
1 MPI Hands-On; Collective Communications

II

1. Different datatypes with a single MPI broadcast, A program
code14.c that broadcast routine is used to communicate different datatypes
with a single MPI broadcast (MPI Bcast) call.

• MPI datatypes are used.

• All processes exit when a negative integer is read.

2. A SPMD program using broadcast and non-blocking receive.
The program consists of one sender process and up to 7 receiver pro-
cesses.

• The sender process broadcasts a message containing its identifier
to all the other processes.

• They receive the message and send an answer back, containing
the hostname of the machine on which the process is running.

• The receiving process waits for the first reply with MPI Waitany,
and accepts messages in the order they are received.

3. A SPMD program that uses MPI Scatter. The program should
be run with an even number of processes.

• Process zero initializes an array of integers x,

• then distributes the array evenly among all processes using MPI Scatter.

4. A SPMD program that uses MPI Gather. The program should
be run with an even number of processes.

• Each process initializes an array x of integers.

• These arrays are collected to process zero using MPI Gather and
placed in an array y.

5. Timing comparison of processes and thread creation. Compar-
ing timing results for the fork() subroutine and the pthreads create()
subroutine. code39.c, code40.c

• Timings reflect 50,000 process/thread creations, were performed
with the time utility (units are in seconds). Execute as

time -p code39

time -p code40

1

http://siber.cankaya.edu.tr/ozdogan/ParallelComputing/cfiles/code14.c
http://siber.cankaya.edu.tr/ozdogan/ParallelComputing/cfiles/code16.c
http://siber.cankaya.edu.tr/ozdogan/ParallelComputing/cfiles/code17.c
http://siber.cankaya.edu.tr/ozdogan/ParallelComputing/cfiles/code18.c
http://siber.cankaya.edu.tr/ozdogan/ParallelComputing/cfiles/code39.c
http://siber.cankaya.edu.tr/ozdogan/ParallelComputing/cfiles/code40.c


1.1 HOMEWORK - Due to December 13, 2010

1. Computation of PI number. This example ( code15.c) evaluates π
by numerically evaluating the integral

∫
1

0

1

1 + x2
dx =

π

4

• The master process reads number of intervals from standard input,
this number is then broadcast to the pool of processes.

• Having received the number of intervals, each process evaluates
the total area of n/pool size rectangles under the curve

• The contributions to the total area under the curve are collected
from participating processes by the master process, which at the
same time adds them up, and prints the result on standard output.

• This code computes PI (with a very simple method) but does
not use MPI Send and MPI Recv. Instead, it uses collective

operations to send data to and from all of the running processes.

– The routine MPI Bcast sends data from one process to all
others.

– The routine MPI Reduce combines data from all processes
(by adding them in this case), and returning the result to a
single process.

• Run program for PI.

• Rewrite this code that replace the calls to MPI Bcast and
MPI Reduce with MPI Send and MPI Recv.

2. Finding prime numbers. Write a complete program that finds the
prime numbers up to 10000.

• The FIRST node should distribute the numbers to ALL BUT
THE LAST node.

• The nodes which receive numbers should pass the number to the
LAST node, which is continuously waiting for primes.

• When a node finishes its given numbers, it should pass "-1" to
the LAST node.

• The program should end when the LAST node receives "-1" from
all calculating nodes.

2

http://siber.cankaya.edu.tr/ozdogan/ParallelComputing/cfiles/code15.c

	MPI Hands-On; Collective Communications II
	HOMEWORK - Due to December 13, 2010


