
Programming Shared
Memory II

Dr. Cem Özdo ğan

Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads
Mutual Exclusion for Shared
Variables

8.1

Lecture 8
Programming Shared Memory II
Synchronization Primitives; Mutex

Ceng505 Parallel Computing at November 29, 2010

Dr. Cem Özdoğan
Computer Engineering Department

Çankaya University



Programming Shared
Memory II

Dr. Cem Özdo ğan

Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads
Mutual Exclusion for Shared
Variables

8.2

Contents

1 Thread Basics: Passing Arguments, Cancellation and Joinin g
Passing Arguments to Threads
Thread Cancellation
Joining and Detaching Threads

2 Synchronization Primitives in Pthreads
Mutual Exclusion for Shared Variables



Programming Shared
Memory II

Dr. Cem Özdo ğan

Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads
Mutual Exclusion for Shared
Variables

8.3

Thread Basics: Passing Arguments I

• Passing Arguments to Threads



Programming Shared
Memory II

Dr. Cem Özdo ğan

Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads
Mutual Exclusion for Shared
Variables

8.3

Thread Basics: Passing Arguments I

• Passing Arguments to Threads
• The pthread_create() function allows the programmer to

pass one argument to the thread function.



Programming Shared
Memory II

Dr. Cem Özdo ğan

Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads
Mutual Exclusion for Shared
Variables

8.3

Thread Basics: Passing Arguments I

• Passing Arguments to Threads
• The pthread_create() function allows the programmer to

pass one argument to the thread function.

• For cases where multiple arguments must be passed, this
limitation is easily overcome by creating a structure .



Programming Shared
Memory II

Dr. Cem Özdo ğan

Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads
Mutual Exclusion for Shared
Variables

8.3

Thread Basics: Passing Arguments I

• Passing Arguments to Threads
• The pthread_create() function allows the programmer to

pass one argument to the thread function.

• For cases where multiple arguments must be passed, this
limitation is easily overcome by creating a structure .

• This structure contains all of the arguments, and then a
pointer is passed to that structure in the pthread_create()
routine.



Programming Shared
Memory II

Dr. Cem Özdo ğan

Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads
Mutual Exclusion for Shared
Variables

8.3

Thread Basics: Passing Arguments I

• Passing Arguments to Threads
• The pthread_create() function allows the programmer to

pass one argument to the thread function.

• For cases where multiple arguments must be passed, this
limitation is easily overcome by creating a structure .

• This structure contains all of the arguments, and then a
pointer is passed to that structure in the pthread_create()
routine.

• All arguments must be passed by reference and cast to
(void *).



Programming Shared
Memory II

Dr. Cem Özdo ğan

Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads
Mutual Exclusion for Shared
Variables

8.3

Thread Basics: Passing Arguments I

• Passing Arguments to Threads
• The pthread_create() function allows the programmer to

pass one argument to the thread function.

• For cases where multiple arguments must be passed, this
limitation is easily overcome by creating a structure .

• This structure contains all of the arguments, and then a
pointer is passed to that structure in the pthread_create()
routine.

• All arguments must be passed by reference and cast to
(void *).

• Threads have non-deterministic start-up and scheduling.



Programming Shared
Memory II

Dr. Cem Özdo ğan

Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads
Mutual Exclusion for Shared
Variables

8.3

Thread Basics: Passing Arguments I

• Passing Arguments to Threads
• The pthread_create() function allows the programmer to

pass one argument to the thread function.

• For cases where multiple arguments must be passed, this
limitation is easily overcome by creating a structure .

• This structure contains all of the arguments, and then a
pointer is passed to that structure in the pthread_create()
routine.

• All arguments must be passed by reference and cast to
(void *).

• Threads have non-deterministic start-up and scheduling.

• How can you safely pass data to newly created threads?



Programming Shared
Memory II

Dr. Cem Özdo ğan

Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads
Mutual Exclusion for Shared
Variables

8.4

Thread Basics: Passing Arguments II

• Example: Demonstrates how to pass a simple integer to
each thread.

Figure: Passing single argument to thread function.



Programming Shared
Memory II

Dr. Cem Özdo ğan

Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads
Mutual Exclusion for Shared
Variables

8.5

Thread Basics: Passing Arguments III
• Example: Demonstrates how to pass/setup multiple

arguments to thread function via a structure.



Programming Shared
Memory II

Dr. Cem Özdo ğan

Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads
Mutual Exclusion for Shared
Variables

8.5

Thread Basics: Passing Arguments III
• Example: Demonstrates how to pass/setup multiple

arguments to thread function via a structure.



Programming Shared
Memory II

Dr. Cem Özdo ğan

Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads
Mutual Exclusion for Shared
Variables

8.5

Thread Basics: Passing Arguments III
• Example: Demonstrates how to pass/setup multiple

arguments to thread function via a structure.

Figure: Passing multiple arguments to thread function
via a structure.



Programming Shared
Memory II

Dr. Cem Özdo ğan

Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads
Mutual Exclusion for Shared
Variables

8.5

Thread Basics: Passing Arguments III
• Example: Demonstrates how to pass/setup multiple

arguments to thread function via a structure.

Figure: Passing multiple arguments to thread function
via a structure.

Each thread
receives a unique
instance of the
structure.



Programming Shared
Memory II

Dr. Cem Özdo ğan

Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads
Mutual Exclusion for Shared
Variables

8.6

Thread Basics: Cancellation I

• Cancellation.



Programming Shared
Memory II

Dr. Cem Özdo ğan

Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads
Mutual Exclusion for Shared
Variables

8.6

Thread Basics: Cancellation I

• Cancellation.
• Consider a simple program to evaluate a set of positions in

a chess game.



Programming Shared
Memory II

Dr. Cem Özdo ğan

Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads
Mutual Exclusion for Shared
Variables

8.6

Thread Basics: Cancellation I

• Cancellation.
• Consider a simple program to evaluate a set of positions in

a chess game.

• Assume that there are k moves, each being evaluated by
an independent thread.



Programming Shared
Memory II

Dr. Cem Özdo ğan

Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads
Mutual Exclusion for Shared
Variables

8.6

Thread Basics: Cancellation I

• Cancellation.
• Consider a simple program to evaluate a set of positions in

a chess game.

• Assume that there are k moves, each being evaluated by
an independent thread.

• If at any point of time, a position is established to be of a
certain quality, the other positions that are known to be of
worse quality must stop being evaluated.



Programming Shared
Memory II

Dr. Cem Özdo ğan

Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads
Mutual Exclusion for Shared
Variables

8.6

Thread Basics: Cancellation I

• Cancellation.
• Consider a simple program to evaluate a set of positions in

a chess game.

• Assume that there are k moves, each being evaluated by
an independent thread.

• If at any point of time, a position is established to be of a
certain quality, the other positions that are known to be of
worse quality must stop being evaluated.

• In other words, the threads evaluating the corresponding
board positions must be canceled.



Programming Shared
Memory II

Dr. Cem Özdo ğan

Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads
Mutual Exclusion for Shared
Variables

8.6

Thread Basics: Cancellation I

• Cancellation.
• Consider a simple program to evaluate a set of positions in

a chess game.

• Assume that there are k moves, each being evaluated by
an independent thread.

• If at any point of time, a position is established to be of a
certain quality, the other positions that are known to be of
worse quality must stop being evaluated.

• In other words, the threads evaluating the corresponding
board positions must be canceled.

• Posix threads provide this cancellation feature.



Programming Shared
Memory II

Dr. Cem Özdo ğan

Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads
Mutual Exclusion for Shared
Variables

8.6

Thread Basics: Cancellation I

• Cancellation.
• Consider a simple program to evaluate a set of positions in

a chess game.

• Assume that there are k moves, each being evaluated by
an independent thread.

• If at any point of time, a position is established to be of a
certain quality, the other positions that are known to be of
worse quality must stop being evaluated.

• In other words, the threads evaluating the corresponding
board positions must be canceled.

• Posix threads provide this cancellation feature.

• A thread may cancel itself or cancel other threads.



Programming Shared
Memory II

Dr. Cem Özdo ğan

Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads
Mutual Exclusion for Shared
Variables

8.7

Thread Basics: Cancellation II

• pthread_cancel .
1 int
2 pthread_cancel (
3 pthread_t thread);



Programming Shared
Memory II

Dr. Cem Özdo ğan

Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads
Mutual Exclusion for Shared
Variables

8.7

Thread Basics: Cancellation II

• pthread_cancel .
1 int
2 pthread_cancel (
3 pthread_t thread);

• Here, thread is the handle to the thread to be canceled.
When a call to this function is made, a cancellation is sent
to the specified thread.



Programming Shared
Memory II

Dr. Cem Özdo ğan

Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads
Mutual Exclusion for Shared
Variables

8.7

Thread Basics: Cancellation II

• pthread_cancel .
1 int
2 pthread_cancel (
3 pthread_t thread);

• Here, thread is the handle to the thread to be canceled.
When a call to this function is made, a cancellation is sent
to the specified thread.

• It is not guaranteed that the specified thread will receive or
act on the cancellation. Threads can protect themselves
against cancellation.



Programming Shared
Memory II

Dr. Cem Özdo ğan

Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads
Mutual Exclusion for Shared
Variables

8.7

Thread Basics: Cancellation II

• pthread_cancel .
1 int
2 pthread_cancel (
3 pthread_t thread);

• Here, thread is the handle to the thread to be canceled.
When a call to this function is made, a cancellation is sent
to the specified thread.

• It is not guaranteed that the specified thread will receive or
act on the cancellation. Threads can protect themselves
against cancellation.

• When a cancellation is actually performed, cleanup
functions are invoked for reclaiming the thread data
structures.



Programming Shared
Memory II

Dr. Cem Özdo ğan

Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads
Mutual Exclusion for Shared
Variables

8.7

Thread Basics: Cancellation II

• pthread_cancel .
1 int
2 pthread_cancel (
3 pthread_t thread);

• Here, thread is the handle to the thread to be canceled.
When a call to this function is made, a cancellation is sent
to the specified thread.

• It is not guaranteed that the specified thread will receive or
act on the cancellation. Threads can protect themselves
against cancellation.

• When a cancellation is actually performed, cleanup
functions are invoked for reclaiming the thread data
structures.

• The pthread_cancel function returns after a cancellation
has been sent. The cancellation may itself be performed
later.



Programming Shared
Memory II

Dr. Cem Özdo ğan

Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads
Mutual Exclusion for Shared
Variables

8.8

Thread Basics: Joining and Detaching I

• Joining and Detaching Threads.



Programming Shared
Memory II

Dr. Cem Özdo ğan

Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads
Mutual Exclusion for Shared
Variables

8.8

Thread Basics: Joining and Detaching I

• Joining and Detaching Threads.
• The main program must wait for the threads to run to

completion.



Programming Shared
Memory II

Dr. Cem Özdo ğan

Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads
Mutual Exclusion for Shared
Variables

8.8

Thread Basics: Joining and Detaching I

• Joining and Detaching Threads.
• The main program must wait for the threads to run to

completion.

• “Joining“ is one way to accomplish synchronization
between threads.



Programming Shared
Memory II

Dr. Cem Özdo ğan

Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads
Mutual Exclusion for Shared
Variables

8.8

Thread Basics: Joining and Detaching I

• Joining and Detaching Threads.
• The main program must wait for the threads to run to

completion.

• “Joining“ is one way to accomplish synchronization
between threads.

• Function pthread_join which suspends execution of the
calling thread until the specified thread terminates.



Programming Shared
Memory II

Dr. Cem Özdo ğan

Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads
Mutual Exclusion for Shared
Variables

8.8

Thread Basics: Joining and Detaching I

• Joining and Detaching Threads.
• The main program must wait for the threads to run to

completion.

• “Joining“ is one way to accomplish synchronization
between threads.

• Function pthread_join which suspends execution of the
calling thread until the specified thread terminates.

• A call to this function waits for the termination of the thread
whose id is given by thread.



Programming Shared
Memory II

Dr. Cem Özdo ğan

Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads
Mutual Exclusion for Shared
Variables

8.9

Thread Basics: Joining and Detaching II

• A call to this function waits for the termination of the thread
whose id is given by thread.

Figure: Threads joining.



Programming Shared
Memory II

Dr. Cem Özdo ğan

Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads
Mutual Exclusion for Shared
Variables

8.9

Thread Basics: Joining and Detaching II

• A call to this function waits for the termination of the thread
whose id is given by thread.

Figure: Threads joining.

• On a successful call to pthread_join , the value passed to
pthread_exit is returned in the location pointed to by ptr.



Programming Shared
Memory II

Dr. Cem Özdo ğan

Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads
Mutual Exclusion for Shared
Variables

8.9

Thread Basics: Joining and Detaching II

• A call to this function waits for the termination of the thread
whose id is given by thread.

Figure: Threads joining.

• On a successful call to pthread_join , the value passed to
pthread_exit is returned in the location pointed to by ptr.

• On successful completion, pthread_join returns 0, else it
returns an error-code.



Programming Shared
Memory II

Dr. Cem Özdo ğan

Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads
Mutual Exclusion for Shared
Variables

8.10

Thread Basics: Joining and Detaching III

• When a thread is created, one of its attributes defines
whether it is joinable or detached .



Programming Shared
Memory II

Dr. Cem Özdo ğan

Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads
Mutual Exclusion for Shared
Variables

8.10

Thread Basics: Joining and Detaching III

• When a thread is created, one of its attributes defines
whether it is joinable or detached .

• Only threads that are created as joinable can be joined. If
a thread is created as detached, it can never be joined.



Programming Shared
Memory II

Dr. Cem Özdo ğan

Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads
Mutual Exclusion for Shared
Variables

8.10

Thread Basics: Joining and Detaching III

• When a thread is created, one of its attributes defines
whether it is joinable or detached .

• Only threads that are created as joinable can be joined. If
a thread is created as detached, it can never be joined.

• The final draft of the POSIX standard specifies that
threads should be created as joinable.



Programming Shared
Memory II

Dr. Cem Özdo ğan

Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads
Mutual Exclusion for Shared
Variables

8.10

Thread Basics: Joining and Detaching III

• When a thread is created, one of its attributes defines
whether it is joinable or detached .

• Only threads that are created as joinable can be joined. If
a thread is created as detached, it can never be joined.

• The final draft of the POSIX standard specifies that
threads should be created as joinable.

• To explicitly create a thread as joinable or detached, the
attr argument in the pthread_create() routine is used.



Programming Shared
Memory II

Dr. Cem Özdo ğan

Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads
Mutual Exclusion for Shared
Variables

8.10

Thread Basics: Joining and Detaching III

• When a thread is created, one of its attributes defines
whether it is joinable or detached .

• Only threads that are created as joinable can be joined. If
a thread is created as detached, it can never be joined.

• The final draft of the POSIX standard specifies that
threads should be created as joinable.

• To explicitly create a thread as joinable or detached, the
attr argument in the pthread_create() routine is used.

• Detaching :



Programming Shared
Memory II

Dr. Cem Özdo ğan

Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads
Mutual Exclusion for Shared
Variables

8.10

Thread Basics: Joining and Detaching III

• When a thread is created, one of its attributes defines
whether it is joinable or detached .

• Only threads that are created as joinable can be joined. If
a thread is created as detached, it can never be joined.

• The final draft of the POSIX standard specifies that
threads should be created as joinable.

• To explicitly create a thread as joinable or detached, the
attr argument in the pthread_create() routine is used.

• Detaching :

• The pthread_detach() routine can be used to explicitly
detach a thread even though it was created as joinable.



Programming Shared
Memory II

Dr. Cem Özdo ğan

Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads
Mutual Exclusion for Shared
Variables

8.10

Thread Basics: Joining and Detaching III

• When a thread is created, one of its attributes defines
whether it is joinable or detached .

• Only threads that are created as joinable can be joined. If
a thread is created as detached, it can never be joined.

• The final draft of the POSIX standard specifies that
threads should be created as joinable.

• To explicitly create a thread as joinable or detached, the
attr argument in the pthread_create() routine is used.

• Detaching :

• The pthread_detach() routine can be used to explicitly
detach a thread even though it was created as joinable.

• If a thread requires joining, consider explicitly creating it as
joinable (portability).



Programming Shared
Memory II

Dr. Cem Özdo ğan

Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads
Mutual Exclusion for Shared
Variables

8.10

Thread Basics: Joining and Detaching III

• When a thread is created, one of its attributes defines
whether it is joinable or detached .

• Only threads that are created as joinable can be joined. If
a thread is created as detached, it can never be joined.

• The final draft of the POSIX standard specifies that
threads should be created as joinable.

• To explicitly create a thread as joinable or detached, the
attr argument in the pthread_create() routine is used.

• Detaching :

• The pthread_detach() routine can be used to explicitly
detach a thread even though it was created as joinable.

• If a thread requires joining, consider explicitly creating it as
joinable (portability).

• If you know in advance that a thread will never need to join
with another thread, consider creating it in a detached
state (resources).



Programming Shared
Memory II

Dr. Cem Özdo ğan

Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads
Mutual Exclusion for Shared
Variables

8.11

Thread Basics: Joining and Detaching IV

• Reentrant function s are those that can be safely called
when another instance has been suspended in the middle
of its invocation.



Programming Shared
Memory II

Dr. Cem Özdo ğan

Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads
Mutual Exclusion for Shared
Variables

8.11

Thread Basics: Joining and Detaching IV

• Reentrant function s are those that can be safely called
when another instance has been suspended in the middle
of its invocation.

• All thread functions must be reentrant because a thread
can be preempted in the middle of its execution.



Programming Shared
Memory II

Dr. Cem Özdo ğan

Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads
Mutual Exclusion for Shared
Variables

8.11

Thread Basics: Joining and Detaching IV

• Reentrant function s are those that can be safely called
when another instance has been suspended in the middle
of its invocation.

• All thread functions must be reentrant because a thread
can be preempted in the middle of its execution.

• If another thread starts executing the same function at this
point, a non-reentrant function might not work as desired.



Programming Shared
Memory II

Dr. Cem Özdo ğan

Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads
Mutual Exclusion for Shared
Variables

8.12

Synchronization Primitives: Mutex I

• While communication is implicit in shared-address-space
programming,



Programming Shared
Memory II

Dr. Cem Özdo ğan

Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads
Mutual Exclusion for Shared
Variables

8.12

Synchronization Primitives: Mutex I

• While communication is implicit in shared-address-space
programming,

• much of the effort associated with writing correct threaded
programs is spent on synchronizing concurrent threads
with respect to their data accesses or scheduling.



Programming Shared
Memory II

Dr. Cem Özdo ğan

Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads
Mutual Exclusion for Shared
Variables

8.12

Synchronization Primitives: Mutex I

• While communication is implicit in shared-address-space
programming,

• much of the effort associated with writing correct threaded
programs is spent on synchronizing concurrent threads
with respect to their data accesses or scheduling.

• Using pthread_create and pthread_join calls, we can
create concurrent tasks.



Programming Shared
Memory II

Dr. Cem Özdo ğan

Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads
Mutual Exclusion for Shared
Variables

8.12

Synchronization Primitives: Mutex I

• While communication is implicit in shared-address-space
programming,

• much of the effort associated with writing correct threaded
programs is spent on synchronizing concurrent threads
with respect to their data accesses or scheduling.

• Using pthread_create and pthread_join calls, we can
create concurrent tasks.

• These tasks work together to manipulate data and
accomplish a given task.



Programming Shared
Memory II

Dr. Cem Özdo ğan

Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads
Mutual Exclusion for Shared
Variables

8.12

Synchronization Primitives: Mutex I

• While communication is implicit in shared-address-space
programming,

• much of the effort associated with writing correct threaded
programs is spent on synchronizing concurrent threads
with respect to their data accesses or scheduling.

• Using pthread_create and pthread_join calls, we can
create concurrent tasks.

• These tasks work together to manipulate data and
accomplish a given task.

• When multiple threads attempt to manipulate the
same data item,



Programming Shared
Memory II

Dr. Cem Özdo ğan

Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads
Mutual Exclusion for Shared
Variables

8.12

Synchronization Primitives: Mutex I

• While communication is implicit in shared-address-space
programming,

• much of the effort associated with writing correct threaded
programs is spent on synchronizing concurrent threads
with respect to their data accesses or scheduling.

• Using pthread_create and pthread_join calls, we can
create concurrent tasks.

• These tasks work together to manipulate data and
accomplish a given task.

• When multiple threads attempt to manipulate the
same data item,

• the results can often be incoherent if proper care is not
taken to synchronize them.



Programming Shared
Memory II

Dr. Cem Özdo ğan

Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads
Mutual Exclusion for Shared
Variables

8.13

Synchronization Primitives: Mutex II

• Consider the following code fragment being executed by
multiple threads.



Programming Shared
Memory II

Dr. Cem Özdo ğan

Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads
Mutual Exclusion for Shared
Variables

8.13

Synchronization Primitives: Mutex II

• Consider the following code fragment being executed by
multiple threads.

• The variable my_cost is thread-local and best_cost is a
global variable shared by all threads.



Programming Shared
Memory II

Dr. Cem Özdo ğan

Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads
Mutual Exclusion for Shared
Variables

8.13

Synchronization Primitives: Mutex II

• Consider the following code fragment being executed by
multiple threads.

• The variable my_cost is thread-local and best_cost is a
global variable shared by all threads.

• This is an undesirable situation, sometimes also referred
to as a race condition .



Programming Shared
Memory II

Dr. Cem Özdo ğan

Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads
Mutual Exclusion for Shared
Variables

8.13

Synchronization Primitives: Mutex II

• Consider the following code fragment being executed by
multiple threads.

• The variable my_cost is thread-local and best_cost is a
global variable shared by all threads.

• This is an undesirable situation, sometimes also referred
to as a race condition .

• So called because the result of the computation depends
on the race between competing threads.



Programming Shared
Memory II

Dr. Cem Özdo ğan

Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads
Mutual Exclusion for Shared
Variables

8.14

Synchronization Primitives: Mutex III

• To understand the problem with shared data access, let us
examine one execution instance of the above code
fragment.



Programming Shared
Memory II

Dr. Cem Özdo ğan

Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads
Mutual Exclusion for Shared
Variables

8.14

Synchronization Primitives: Mutex III

• To understand the problem with shared data access, let us
examine one execution instance of the above code
fragment.

• Assume that there are two threads,



Programming Shared
Memory II

Dr. Cem Özdo ğan

Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads
Mutual Exclusion for Shared
Variables

8.14

Synchronization Primitives: Mutex III

• To understand the problem with shared data access, let us
examine one execution instance of the above code
fragment.

• Assume that there are two threads,

• The initial value of best_cost is 100,



Programming Shared
Memory II

Dr. Cem Özdo ğan

Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads
Mutual Exclusion for Shared
Variables

8.14

Synchronization Primitives: Mutex III

• To understand the problem with shared data access, let us
examine one execution instance of the above code
fragment.

• Assume that there are two threads,

• The initial value of best_cost is 100,

• The values of my_cost are 50 and 75 at threads t1 and t2,
respectively.



Programming Shared
Memory II

Dr. Cem Özdo ğan

Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads
Mutual Exclusion for Shared
Variables

8.14

Synchronization Primitives: Mutex III

• To understand the problem with shared data access, let us
examine one execution instance of the above code
fragment.

• Assume that there are two threads,

• The initial value of best_cost is 100,

• The values of my_cost are 50 and 75 at threads t1 and t2,
respectively.

• If both threads execute the condition inside the if
statement concurrently, then both threads enter the then
part of the statement.



Programming Shared
Memory II

Dr. Cem Özdo ğan

Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads
Mutual Exclusion for Shared
Variables

8.14

Synchronization Primitives: Mutex III

• To understand the problem with shared data access, let us
examine one execution instance of the above code
fragment.

• Assume that there are two threads,

• The initial value of best_cost is 100,

• The values of my_cost are 50 and 75 at threads t1 and t2,
respectively.

• If both threads execute the condition inside the if
statement concurrently, then both threads enter the then
part of the statement.

• Depending on which thread executes first, the value of
best_cost at the end could be either 50 or 75.



Programming Shared
Memory II

Dr. Cem Özdo ğan

Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads
Mutual Exclusion for Shared
Variables

8.14

Synchronization Primitives: Mutex III

• To understand the problem with shared data access, let us
examine one execution instance of the above code
fragment.

• Assume that there are two threads,

• The initial value of best_cost is 100,

• The values of my_cost are 50 and 75 at threads t1 and t2,
respectively.

• If both threads execute the condition inside the if
statement concurrently, then both threads enter the then
part of the statement.

• Depending on which thread executes first, the value of
best_cost at the end could be either 50 or 75.

• There are two problems here:



Programming Shared
Memory II

Dr. Cem Özdo ğan

Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads
Mutual Exclusion for Shared
Variables

8.14

Synchronization Primitives: Mutex III

• To understand the problem with shared data access, let us
examine one execution instance of the above code
fragment.

• Assume that there are two threads,

• The initial value of best_cost is 100,

• The values of my_cost are 50 and 75 at threads t1 and t2,
respectively.

• If both threads execute the condition inside the if
statement concurrently, then both threads enter the then
part of the statement.

• Depending on which thread executes first, the value of
best_cost at the end could be either 50 or 75.

• There are two problems here:
1 non-deterministic nature of the result;



Programming Shared
Memory II

Dr. Cem Özdo ğan

Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads
Mutual Exclusion for Shared
Variables

8.14

Synchronization Primitives: Mutex III

• To understand the problem with shared data access, let us
examine one execution instance of the above code
fragment.

• Assume that there are two threads,

• The initial value of best_cost is 100,

• The values of my_cost are 50 and 75 at threads t1 and t2,
respectively.

• If both threads execute the condition inside the if
statement concurrently, then both threads enter the then
part of the statement.

• Depending on which thread executes first, the value of
best_cost at the end could be either 50 or 75.

• There are two problems here:
1 non-deterministic nature of the result;
2 more importantly, the value 75 of best_cost is inconsistent

in the sense that no serialization of the two threads can
possibly yield this result.



Programming Shared
Memory II

Dr. Cem Özdo ğan

Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads
Mutual Exclusion for Shared
Variables

8.15

Synchronization Primitives: Mutex IV

• Race condition occurred because the test-and-update
operation is an atomic operation ;



Programming Shared
Memory II

Dr. Cem Özdo ğan

Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads
Mutual Exclusion for Shared
Variables

8.15

Synchronization Primitives: Mutex IV

• Race condition occurred because the test-and-update
operation is an atomic operation ;

• i.e., the operation should not be broken into sub-operations.



Programming Shared
Memory II

Dr. Cem Özdo ğan

Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads
Mutual Exclusion for Shared
Variables

8.15

Synchronization Primitives: Mutex IV

• Race condition occurred because the test-and-update
operation is an atomic operation ;

• i.e., the operation should not be broken into sub-operations.

• Furthermore, the code corresponds to a critical segment ;



Programming Shared
Memory II

Dr. Cem Özdo ğan

Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads
Mutual Exclusion for Shared
Variables

8.15

Synchronization Primitives: Mutex IV

• Race condition occurred because the test-and-update
operation is an atomic operation ;

• i.e., the operation should not be broken into sub-operations.

• Furthermore, the code corresponds to a critical segment ;

• i.e., a segment that must be executed by only one thread at
any time.



Programming Shared
Memory II

Dr. Cem Özdo ğan

Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads
Mutual Exclusion for Shared
Variables

8.15

Synchronization Primitives: Mutex IV

• Race condition occurred because the test-and-update
operation is an atomic operation ;

• i.e., the operation should not be broken into sub-operations.

• Furthermore, the code corresponds to a critical segment ;

• i.e., a segment that must be executed by only one thread at
any time.

• Many statements that seem atomic in higher level
languages such as C may in fact be non-atomic.



Programming Shared
Memory II

Dr. Cem Özdo ğan

Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads
Mutual Exclusion for Shared
Variables

8.15

Synchronization Primitives: Mutex IV

• Race condition occurred because the test-and-update
operation is an atomic operation ;

• i.e., the operation should not be broken into sub-operations.

• Furthermore, the code corresponds to a critical segment ;

• i.e., a segment that must be executed by only one thread at
any time.

• Many statements that seem atomic in higher level
languages such as C may in fact be non-atomic.

• i.e., a statement of the form global_count+ = 5 may
comprise several assembler instructions and therefore must
be handled carefully.



Programming Shared
Memory II

Dr. Cem Özdo ğan

Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads
Mutual Exclusion for Shared
Variables

8.15

Synchronization Primitives: Mutex IV

• Race condition occurred because the test-and-update
operation is an atomic operation ;

• i.e., the operation should not be broken into sub-operations.

• Furthermore, the code corresponds to a critical segment ;

• i.e., a segment that must be executed by only one thread at
any time.

• Many statements that seem atomic in higher level
languages such as C may in fact be non-atomic.

• i.e., a statement of the form global_count+ = 5 may
comprise several assembler instructions and therefore must
be handled carefully.

• Threaded APIs provide support for implementing critical
sections and atomic operations using mutex -locks (mutual
exclusion locks).



Programming Shared
Memory II

Dr. Cem Özdo ğan

Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads
Mutual Exclusion for Shared
Variables

8.16

Synchronization Primitives: Mutex V

• Mutex-locks have two states: locked and unlocked.



Programming Shared
Memory II

Dr. Cem Özdo ğan

Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads
Mutual Exclusion for Shared
Variables

8.16

Synchronization Primitives: Mutex V

• Mutex-locks have two states: locked and unlocked.

• At any point of time, only one thread can lock a mutex
lock .



Programming Shared
Memory II

Dr. Cem Özdo ğan

Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads
Mutual Exclusion for Shared
Variables

8.16

Synchronization Primitives: Mutex V

• Mutex-locks have two states: locked and unlocked.

• At any point of time, only one thread can lock a mutex
lock .

• A lock is an atomic operation.



Programming Shared
Memory II

Dr. Cem Özdo ğan

Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads
Mutual Exclusion for Shared
Variables

8.16

Synchronization Primitives: Mutex V

• Mutex-locks have two states: locked and unlocked.

• At any point of time, only one thread can lock a mutex
lock .

• A lock is an atomic operation.
• To access the shared data, a thread must first try to acquire

a mutex-lock.



Programming Shared
Memory II

Dr. Cem Özdo ğan

Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads
Mutual Exclusion for Shared
Variables

8.16

Synchronization Primitives: Mutex V

• Mutex-locks have two states: locked and unlocked.

• At any point of time, only one thread can lock a mutex
lock .

• A lock is an atomic operation.
• To access the shared data, a thread must first try to acquire

a mutex-lock.
• If the mutex-lock is already locked, the process trying to

acquire the lock is blocked .



Programming Shared
Memory II

Dr. Cem Özdo ğan

Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads
Mutual Exclusion for Shared
Variables

8.16

Synchronization Primitives: Mutex V

• Mutex-locks have two states: locked and unlocked.

• At any point of time, only one thread can lock a mutex
lock .

• A lock is an atomic operation.
• To access the shared data, a thread must first try to acquire

a mutex-lock.
• If the mutex-lock is already locked, the process trying to

acquire the lock is blocked .
• This is because a locked mutex-lock implies that there is

another thread currently in the critical section and that no
other thread must be allowed in.



Programming Shared
Memory II

Dr. Cem Özdo ğan

Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads
Mutual Exclusion for Shared
Variables

8.16

Synchronization Primitives: Mutex V

• Mutex-locks have two states: locked and unlocked.

• At any point of time, only one thread can lock a mutex
lock .

• A lock is an atomic operation.
• To access the shared data, a thread must first try to acquire

a mutex-lock.
• If the mutex-lock is already locked, the process trying to

acquire the lock is blocked .
• This is because a locked mutex-lock implies that there is

another thread currently in the critical section and that no
other thread must be allowed in.

• When a thread leaves a critical section, it must
unlock the mutex-lock so that other threads can enter the
critical section.



Programming Shared
Memory II

Dr. Cem Özdo ğan

Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads
Mutual Exclusion for Shared
Variables

8.16

Synchronization Primitives: Mutex V

• Mutex-locks have two states: locked and unlocked.

• At any point of time, only one thread can lock a mutex
lock .

• A lock is an atomic operation.
• To access the shared data, a thread must first try to acquire

a mutex-lock.
• If the mutex-lock is already locked, the process trying to

acquire the lock is blocked .
• This is because a locked mutex-lock implies that there is

another thread currently in the critical section and that no
other thread must be allowed in.

• When a thread leaves a critical section, it must
unlock the mutex-lock so that other threads can enter the
critical section.

• All mutex-locks must be initialized to the unlocked state at
the beginning of the program.



Programming Shared
Memory II

Dr. Cem Özdo ğan

Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads
Mutual Exclusion for Shared
Variables

8.17

Synchronization Primitives: Mutex VI

• The function pthread_mutex_lock ;



Programming Shared
Memory II

Dr. Cem Özdo ğan

Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads
Mutual Exclusion for Shared
Variables

8.17

Synchronization Primitives: Mutex VI

• The function pthread_mutex_lock ;

• A call to this function attempts a lock on the mutex-lock
mutex_lock.



Programming Shared
Memory II

Dr. Cem Özdo ğan

Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads
Mutual Exclusion for Shared
Variables

8.17

Synchronization Primitives: Mutex VI

• The function pthread_mutex_lock ;

• A call to this function attempts a lock on the mutex-lock
mutex_lock.

• The data type of a mutex_lock is predefined to be
pthread_mutex_t.



Programming Shared
Memory II

Dr. Cem Özdo ğan

Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads
Mutual Exclusion for Shared
Variables

8.17

Synchronization Primitives: Mutex VI

• The function pthread_mutex_lock ;

• A call to this function attempts a lock on the mutex-lock
mutex_lock.

• The data type of a mutex_lock is predefined to be
pthread_mutex_t.

• If the mutex-lock is already locked, the calling thread
blocks; otherwise the mutex-lock is locked and the calling
thread returns.



Programming Shared
Memory II

Dr. Cem Özdo ğan

Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads
Mutual Exclusion for Shared
Variables

8.17

Synchronization Primitives: Mutex VI

• The function pthread_mutex_lock ;

• A call to this function attempts a lock on the mutex-lock
mutex_lock.

• The data type of a mutex_lock is predefined to be
pthread_mutex_t.

• If the mutex-lock is already locked, the calling thread
blocks; otherwise the mutex-lock is locked and the calling
thread returns.

• A successful return from the function returns a value 0.
Other values indicate error conditions such as deadlocks.



Programming Shared
Memory II

Dr. Cem Özdo ğan

Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads
Mutual Exclusion for Shared
Variables

8.18

Synchronization Primitives: Mutex VII

• The function pthread_mutex_unlock ;



Programming Shared
Memory II

Dr. Cem Özdo ğan

Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads
Mutual Exclusion for Shared
Variables

8.18

Synchronization Primitives: Mutex VII

• The function pthread_mutex_unlock ;

• On leaving a critical section, a thread must unlock the
mutex-lock associated with the section.



Programming Shared
Memory II

Dr. Cem Özdo ğan

Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads
Mutual Exclusion for Shared
Variables

8.18

Synchronization Primitives: Mutex VII

• The function pthread_mutex_unlock ;

• On leaving a critical section, a thread must unlock the
mutex-lock associated with the section.

• If it does not do so, no other thread will be able to enter
this section, typically resulting in a deadlock.



Programming Shared
Memory II

Dr. Cem Özdo ğan

Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads
Mutual Exclusion for Shared
Variables

8.18

Synchronization Primitives: Mutex VII

• The function pthread_mutex_unlock ;

• On leaving a critical section, a thread must unlock the
mutex-lock associated with the section.

• If it does not do so, no other thread will be able to enter
this section, typically resulting in a deadlock.

• On calling pthread_mutex_unlock function, the lock is
relinquished and one of the blocked threads is scheduled
to enter the critical section.



Programming Shared
Memory II

Dr. Cem Özdo ğan

Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads
Mutual Exclusion for Shared
Variables

8.19

Synchronization Primitives: Mutex VIII

• The specific thread is determined by the scheduling
policy .



Programming Shared
Memory II

Dr. Cem Özdo ğan

Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads
Mutual Exclusion for Shared
Variables

8.19

Synchronization Primitives: Mutex VIII

• The specific thread is determined by the scheduling
policy .

• if the thread priority scheduling is not implied, the
assignment will be left to the native system scheduler and
may appear to be more or less random .



Programming Shared
Memory II

Dr. Cem Özdo ğan

Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads
Mutual Exclusion for Shared
Variables

8.19

Synchronization Primitives: Mutex VIII

• The specific thread is determined by the scheduling
policy .

• if the thread priority scheduling is not implied, the
assignment will be left to the native system scheduler and
may appear to be more or less random .

• Mutex variables must be declared with type
pthread_mutex_t, and must be initialized before they can
be used.



Programming Shared
Memory II

Dr. Cem Özdo ğan

Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads
Mutual Exclusion for Shared
Variables

8.19

Synchronization Primitives: Mutex VIII

• The specific thread is determined by the scheduling
policy .

• if the thread priority scheduling is not implied, the
assignment will be left to the native system scheduler and
may appear to be more or less random .

• Mutex variables must be declared with type
pthread_mutex_t, and must be initialized before they can
be used.

• There are two ways to initialize a mutex variable:



Programming Shared
Memory II

Dr. Cem Özdo ğan

Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads
Mutual Exclusion for Shared
Variables

8.19

Synchronization Primitives: Mutex VIII

• The specific thread is determined by the scheduling
policy .

• if the thread priority scheduling is not implied, the
assignment will be left to the native system scheduler and
may appear to be more or less random .

• Mutex variables must be declared with type
pthread_mutex_t, and must be initialized before they can
be used.

• There are two ways to initialize a mutex variable:
1 Statically, when it is declared. For example:

pthread_mutex_t mymutex =
PTHREAD_MUTEX_INITIALIZER;



Programming Shared
Memory II

Dr. Cem Özdo ğan

Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads
Mutual Exclusion for Shared
Variables

8.19

Synchronization Primitives: Mutex VIII

• The specific thread is determined by the scheduling
policy .

• if the thread priority scheduling is not implied, the
assignment will be left to the native system scheduler and
may appear to be more or less random .

• Mutex variables must be declared with type
pthread_mutex_t, and must be initialized before they can
be used.

• There are two ways to initialize a mutex variable:
1 Statically, when it is declared. For example:

pthread_mutex_t mymutex =
PTHREAD_MUTEX_INITIALIZER;

2 Dynamically, with the pthread_mutex_init() routine. This
method permits setting mutex object attributes, attr.



Programming Shared
Memory II

Dr. Cem Özdo ğan

Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads
Mutual Exclusion for Shared
Variables

8.19

Synchronization Primitives: Mutex VIII

• The specific thread is determined by the scheduling
policy .

• if the thread priority scheduling is not implied, the
assignment will be left to the native system scheduler and
may appear to be more or less random .

• Mutex variables must be declared with type
pthread_mutex_t, and must be initialized before they can
be used.

• There are two ways to initialize a mutex variable:
1 Statically, when it is declared. For example:

pthread_mutex_t mymutex =
PTHREAD_MUTEX_INITIALIZER;

2 Dynamically, with the pthread_mutex_init() routine. This
method permits setting mutex object attributes, attr.

• If a programmer attempts a pthread_mutex_unlock on a
previously unlocked mutex or one that is locked by another
thread, the effect is undefined.



Programming Shared
Memory II

Dr. Cem Özdo ğan

Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads
Mutual Exclusion for Shared
Variables

8.20

Synchronization Primitives: Mutex IX

• The function pthread_mutex_init ;



Programming Shared
Memory II

Dr. Cem Özdo ğan

Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads
Mutual Exclusion for Shared
Variables

8.20

Synchronization Primitives: Mutex IX

• The function pthread_mutex_init ;

• We need one more function before we can start using
mutex-locks, namely, a function to initialize a mutex-lock to
its unlocked state.



Programming Shared
Memory II

Dr. Cem Özdo ğan

Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads
Mutual Exclusion for Shared
Variables

8.20

Synchronization Primitives: Mutex IX

• The function pthread_mutex_init ;

• We need one more function before we can start using
mutex-locks, namely, a function to initialize a mutex-lock to
its unlocked state.

• The mutex is initially unlocked.



Programming Shared
Memory II

Dr. Cem Özdo ğan

Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads
Mutual Exclusion for Shared
Variables

8.20

Synchronization Primitives: Mutex IX

• The function pthread_mutex_init ;

• We need one more function before we can start using
mutex-locks, namely, a function to initialize a mutex-lock to
its unlocked state.

• The mutex is initially unlocked.

• The attributes of the mutex-lock are specified by lock_attr.



Programming Shared
Memory II

Dr. Cem Özdo ğan

Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads
Mutual Exclusion for Shared
Variables

8.20

Synchronization Primitives: Mutex IX

• The function pthread_mutex_init ;

• We need one more function before we can start using
mutex-locks, namely, a function to initialize a mutex-lock to
its unlocked state.

• The mutex is initially unlocked.

• The attributes of the mutex-lock are specified by lock_attr.

• If this argument is set to NULL, the default mutex-lock
attributes are used (normal mutex-lock).



Programming Shared
Memory II

Dr. Cem Özdo ğan

Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads
Mutual Exclusion for Shared
Variables

8.21

Synchronization Primitives: Overheads of Locking I

• Locks represent serialization points since critical sections
must be executed by threads one after the other.



Programming Shared
Memory II

Dr. Cem Özdo ğan

Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads
Mutual Exclusion for Shared
Variables

8.21

Synchronization Primitives: Overheads of Locking I

• Locks represent serialization points since critical sections
must be executed by threads one after the other.

• Encapsulating large segments of the program within locks
can, therefore, lead to significant performance
degradation .



Programming Shared
Memory II

Dr. Cem Özdo ğan

Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads
Mutual Exclusion for Shared
Variables

8.21

Synchronization Primitives: Overheads of Locking I

• Locks represent serialization points since critical sections
must be executed by threads one after the other.

• Encapsulating large segments of the program within locks
can, therefore, lead to significant performance
degradation .

• It is therefore important to minimize the size of critical
sections and to handle critical sections and shared data
structures with extreme care.



Programming Shared
Memory II

Dr. Cem Özdo ğan

Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads
Mutual Exclusion for Shared
Variables

8.21

Synchronization Primitives: Overheads of Locking I

• Locks represent serialization points since critical sections
must be executed by threads one after the other.

• Encapsulating large segments of the program within locks
can, therefore, lead to significant performance
degradation .

• It is therefore important to minimize the size of critical
sections and to handle critical sections and shared data
structures with extreme care.

• It is often possible to reduce the idling overhead
associated with locks using an alternate function,
pthread_mutex_trylock.



Programming Shared
Memory II

Dr. Cem Özdo ğan

Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads
Mutual Exclusion for Shared
Variables

8.21

Synchronization Primitives: Overheads of Locking I

• Locks represent serialization points since critical sections
must be executed by threads one after the other.

• Encapsulating large segments of the program within locks
can, therefore, lead to significant performance
degradation .

• It is therefore important to minimize the size of critical
sections and to handle critical sections and shared data
structures with extreme care.

• It is often possible to reduce the idling overhead
associated with locks using an alternate function,
pthread_mutex_trylock.

• It does not have to deal with queues associated with locks
for multiple threads waiting on the lock.



Programming Shared
Memory II

Dr. Cem Özdo ğan

Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads
Mutual Exclusion for Shared
Variables

8.22

Synchronization Primitives: Overheads of Locking II

• The function pthread_mutex_trylock ;



Programming Shared
Memory II

Dr. Cem Özdo ğan

Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads
Mutual Exclusion for Shared
Variables

8.22

Synchronization Primitives: Overheads of Locking II

• The function pthread_mutex_trylock ;

• This function attempts a lock on mutex_lock.



Programming Shared
Memory II

Dr. Cem Özdo ğan

Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads
Mutual Exclusion for Shared
Variables

8.22

Synchronization Primitives: Overheads of Locking II

• The function pthread_mutex_trylock ;

• This function attempts a lock on mutex_lock.
• If the lock is successful, the function returns a zero.



Programming Shared
Memory II

Dr. Cem Özdo ğan

Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads
Mutual Exclusion for Shared
Variables

8.22

Synchronization Primitives: Overheads of Locking II

• The function pthread_mutex_trylock ;

• This function attempts a lock on mutex_lock.
• If the lock is successful, the function returns a zero.
• If it is already locked by another thread, instead of

blocking the thread execution, it returns a value EBUSY.



Programming Shared
Memory II

Dr. Cem Özdo ğan

Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads
Mutual Exclusion for Shared
Variables

8.22

Synchronization Primitives: Overheads of Locking II

• The function pthread_mutex_trylock ;

• This function attempts a lock on mutex_lock.
• If the lock is successful, the function returns a zero.
• If it is already locked by another thread, instead of

blocking the thread execution, it returns a value EBUSY.
• This allows the thread to do other work and

to poll the mutex for a lock.



Programming Shared
Memory II

Dr. Cem Özdo ğan

Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads
Mutual Exclusion for Shared
Variables

8.22

Synchronization Primitives: Overheads of Locking II

• The function pthread_mutex_trylock ;

• This function attempts a lock on mutex_lock.
• If the lock is successful, the function returns a zero.
• If it is already locked by another thread, instead of

blocking the thread execution, it returns a value EBUSY.
• This allows the thread to do other work and

to poll the mutex for a lock.

• Furthermore, pthread_mutex_trylock is typically much
faster than pthread_mutex_lock on typical systems.


	Thread Basics: Passing Arguments, Cancellation and Joining
	Passing Arguments to Threads
	Thread Cancellation
	Joining and Detaching Threads

	Synchronization Primitives in Pthreads
	Mutual Exclusion for Shared Variables


