking Start and selecting Run... from the menu
(Fig. 1.1). Then enter in the location of the setup file, or click the Browse button
to select the setup file. Click the OK button to run the Cygwin Setup wizard. The
wizard is used not only to install, but also to update the Cygwin environment.

Outline

1.1 Introduction
1.2 Installing Cygwin
1.3 Creating a C++ Program
1.4 GNU Compiler Collection (GCC)

1.4.1 Compiling and Executing a Program with GCC
1.4.2 Compiling Programs with Multiple Source Files

1.5 The STLPort Library
1.6 Using the GDB Debugger

1.6.1 Debugging an Application

Deitel® Dive-Into™ Series: Dive-Into Cygwin and GNU C++ 3

© Copyright 2002 by Deitel & Associates, Inc. All Rights Reserved.

3. Click the Next button to advance to the second screen of the wizard. This lets the
user choose how they want to get Cygwin (Fig. 1.2). The Install from Internet
option downloads and installs the files needed to run Cygwin. The Download
from Internet option gets the files needed to install Cygwin and the Install
from Local Directory installs the files that were previously downloaded. For
this example choose Install from Internet whereas it downloads and installs the
files in one run through.

4. Clicking Next will advance the wizard to the next screen. This lets the user choose
which directory they wish to install to (Fig. 1.3). The default is C:\Cygwin.
There is also an Install For box and a Default Text File Type. Since this in-
stallation is for a Windows machine, DOS should be selected from the list. The
Install For option is to allow a user to only install Cygwin on their user account.
This means that selecting All Users will allow Cygwin to be run by all system
users or selecting Just Me will allow use only when logged in as a specific user.

Fig. 1.1 Running the setup file.

Fig. 1.2 Choosing a Download Source screen.

4 Deitel® Dive-Into™ Series: Dive-Into Cygwin and GNU C++

© Copyright 2002 by Deitel & Associates, Inc. All Rights Reserved.

5. Clicking Next brings up the Package Directory screen (Fig. 1.4). This allows
the user to specify where they would like the install files to be downloaded. These
files may be deleted after installation is complete. Click Next to proceed to the
next step.

6. The next screen allows the user to configure how they would like the install files
to be obtained (Fig. 1.5). A Direct Connection contacts an FTP site and down-
loads the files. By choosing Use IE5 Settings a user can configure the download

Fig. 1.3 Specifying the root directory.

Fig. 1.4 Choosing the package directory.

Deitel® Dive-Into™ Series: Dive-Into Cygwin and GNU C++ 5

© Copyright 2002 by Deitel & Associates, Inc. All Rights Reserved.

as they have in Internet Explorer 5.0 or higher. Use HTTP/FTP Proxy: allows
the user to enter an IP address and a port number of a server they already know.
Choose Direct Connection and click Next to continue.

7. This screen allows a user to choose which site they would like to download the
install files from (Fig. 1.6). Any site on the list will suffice. Simply leave the de-
fault selection or choose one from the list.

Fig. 1.5 Selecting an Internet connection.

Fig. 1.6 Picking a download site.

6 Deitel® Dive-Into™ Series: Dive-Into Cygwin and GNU C++

© Copyright 2002 by Deitel & Associates, Inc. All Rights Reserved.

8. Clicking Next will connect to the site and download some of the installation files.
The next screen to come up will allow the user to select packages which they
would like to include in addition to the default packages (Fig. 1.7). GCC is not a
default package and needs to be checked off in order to be downloaded. GCC can
be found in the Devel node. Scroll down the list until gcc: C, C++, Fortran
compilers appears in the right column. Clicking on Skip, located to the left of
GCC, will add the program to the set of installation files. Skip should change to
the version number to be downloaded, for this example it is version 2.95.3-5.
Next, scroll down until make: The GNU version of the 'make' utility, also
located in the Devel node, appears in the right hand column. Select Skip to add
the make utility to the set of installation files.

9. Clicking Next will commence the download (Fig. 1.8). Clicking Cancel will
stop the download and exit the setup.

Fig. 1.7 Getting the GCC package.

Deitel® Dive-Into™ Series: Dive-Into Cygwin and GNU C++ 7

© Copyright 2002 by Deitel & Associates, Inc. All Rights Reserved.

10. The final screen asks the user whether they would like to insert Desktop or Start
Menu icons (Fig. 1.9). These icons can be removed by unchecking the checkboxes
as desired.

Click Finish and setup will complete the installation. A message will come up saying
that the installation is complete. Click OK and Cygwin is now ready to run. To run Cygwin
either click the desktop icon or run the cygwin.bat file located in the C:\Cygwin
directory. Figure 1.10 shows the Cygwin command prompt.

Fig. 1.8 Installing Cygwin.

Fig. 1.9 Adding desktop icons.

8 Deitel® Dive-Into™ Series: Dive-Into Cygwin and GNU C++

© Copyright 2002 by Deitel & Associates, Inc. All Rights Reserved.

1.3 Creating a C++ Program
Before creating a C++ program, create a directory to store your files. We created a directory
named c:\Cygwin\Cpp, you of course can choose a different name.

You are now ready to create a program. Open a text editor and type in a program, such
as the following (Fig. 1.11): [Note: We have included line numbers to improve readability
of our example, however they are not part of the program and should not be included.]

To make your programs easier to read, adhere to the spacing conventions described in
C++ How to Program: Fourth Edition.

Save the file with a .cpp extension (enclose the filename in double quotes), which
signifies to the compiler that the file is a C++ file. In our example, we named the file Wel-
come.cpp—you may use any file name you choose.

1.4 GNU Compiler Collection (GCC)
GCC is a command line based compiler. It can be used to compile and execute C, C++ and
Fortran code. In order to access the help menu type gcc --help into the command prompt.
This will bring up a list of help topics as well as flags that can be raised for the compiler.
For basic questions or syntax the help text can be useful.

Fig. 1.10 The Cygwin command prompt.

1 // Welcome.cpp
2
3 #include <iostream>
4
5 using std::cout;
6 using std::endl;
7
8 int main()
9 {

10 cout << "Welcome to C++!" << endl;
11
12 return 0; // indicates successful termination
13
14 } // end functin main

Fig. 1.11 Code for Welcome.cpp

Deitel® Dive-Into™ Series: Dive-Into Cygwin and GNU C++ 9

© Copyright 2002 by Deitel & Associates, Inc. All Rights Reserved.

1.4.1 Compiling and Executing a Program with GCC
Place any files to be compiled or executed within the Cygwin directory. For this example
the files are placed within C:\Cygwin\Cpp\Ch01.

1. Use the cd command to traverse the directory structure and get to the right folder
(/Cpp/Ch01). The steps can be done individually as well as shown in Fig. 1.12.
The ls command displays the contents of a folder.

2. Once in the appropriate folder, use the gcc compiler to compile the program. In
order to do this enter in g++ FileName.cpp -o OutputFileName. The
g++ command signifies that the C++ complier should be used instead of the C
compiler. FileName is the name of the .cpp file that is to be compiled. The -o
flag specifies that the output file should not receive the default name and the Out-
putFileName is what the .exe file will be called. If the -o flag is not raised the
program is compiled as a.exe. For the case of Figure 1.2 (from chapter 1 of C++
How to Program, Fourth Edition) the command is g++ Fig01_02.cpp -o
Fig01_02 (Fig. 1.13). To conform to the ANSI/ISO standards raise the -ansi
flag.

3. Cygwin returns the user to the prompt if there are no syntax errors. It would appear
as if nothing has changed, but use the ls command to reveal the Fig01_02.exe
file. To execute this program enter ./FileName.exe, where FileName is the

Fig. 1.12 Changing to the correct directory.

Fig. 1.13 Compiling Fig01_02.cpp.

10 Deitel® Dive-Into™ Series: Dive-Into Cygwin and GNU C++

© Copyright 2002 by Deitel & Associates, Inc. All Rights Reserved.

name of the executable created. This will execute the program and display any
output. The program should execute and display the Welcome to C++! output
(Fig. 1.14).

1.4.2 Compiling Programs with Multiple Source Files

More complex programs often consist of multiple C++ source files. We introduce this con-
cept, called multiple source files, in Chapter 6 of C++ How to Program, Fourth Edition.
This section explains how to compile a program with multiple source files using the GCC
compiler.

Compiling a program, which has two or more source files, can be accomplished two
ways. The first method requires listing all the files on the command line. The second
method takes advantage of Cygwin’s wild-card character(*). Using the wild-card character
followed by .cpp will give you access to all the files with the .cpp extension in the cur-
rent directory. For example, typing ls *.cpp at the command prompt will list all files
with the .cpp extension in the current directory. Both methods of compiling multiple files
will be demonstrated using the Time class (Fig 6.5–Fig 6.7 from Chapter 6 of C++ How
to Program, Fourth Edition) Fig. 1.15–Fig. 1.17.

Fig. 1.14 Executing Fig01_02.exe.

1 // Fig. 6.5: time1.h
2 // Declaration of class Time.
3 // Member functions are defined in time1.cpp
4
5 // prevent multiple inclusions of header file
6 #ifndef TIME1_H
7 #define TIME1_H
8
9 // Time abstract data type definition

10 class Time {
11
12 public:
13 Time(); // constructor
14 void setTime(int, int, int); // set hour, minute, second
15 void printUniversal(); // print universal-time format
16 void printStandard(); // print standard-time format
17
18 private:

Fig. 1.15 Time class definition.

Deitel® Dive-Into™ Series: Dive-Into Cygwin and GNU C++ 11

© Copyright 2002 by Deitel & Associates, Inc. All Rights Reserved.

19 int hour; // 0 - 23 (24-hour clock format)
20 int minute; // 0 - 59
21 int second; // 0 - 59
22
23 }; // end class Time
24
25 #endif

1 // Fig. 6.6: time1.cpp
2 // Member-function definitions for class Time.
3 #include <iostream>
4
5 using std::cout;
6
7 #include <iomanip>
8
9 using std::setfill;

10 using std::setw;
11
12 // include definition of class Time from time1.h
13 #include "time1.h"
14
15 // Time constructor initializes each data member to zero.
16 // Ensures all Time objects start in a consistent state.
17 Time::Time()
18 {
19 hour = minute = second = 0;
20
21 } // end Time constructor
22
23 // Set new Time value using universal time. Perform validity
24 // checks on the data values. Set invalid values to zero.
25 void Time::setTime(int h, int m, int s)
26 {
27 hour = (h >= 0 && h < 24) ? h : 0;
28 minute = (m >= 0 && m < 60) ? m : 0;
29 second = (s >= 0 && s < 60) ? s : 0;
30
31 } // end function setTime
32
33 // print Time in universal format
34 void Time::printUniversal()
35 {
36 cout << setfill('0') << setw(2) << hour << ":"
37 << setw(2) << minute << ":"
38 << setw(2) << second;
39
40 } // end function printUniversal
41
42 // print Time in standard format
43 void Time::printStandard()

Fig. 1.16 Time class member-function definitions.

Fig. 1.15 Time class definition.

12 Deitel® Dive-Into™ Series: Dive-Into Cygwin and GNU C++

© Copyright 2002 by Deitel & Associates, Inc. All Rights Reserved.

44 {
45 cout << ((hour == 0 || hour == 12) ? 12 : hour % 12)
46 << ":" << setfill('0') << setw(2) << minute
47 << ":" << setw(2) << second
48 << (hour < 12 ? " AM" : " PM");
49
50 } // end function printStandard

1 // Fig. 6.7: fig06_07.cpp
2 // Program to test class Time.
3 // NOTE: This file must be compiled with time1.cpp.
4 #include <iostream>
5
6 using std::cout;
7 using std::endl;
8
9 // include definition of class Time from time1.h

10 #include "time1.h"
11
12 int main()
13 {
14 Time t; // instantiate object t of class Time
15
16 // output Time object t's initial values
17 cout << "The initial universal time is ";
18 t.printUniversal(); // 00:00:00
19 cout << "\nThe initial standard time is ";
20 t.printStandard(); // 12:00:00 AM
21
22 t.setTime(13, 27, 6); // change time
23
24 // output Time object t's new values
25 cout << "\n\nUniversal time after setTime is ";
26 t.printUniversal(); // 13:27:06
27 cout << "\nStandard time after setTime is ";
28 t.printStandard(); // 1:27:06 PM
29
30 t.setTime(99, 99, 99); // attempt invalid settings
31
32 // output t's values after specifying invalid values
33 cout << "\n\nAfter attempting invalid settings:"
34 << "\nUniversal time: ";
35 t.printUniversal(); // 00:00:00
36 cout << "\nStandard time: ";
37 t.printStandard(); // 12:00:00 AM
38 cout << endl;
39
40 return 0;
41
42 } // end main

Fig. 1.17 Program to test class Time.

Fig. 1.16 Time class member-function definitions.

Deitel® Dive-Into™ Series: Dive-Into Cygwin and GNU C++ 13

© Copyright 2002 by Deitel & Associates, Inc. All Rights Reserved.

For this example the files are placed in the directory
C:\Cygwin\Cpp\Fig06_05_07. Use the cd command to get into the folder con-
taining the source files.

To compile the program by listing the files on the command line, type:

g++ Fig06_05.cpp Time1.cpp -o Fig06_05

To compile the program using the wild-card character, type:

g++ *.cpp -o Fig06_05

Both methods will create an executable file with the name Fig06_05.exe
(Fig. 1.18). As with compilation of programs with a single source file, if the -o flag is not
raised, the executable file will be named a.exe.

1.5 The STLPort Library
GCC is an open source application. For this reason, there is no standard library that con-
forms to the ANSI/ISO standards. GCC has been moving towards a fully-conforming stan-
dard library. As GCC works towards a fuller-conforming library, a free library is provided
by STLPort that offers a standard I/O streams library. This library can be downloaded at
www.STLPort.org. Once at the site click the Download section. Then download the
STLPort-4.5.3.tar.gz or the STLPort-4.5.3.zip file and extract it to the
Cygwin folder.

1. The library must be installed from the Cygwin prompt. Once at the prompt switch
to the STLPort directory. By default this would be STLPort-4.5.3. The make
files are located within the src directory so the user should switch to that directory
using cd src.

2. Once in the src directory the make files can be accessed. Since the Cygwin envi-
ronment is being used with GCC then the gcc-cygwin.mak file will be used to
install the library. Enter the command make -f gcc-cygwin.mak to start the
creation of the install files (Fig. 1.19).

Fig. 1.18 Compiling and executing a program with two source files.

14 Deitel® Dive-Into™ Series: Dive-Into Cygwin and GNU C++

© Copyright 2002 by Deitel & Associates, Inc. All Rights Reserved.

3. When completed, enter make -f gcc-cygwin.mak install to begin the
installation of the new library (Fig. 1.20).

4. The new library should now be installed and working. To test it, compile a pro-
gram using g++ -I /usr/Local/Include/STLPort File.cpp -L /
usr/Local/lib -lSTLPort_Cygwin -o ExecutableFile. File is the
file to be compiled and ExecutableFile is the file that will be made to run the pro-
gram.

Fig. 1.19 Running the gcc-cygwin make file.

Fig. 1.20 Installing the STLPort library.

Deitel® Dive-Into™ Series: Dive-Into Cygwin and GNU C++ 15

© Copyright 2002 by Deitel & Associates, Inc. All Rights Reserved.

1.6 Using the GDB Debugger
Cygwin provides a debugger tool to help the programmer find run-time logic errors in pro-
grams that compile successfully but do not produce expected results. The GDB debugger
allows the programmer to view the executing program and its data as the program runs ei-
ther one step at a time or at full speed. The program stops on a selected line of code or upon
a fatal run-time error. When the programmer does not understand how incorrect results are
produced by a program, running the program one statement at a time and monitoring the
intermediate results can help the programmer isolate the cause of the error. The program-
mer can then correct the code. To obtain the debugger run the Cygwin setup again and
check GDB: The GNU Debugger from the Devel node. Proceed to the end of the instal-
lation and the debugger will be automatically installed.

To use the debugger, set one or more breakpoints. A breakpoint is a marker set at a
specified line of code that causes the debugger to suspend execution of the program upon
reaching that line of code. Breakpoints help the programmer verify that a program is exe-
cuting correctly. A breakpoint is set by clicking on the dashes that are located next to the
executable lines of code. When a breakpoint is set, the appropriate line is marked with a red
square. Breakpoints are removed by clicking the square, changing it back to a dash. Note
that breakpoints can only be set on lines that are marked with a dash to their left.

Often certain variables are monitored by the programmer during the debugging pro-
cess—a process known as setting a watch. The Watch Expressions window allows the
programmer to watch variables as their values change. Changes are displayed in the
window after each debugging step. To set a watch open the Watch Expressions window
in the View menu and enter the variable name. A watch is deleted by right clicking on the
name and selecting Remove. Variable values can be modified during the debugging pro-
cess by editing the Value field.

The main window contains buttons that control the debugging process. These buttons
perform the same actions as the Control menu items. Each button is labeled in Fig. 1.21.
The Run button starts the application. To terminate the program prematurely the Kill com-
mand, found in the Run menu, can be used. Use the Continue button to run the debugger
until the next break point is reached. The Step button executes program statements, one
per click, including code in functions that are called, allowing the programmer to confirm
the proper execution of the function, line-by-line. The Next button executes the next exe-
cutable line of code and advances to the following executable line in the program. If the
line of code contains a function call, the function is executed in its entirety as one step. This
allows the programmer to execute the program one line at a time and examine the execution
of the program without seeing the details of every function that is called. The Finish button
allows the programmer to step out of the current function and return control back to the line
that called that function. If you Step into a function that you do not need to examine, click
Finish to return to the caller.

16 Deitel® Dive-Into™ Series: Dive-Into Cygwin and GNU C++

© Copyright 2002 by Deitel & Associates, Inc. All Rights Reserved.

When a project is closed and reopened, any breakpoints set during a previous debug-
ging session are lost. You can gather information about breakpoints by clicking Break-
points in the View menu. The Breakpoints window displays all the breakpoints
currently set for the program. Each breakpoint can be enabled or disabled by either
checking or unchecking the box located to the left of the breakpoint. A disabled breakpoint
will still exist in the list of breakpoints, but will not cause the debugger to stop and can be
re-enabled at a later time.

The remainder of this section will guide you through the debugging process for a
simple C++ application.

1.6.1 Debugging an Application

This section guides the programmer through the debugging process for a simple C++ ap-
plication, Debug.cpp (Fig. 1.22). This application obtains a number from the user and
counts from 1 to that number.

Fig. 1.21 Menu icons in the GDB debugger.

1 // Debug.cpp
2
3 #include <iostream>
4
5 using std::cin;
6 using std::cout;
7 using std::endl;
8
9 // function that gets an integer from the user

10 int getNumber()
11 {
12 int number; // holds user input number
13
14 // ask user for and store number
15 cout << "Enter an integer: ";
16 cin >> number;
17

Fig. 1.22 Code for Debug.cpp.

Run

Step

Next

Finish

Continue

Step Asm
Inst

Next Asm
Inst

Registers Stack

Memory
Watch
Expressions

Local Variables

Breakpoints

Console

Deitel® Dive-Into™ Series: Dive-Into Cygwin and GNU C++ 17

© Copyright 2002 by Deitel & Associates, Inc. All Rights Reserved.

1. In order to debug the code, Debug.cpp needs to be compiled with the -g flag.
This allows the debugger to show the code for the program as opposed to the
memory locations. This is done by typing g++ Debug.cpp -o Debug -g.
Then the debugger can be run by typing gdb Debug.exe, where Debug is the
name of the executable file generated by compiling the code. GDB will open and
display the code for Debug.cpp in the Source Window as shown in Fig. 1.23.
In the Source Window the opening of the main function is highlighted to indi-
cate to the programmer where the program will start when the Run button is
clicked. A breakpoint is automatically set at the beginning of the main function
as well.

18 return number; // return number entered by user
19
20 } // end function getNumber
21
22 int main()
23 {
24 // get integer from user
25 int number = getNumber();
26
27 // end program if user does not enter positive number
28 if (number <= 0)
29 return 0;
30
31 // display integers from one to user input number
32 else
33 for (int i = 1; i <= number; i++)
34 cout << i << endl;
35
36 return 0;
37
38 } // end function main

Fig. 1.22 Code for Debug.cpp.

18 Deitel® Dive-Into™ Series: Dive-Into Cygwin and GNU C++

© Copyright 2002 by Deitel & Associates, Inc. All Rights Reserved.

2. In the Source Window workspace, a breakpoint is added by clicking on the
dashes that are located next to the executable lines of code. By clicking to the left
of line 29 the dash will turn to a red square. This indicates that a breakpoint is now
set at that line.

3. Repeat step 2, only this time set the breakpoint on line 33. When complete, the
Source Window should appear as shown in Fig. 1.24.

Fig. 1.23 Using the GDB debugger on Debug.cpp.

Deitel® Dive-Into™ Series: Dive-Into Cygwin and GNU C++ 19

© Copyright 2002 by Deitel & Associates, Inc. All Rights Reserved.

4. Clicking Run will start the debugger. The program will automatically break at the
main function. To set a watch, select Watch Expressions from the View
menu. In the text field at the bottom of the Watch Expressions window, enter
the text 'number' and click the Add Watch button. This will set a watch for the
variable number. Notice that number has now been added to the watch list
(Fig. 1.25). The value of number is set to its memory address since it has not been
assigned a value.

Fig. 1.24 Setting breakpoints at lines 29 and 33.

Fig. 1.25 Watching the number variable.

20 Deitel® Dive-Into™ Series: Dive-Into Cygwin and GNU C++

© Copyright 2002 by Deitel & Associates, Inc. All Rights Reserved.

5. Choose Next so the program will advance to the next line, which is line 25. At
this point clicking Step will make the program step into the function getNum-
ber (Fig. 1.26). By clicking Finish the debugger will return back to line 25.
Clicking Next will cause the program to advance to the next line of code, which
is line 28.

6. Click Continue. At this point, the program is executing and the Input dialog is
displayed. Enter 10 into the text field and hit Enter.The program briefly resumes
execution and then suspends. Add another watch for the variable i. This watch
can only be added when within the scope of i, meaning inside the for loop. The
Watch Expressions window now displays information about the integer num-
ber and the variable i. The text is changed to a blue font to indicate that changes
have been made to that variable (Fig. 1.27). number is used to store the number
entered by the user, therefore it always maintains its original value.

Fig. 1.26 Stepping into the getNumber function.

Deitel® Dive-Into™ Series: Dive-Into Cygwin and GNU C++ 21

© Copyright 2002 by Deitel & Associates, Inc. All Rights Reserved.

7. Notice that line 33 is now highlighted green in the Source window, indicating
that execution has suspended at this line (Fig. 1.28). When execution is suspend-
ed, the programmer can select Step, Next, Finish or Continue from the Con-
trol menu. Clicking Continue will go to the next breakpoint, and since there are
no more, will end the program.

Fig. 1.27 The variable i is changed to 8.

Fig. 1.28 Debug.cpp halted at line 33.

22 Deitel® Dive-Into™ Series: Dive-Into Cygwin and GNU C++

© Copyright 2002 by Deitel & Associates, Inc. All Rights Reserved.

8. The main window indicates that the debugger has completed and the count from
1 to 10 is displayed in the output window (Fig. 1.29). Even though a breakpoint
was set on line 29, the program never suspended on that line because the code on
line 29 never executed. The code on lines 29 and 34 either end the program or dis-
play the numbers to the output window, depending on the number entered by the
user. Start the debugger again, (Step 4) but enter a non-positive number for the
value of number into the program input dialog and observe how the debugger op-
erates.

A basic overview of the GDB debugger has now been provided. Using GDB and GCC
a programmer should now be able to make fully functional programs that work as desired.
This knowledge can be used on Cygwin within the Windows environment or the skills can
be carried over to a UNIX machine. Both behave the same way, as Cygwin is simply a
UNIX emulator on Windows.

Fig. 1.29 Output for Debug.cpp.

