
Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.1

Lecture 4
Programming Using the
Message-Passing Paradigm I
Principles of Message-Passing Programming

Ceng505 Parallel Computing at October 18, 2010

Dr. Cem Özdoğan
Computer Engineering Department

Çankaya University



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.2

Contents

1 Programming Using the Message-Passing Paradigm
Principles of Message-Passing Programming
Structure of Message-Passing Programs
The Building Blocks: Send and Receive Operations

Blocking Message Passing Operations
Non-Blocking Message Passing Operations



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.3

Programming Using the Message-Passing Paradigm

• A message passing architecture uses a set of primitives
that allows processes to communicate with each other.

• i.e., send, receive, broadcast, and barrier.
• Numerous programming languages and libraries have

been developed for explicit parallel programming.These
differ in

• their view of the address space that they make available to
the programmer,

• the degree of synchronization imposed on concurrent
activities, and the multiplicity of programs.

• Some links; Scientific Applications on Linux,
Parallel Programming Laboratory.

http://sal.jyu.fi/index.shtml
http://charm.cs.uiuc.edu/


Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.4

Principles of Message-Passing Programming I
There are two key attributes that characterize the
message-passing programming paradigm.

1 the first is that it assumes a partitioned address space,

2 the second is that it supports only explicit parallelization.

• Each data element must belong to one of the partitions
of the space;

• hence, data must be explicitly partitioned and placed.
• Adds complexity, encourages data locality, NUMA

architecture.

• All interactions (read-only or read/write) require
cooperation of two processes (the process that has the
data and the process that wants to access the data).

• process that has the data must participate in the interaction,
• for dynamic and/or unstructured interactions, the complexity

of the code can be very high,
• primary advantage of explicit two-way interactions is that the

programmer is fully aware of all the costs of non-local
interactions

• more likely to think about algorithms (and mappings) that
minimize interactions.



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.5

Principles of Message-Passing Programming II

• The programmer is responsible for analyzing the
underlying serial algorithm/application.

• Identifying ways by which he or she can decompose the
computations and extract concurrency.

• As a result, programming using the message-passing
paradigm tends to be hard and intellectually demanding.

• However, on the other hand, properly written
message-passing programs can often achieve very high
performance and scale to a very large number of
processes.



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.6

Structure of Message-Passing Programs I

• Message-passing programs are often written using the
asynchronous or loosely synchronous paradigms.

• In the asynchronous paradigm, all concurrent tasks
execute asynchronously.

• However, such programs can be harder and can have
non-deterministic behavior due to race conditions.

• Loosely synchronous programs are a good compromise
between two extremes.

• In such programs, tasks or subsets of tasks synchronize to
perform interactions.

• However, between these interactions, tasks execute
completely asynchronously.

• In its most general form, the message-passing paradigm
supports execution of a different program on each of the p
processes.

• This provides the ultimate flexibility in parallel
programming, but makes the job of writing parallel
programs effectively unscalable.



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.7

Structure of Message-Passing Programs II

• For this reason, most message-passing programs are
written using the single program multiple data (SPMD).

• In SPMD programs the code executed by different
processes is identical except for a small number of
processes (e.g., the "root" process).

• In an extreme case, even in an SPMD program,
each process could execute a different code (many case
statements).

• But except for this degenerate case, most processes
execute the same code.

• SPMD programs can be loosely synchronous or
completely asynchronous.



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.8

The Building Blocks: Send and Receive Operations I

• Since interactions are accomplished by sending and
receiving messages, the basic operations in the
message-passing programming paradigm are send and
receive .

• In their simplest form, the prototypes of these operations
are defined as follows:

• sendbuf points to a buffer that stores the data to be sent,
• recvbuf points to a buffer that

stores the data to be received,
• nelems is the number of data units to be sent and received,
• dest is the identifier of the process that receives the data,
• source is the identifier of the process that sends the data.



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.9

The Building Blocks: Send and Receive Operations II

• Process P0 sends a message to process P1 which
receives and prints the message.

• The important thing to note is that process P0 changes the
value of a to 0 immediately following the send.

• The semantics of the send operation require that the value
received by process P1 must be 100 (not 0).

• That is, the value of a at the time of the send operation
must be the value that is received by process P1.

• It may seem that it is quite straightforward to ensure the
semantics of the send and receive operations.

• However, based on how the send and receive operations
are implemented this may not be the case.



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.10

The Building Blocks: Send and Receive Operations III

• Most message passing platforms have additional
hardware support for sending and receiving messages.

• They may support DMA (direct memory access) and
asynchronous message transfer using network interface
hardware.

• Network interfaces allow the transfer of messages from
buffer memory to desired location without CPU
intervention.

• Similarly, DMA allows copying of data from one memory
location to another (e.g., communication buffers) without
CPU support (once they have been programmed).

• As a result, if the send operation programs the
communication hardware and returns before the
communication operation has been accomplished,
process P1 might receive the value 0 in a instead of 100!



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.11

Blocking Message Passing Operations I

• A simple solution to the dilemma presented in the code
fragment above is for the send operation to return only
when it is semantically safe to do so.

• Note that this is not the same as saying that the send
operation returns only after the receiver has received the
data.

• It simply means that the sending operation blocks until it
can guarantee that the semantics will not be violated on
return irrespective of what happens in the program
subsequently.

• There are two mechanisms by which this can be achieved.

1 Blocking Non-Buffered Send/Receive
2 Blocking Buffered Send/Receive



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.12

Blocking Message Passing Operations II
1 Blocking Non-Buffered Send/Receive

• The send operation does not return until the matching receive
has been encountered at the receiving process.

• When this happens, the message is sent and the send
operation returns upon completion of the communication
operation.

• Typically, this process involves a handshake between the
sending and receiving processes (see Fig. 1).

Figure: Handshake for a blocking non-buffered send/receive
operation.



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.13

Blocking Message Passing Operations III

• The sending process sends a request to communicate to
the receiving process.

• When the receiving process encounters the target receive,
it responds to the request.

• The sending process upon receiving this response initiates
a transfer operation.

• Since there are no buffers used at either sending or
receiving ends, this is also referred to as a non-buffered
blocking operation.

• Idling Overheads in Blocking Non-Buffered Operations: It
is clear from the figure that a blocking non-buffered
protocol is suitable when the send and receive are posted
at roughly the same time (middle in the figure).

• However, in an asynchronous environment, this may be
impossible to predict.

• This idling overhead is one of the major drawbacks of this
protocol.



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.14

Blocking Message Passing Operations IV

• Deadlocks in Blocking Non-Buffered Operations: Consider
the following simple exchange of messages that can lead
to a deadlock:

• The code fragment makes the values of a available to both
processes P0 and P1.

• However, if the send and receive operations are
implemented using a blocking non-buffered protocol,

• the send at P0 waits for the matching receive at P1

• whereas the send at process P1 waits for the corresponding
receive at P0,

• resulting in an infinite wait.

• Deadlocks are very easy in blocking protocols and care
must be taken to break cyclic waits.



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.15

Blocking Message Passing Operations V

2 Blocking Buffered Send/Receive
• A simple solution to the idling and deadlocking problems

outlined above is to rely on buffers at the sending and
receiving ends.

Figure: Blocking buffered transfer protocols: Left: in the
presence of communication hardware with buffers at send and
receive ends; and Right: in the absence of communication
hardware, sender interrupts receiver and deposits data in
buffer at receiver end.



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.16

Blocking Message Passing Operations VI
Figure 2Left

• On a send operation, the sender simply copies the data
into the designated buffer and returns after the copy
operation has been completed.

• The sender process can now continue with the program
knowing that any changes to the data will not impact
program semantics.

• If the hardware supports asynchronous communication
(independent of the CPU), then a network transfer can be
initiated after the message has been copied into the buffer.

• Note that at the receiving end, the data cannot be stored
directly at the target location since this would violate
program semantics.

• Instead, the data is copied into a buffer at the receiver as
well.

• When the receiving process encounters a receive
operation, it checks to see if the message is available in its
receive buffer. If so, the data is copied into the target
location.



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.17

Blocking Message Passing Operations VII
Figure 2Right

• In Fig. 2Left, buffers are used at both sender and receiver
and communication is handled by dedicated hardware.

• Sometimes machines do not have such communication
hardware.

• In this case, some of the overhead can be saved by
buffering only on one side.

• For example, on encountering a send operation, the
sender interrupts the receiver, both processes participate
in a communication operation and the message is
deposited in a buffer at the receiver end.

• When the receiver eventually encounters a receive
operation, the message is copied from the buffer into the
target location.

• In general, if the parallel program is highly synchronous,
non-buffered sends may perform better than buffered
sends.

• However, generally, this is not the case and buffered sends
are desirable unless buffer capacity becomes an issue.



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.18

Blocking Message Passing Operations VIII
• Impact of finite buffers in message passing; consider the

following code fragment:

• In this code fragment, process P0 produces 1000 data
items and process P1 consumes them.

• However, if process P1 was slow getting to this loop,
process P0 might have sent all of its data.

• If there is enough buffer space, then both processes can
proceed;

• however, if the buffer is not sufficient (i.e., buffer overflow),
the sender would have to be blocked until some of the
corresponding receive operations had been posted, thus
freeing up buffer space.

• This can often lead to unforeseen overheads and
performance degradation.

• In general, it is a good idea to write programs that have
bounded buffer requirements.



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.19

Blocking Message Passing Operations IX

• Deadlocks in Buffered Send and Receive Operations:

• While buffering relieves many of the deadlock situations, it
is still possible to write code that deadlocks.

• This is due to the fact that as in the non-buffered case,
receive calls are always blocking (to ensure semantic
consistency ).

• Thus, a simple code fragment such as the following
deadlocks since both processes wait to receive data but
nobody sends it.

• Once again, such circular waits have to be broken.

• However, deadlocks are caused only by waits on receive
operations in this case.



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.20

Non-Blocking Message Passing Operations I

• In blocking protocols, the overhead of guaranteeing
semantic correctness was paid in the form of idling
(non-buffered) or buffer management (buffered).

• It is possible to require the programmer
• to ensure semantic correctness,
• to provide a fast send/receive operation that incurs little

overhead.

• This class of non-blocking protocols returns from the
send or receive operation before it is semantically safe to
do so.

• Consequently, the user must be careful not to alter data
that may be potentially participating in communication.



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.21

Non-Blocking Message Passing Operations II

• Non-blocking operations are generally accompanied by a
check-status operation,

• which indicates whether the semantics of a previously
initiated transfer may be violated or not.

• Upon return from a non-blocking operation, the process is
free to perform any computation that does not depend
upon the completion of the operation.

• Later in the program, the process can check whether or
not the non-blocking operation has completed,

• and, if necessary, wait for its completion.

• Non-blocking operations can be buffered or non-buffered.



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.22

Non-Blocking Message Passing Operations III

• In the non-buffered case, a process wishing to send data
to another simply posts a pending message and returns to
the user program.

• The program can then do other useful work.

• At some point in the future, when the corresponding
receive is posted, the communication operation is initiated.

• When this operation is completed, the check-status
operation indicates that it is safe to touch this data.

• This transfer is indicated in Fig. 3Left.

• The benefits of non-blocking operations are further
enhanced by the presence of dedicated communication
hardware.

• In this case, the communication overhead can be almost
entirely masked by non-blocking operations.

• However, the data being received is unsafe for the duration
of the receive operation.

• This is illustrated in Fig. 3Right.



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.23

Non-Blocking Message Passing Operations IV

Figure: Non-blocking non-buffered send and receive operations Left:
in absence of communication hardware; Right: in presence of
communication hardware.

• Comparing Figures 3Left and 1a, it is easy to see that the
idling time when the process is waiting for the
corresponding receive in a blocking operation can now be
utilized for computation (provided it does not update the
data being sent).

• This removes the major bottleneck associated with the
former at the expense of some program restructuring.



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.24

Non-Blocking Message Passing Operations V

• Typical message-passing libraries such as Message
Passing Interface (MPI) and Parallel Virtual Machine
(PVM) implement both blocking and non-blocking
operations.

• Blocking operations facilitate safe and easier
programming.

• Non-blocking operations are useful for performance
optimization by masking communication overhead.

• One must, however, be careful using non-blocking
protocols since errors can result from unsafe access to
data that is in the process of being communicated.



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.25

Non-Blocking Message Passing Operations VI

Figure: Space of possible protocols for send and receive operations.


	Programming Using the Message-Passing Paradigm
	Principles of Message-Passing Programming
	Structure of Message-Passing Programs
	The Building Blocks: Send and Receive Operations


