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Thread Basics: Passing Arguments I

• Passing Arguments to Threads
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Thread Basics: Passing Arguments I

• Passing Arguments to Threads
• The pthread_create() function allows the programmer to

pass one argument to the thread function.
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Thread Basics: Passing Arguments I

• Passing Arguments to Threads
• The pthread_create() function allows the programmer to

pass one argument to the thread function.

• For cases where multiple arguments must be passed, this
limitation is easily overcome by creating a structure .
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Thread Basics: Passing Arguments I

• Passing Arguments to Threads
• The pthread_create() function allows the programmer to

pass one argument to the thread function.

• For cases where multiple arguments must be passed, this
limitation is easily overcome by creating a structure .

• This structure contains all of the arguments, and then a
pointer is passed to that structure in the pthread_create()
routine.
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• Passing Arguments to Threads
• The pthread_create() function allows the programmer to

pass one argument to the thread function.

• For cases where multiple arguments must be passed, this
limitation is easily overcome by creating a structure .

• This structure contains all of the arguments, and then a
pointer is passed to that structure in the pthread_create()
routine.

• All arguments must be passed by reference and cast to
(void *).
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• Passing Arguments to Threads
• The pthread_create() function allows the programmer to

pass one argument to the thread function.

• For cases where multiple arguments must be passed, this
limitation is easily overcome by creating a structure .

• This structure contains all of the arguments, and then a
pointer is passed to that structure in the pthread_create()
routine.

• All arguments must be passed by reference and cast to
(void *).

• Threads have non-deterministic start-up and scheduling.
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Thread Basics: Passing Arguments I

• Passing Arguments to Threads
• The pthread_create() function allows the programmer to

pass one argument to the thread function.

• For cases where multiple arguments must be passed, this
limitation is easily overcome by creating a structure .

• This structure contains all of the arguments, and then a
pointer is passed to that structure in the pthread_create()
routine.

• All arguments must be passed by reference and cast to
(void *).

• Threads have non-deterministic start-up and scheduling.

• How can you safely pass data to newly created threads?
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Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads
Mutual Exclusion for Shared
Variables

8.4

Thread Basics: Passing Arguments II

• Example: Demonstrates how to pass a simple integer to
each thread.

Figure: Passing single argument to thread function.
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Thread Basics: Passing Arguments III
• Example: Demonstrates how to pass/setup multiple

arguments to thread function via a structure.
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Thread Basics: Passing Arguments III
• Example: Demonstrates how to pass/setup multiple

arguments to thread function via a structure.
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Thread Basics: Passing Arguments III
• Example: Demonstrates how to pass/setup multiple

arguments to thread function via a structure.

Figure: Passing multiple arguments to thread function
via a structure.
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Thread Basics: Passing Arguments III
• Example: Demonstrates how to pass/setup multiple

arguments to thread function via a structure.

Figure: Passing multiple arguments to thread function
via a structure.

Each thread
receives a unique
instance of the
structure.



Programming Shared
Memory II

Dr. Cem Özdo ğan
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Thread Basics: Cancellation I

• Cancellation.



Programming Shared
Memory II

Dr. Cem Özdo ğan
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Thread Basics: Cancellation I

• Cancellation.
• Consider a simple program to evaluate a set of positions in

a chess game.
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Thread Basics: Cancellation I

• Cancellation.
• Consider a simple program to evaluate a set of positions in

a chess game.

• Assume that there are k moves, each being evaluated by
an independent thread.
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Thread Basics: Cancellation I

• Cancellation.
• Consider a simple program to evaluate a set of positions in

a chess game.

• Assume that there are k moves, each being evaluated by
an independent thread.

• If at any point of time, a position is established to be of a
certain quality, the other positions that are known to be of
worse quality must stop being evaluated.
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Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads
Mutual Exclusion for Shared
Variables

8.6

Thread Basics: Cancellation I

• Cancellation.
• Consider a simple program to evaluate a set of positions in

a chess game.

• Assume that there are k moves, each being evaluated by
an independent thread.

• If at any point of time, a position is established to be of a
certain quality, the other positions that are known to be of
worse quality must stop being evaluated.

• In other words, the threads evaluating the corresponding
board positions must be canceled.
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Thread Basics: Cancellation I

• Cancellation.
• Consider a simple program to evaluate a set of positions in

a chess game.

• Assume that there are k moves, each being evaluated by
an independent thread.

• If at any point of time, a position is established to be of a
certain quality, the other positions that are known to be of
worse quality must stop being evaluated.

• In other words, the threads evaluating the corresponding
board positions must be canceled.

• Posix threads provide this cancellation feature.
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Thread Basics: Cancellation I

• Cancellation.
• Consider a simple program to evaluate a set of positions in

a chess game.

• Assume that there are k moves, each being evaluated by
an independent thread.

• If at any point of time, a position is established to be of a
certain quality, the other positions that are known to be of
worse quality must stop being evaluated.

• In other words, the threads evaluating the corresponding
board positions must be canceled.

• Posix threads provide this cancellation feature.

• A thread may cancel itself or cancel other threads.
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Thread Basics: Cancellation II

• pthread_cancel .
1 int
2 pthread_cancel (
3 pthread_t thread);
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Thread Basics: Cancellation II

• pthread_cancel .
1 int
2 pthread_cancel (
3 pthread_t thread);

• Here, thread is the handle to the thread to be canceled.
When a call to this function is made, a cancellation is sent
to the specified thread.
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Thread Basics: Cancellation II

• pthread_cancel .
1 int
2 pthread_cancel (
3 pthread_t thread);

• Here, thread is the handle to the thread to be canceled.
When a call to this function is made, a cancellation is sent
to the specified thread.

• It is not guaranteed that the specified thread will receive or
act on the cancellation. Threads can protect themselves
against cancellation.
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Thread Basics: Cancellation II

• pthread_cancel .
1 int
2 pthread_cancel (
3 pthread_t thread);

• Here, thread is the handle to the thread to be canceled.
When a call to this function is made, a cancellation is sent
to the specified thread.

• It is not guaranteed that the specified thread will receive or
act on the cancellation. Threads can protect themselves
against cancellation.

• When a cancellation is actually performed, cleanup
functions are invoked for reclaiming the thread data
structures.
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Thread Basics: Cancellation II

• pthread_cancel .
1 int
2 pthread_cancel (
3 pthread_t thread);

• Here, thread is the handle to the thread to be canceled.
When a call to this function is made, a cancellation is sent
to the specified thread.

• It is not guaranteed that the specified thread will receive or
act on the cancellation. Threads can protect themselves
against cancellation.

• When a cancellation is actually performed, cleanup
functions are invoked for reclaiming the thread data
structures.

• The pthread_cancel function returns after a cancellation
has been sent. The cancellation may itself be performed
later.
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Thread Basics: Joining and Detaching I

• Joining and Detaching Threads.
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Thread Basics: Joining and Detaching I

• Joining and Detaching Threads.
• The main program must wait for the threads to run to

completion.
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Thread Basics: Joining and Detaching I

• Joining and Detaching Threads.
• The main program must wait for the threads to run to

completion.

• “Joining“ is one way to accomplish synchronization
between threads.
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Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads
Mutual Exclusion for Shared
Variables

8.8

Thread Basics: Joining and Detaching I

• Joining and Detaching Threads.
• The main program must wait for the threads to run to

completion.

• “Joining“ is one way to accomplish synchronization
between threads.

• Function pthread_join which suspends execution of the
calling thread until the specified thread terminates.
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Thread Basics: Joining and Detaching I

• Joining and Detaching Threads.
• The main program must wait for the threads to run to

completion.

• “Joining“ is one way to accomplish synchronization
between threads.

• Function pthread_join which suspends execution of the
calling thread until the specified thread terminates.

• A call to this function waits for the termination of the thread
whose id is given by thread.
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Thread Basics: Joining and Detaching II

• A call to this function waits for the termination of the thread
whose id is given by thread.

Figure: Threads joining.
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Thread Basics: Joining and Detaching II

• A call to this function waits for the termination of the thread
whose id is given by thread.

Figure: Threads joining.

• On a successful call to pthread_join , the value passed to
pthread_exit is returned in the location pointed to by ptr.
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Thread Basics: Joining and Detaching II

• A call to this function waits for the termination of the thread
whose id is given by thread.

Figure: Threads joining.

• On a successful call to pthread_join , the value passed to
pthread_exit is returned in the location pointed to by ptr.

• On successful completion, pthread_join returns 0, else it
returns an error-code.
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Thread Basics: Joining and Detaching III

• When a thread is created, one of its attributes defines
whether it is joinable or detached .
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Thread Basics: Joining and Detaching III

• When a thread is created, one of its attributes defines
whether it is joinable or detached .

• Only threads that are created as joinable can be joined. If
a thread is created as detached, it can never be joined.
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Thread Basics: Joining and Detaching III

• When a thread is created, one of its attributes defines
whether it is joinable or detached .

• Only threads that are created as joinable can be joined. If
a thread is created as detached, it can never be joined.

• The final draft of the POSIX standard specifies that
threads should be created as joinable.
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8.10

Thread Basics: Joining and Detaching III

• When a thread is created, one of its attributes defines
whether it is joinable or detached .

• Only threads that are created as joinable can be joined. If
a thread is created as detached, it can never be joined.

• The final draft of the POSIX standard specifies that
threads should be created as joinable.

• To explicitly create a thread as joinable or detached, the
attr argument in the pthread_create() routine is used.
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8.10

Thread Basics: Joining and Detaching III

• When a thread is created, one of its attributes defines
whether it is joinable or detached .

• Only threads that are created as joinable can be joined. If
a thread is created as detached, it can never be joined.

• The final draft of the POSIX standard specifies that
threads should be created as joinable.

• To explicitly create a thread as joinable or detached, the
attr argument in the pthread_create() routine is used.

• Detaching :



Programming Shared
Memory II

Dr. Cem Özdo ğan
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8.10

Thread Basics: Joining and Detaching III

• When a thread is created, one of its attributes defines
whether it is joinable or detached .

• Only threads that are created as joinable can be joined. If
a thread is created as detached, it can never be joined.

• The final draft of the POSIX standard specifies that
threads should be created as joinable.

• To explicitly create a thread as joinable or detached, the
attr argument in the pthread_create() routine is used.

• Detaching :

• The pthread_detach() routine can be used to explicitly
detach a thread even though it was created as joinable.
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8.10

Thread Basics: Joining and Detaching III

• When a thread is created, one of its attributes defines
whether it is joinable or detached .

• Only threads that are created as joinable can be joined. If
a thread is created as detached, it can never be joined.

• The final draft of the POSIX standard specifies that
threads should be created as joinable.

• To explicitly create a thread as joinable or detached, the
attr argument in the pthread_create() routine is used.

• Detaching :

• The pthread_detach() routine can be used to explicitly
detach a thread even though it was created as joinable.

• If a thread requires joining, consider explicitly creating it as
joinable (portability).
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8.10

Thread Basics: Joining and Detaching III

• When a thread is created, one of its attributes defines
whether it is joinable or detached .

• Only threads that are created as joinable can be joined. If
a thread is created as detached, it can never be joined.

• The final draft of the POSIX standard specifies that
threads should be created as joinable.

• To explicitly create a thread as joinable or detached, the
attr argument in the pthread_create() routine is used.

• Detaching :

• The pthread_detach() routine can be used to explicitly
detach a thread even though it was created as joinable.

• If a thread requires joining, consider explicitly creating it as
joinable (portability).

• If you know in advance that a thread will never need to join
with another thread, consider creating it in a detached
state (resources).
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Thread Basics: Joining and Detaching IV

• Reentrant function s are those that can be safely called
when another instance has been suspended in the middle
of its invocation.
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Thread Basics: Joining and Detaching IV

• Reentrant function s are those that can be safely called
when another instance has been suspended in the middle
of its invocation.

• All thread functions must be reentrant because a thread
can be preempted in the middle of its execution.
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Thread Basics: Joining and Detaching IV

• Reentrant function s are those that can be safely called
when another instance has been suspended in the middle
of its invocation.

• All thread functions must be reentrant because a thread
can be preempted in the middle of its execution.

• If another thread starts executing the same function at this
point, a non-reentrant function might not work as desired.
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Synchronization Primitives: Mutex I

• While communication is implicit in shared-address-space
programming,
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Synchronization Primitives: Mutex I

• While communication is implicit in shared-address-space
programming,

• much of the effort associated with writing correct threaded
programs is spent on synchronizing concurrent threads
with respect to their data accesses or scheduling.
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Synchronization Primitives: Mutex I

• While communication is implicit in shared-address-space
programming,

• much of the effort associated with writing correct threaded
programs is spent on synchronizing concurrent threads
with respect to their data accesses or scheduling.

• Using pthread_create and pthread_join calls, we can
create concurrent tasks.
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Synchronization Primitives: Mutex I

• While communication is implicit in shared-address-space
programming,

• much of the effort associated with writing correct threaded
programs is spent on synchronizing concurrent threads
with respect to their data accesses or scheduling.

• Using pthread_create and pthread_join calls, we can
create concurrent tasks.

• These tasks work together to manipulate data and
accomplish a given task.
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Synchronization Primitives: Mutex I

• While communication is implicit in shared-address-space
programming,

• much of the effort associated with writing correct threaded
programs is spent on synchronizing concurrent threads
with respect to their data accesses or scheduling.

• Using pthread_create and pthread_join calls, we can
create concurrent tasks.

• These tasks work together to manipulate data and
accomplish a given task.

• When multiple threads attempt to manipulate the
same data item,
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Synchronization Primitives: Mutex I

• While communication is implicit in shared-address-space
programming,

• much of the effort associated with writing correct threaded
programs is spent on synchronizing concurrent threads
with respect to their data accesses or scheduling.

• Using pthread_create and pthread_join calls, we can
create concurrent tasks.

• These tasks work together to manipulate data and
accomplish a given task.

• When multiple threads attempt to manipulate the
same data item,

• the results can often be incoherent if proper care is not
taken to synchronize them.
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Synchronization Primitives: Mutex II

• Consider the following code fragment being executed by
multiple threads.
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Synchronization Primitives: Mutex II

• Consider the following code fragment being executed by
multiple threads.

• The variable my_cost is thread-local and best_cost is a
global variable shared by all threads.
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Synchronization Primitives: Mutex II

• Consider the following code fragment being executed by
multiple threads.

• The variable my_cost is thread-local and best_cost is a
global variable shared by all threads.

• This is an undesirable situation, sometimes also referred
to as a race condition .
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Synchronization Primitives: Mutex II

• Consider the following code fragment being executed by
multiple threads.

• The variable my_cost is thread-local and best_cost is a
global variable shared by all threads.

• This is an undesirable situation, sometimes also referred
to as a race condition .

• So called because the result of the computation depends
on the race between competing threads.
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Synchronization Primitives: Mutex III

• To understand the problem with shared data access, let us
examine one execution instance of the above code
fragment.
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Synchronization Primitives: Mutex III

• To understand the problem with shared data access, let us
examine one execution instance of the above code
fragment.

• Assume that there are two threads,
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Synchronization Primitives: Mutex III

• To understand the problem with shared data access, let us
examine one execution instance of the above code
fragment.

• Assume that there are two threads,

• The initial value of best_cost is 100,
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Synchronization Primitives: Mutex III

• To understand the problem with shared data access, let us
examine one execution instance of the above code
fragment.

• Assume that there are two threads,

• The initial value of best_cost is 100,

• The values of my_cost are 50 and 75 at threads t1 and t2,
respectively.
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Synchronization Primitives: Mutex III

• To understand the problem with shared data access, let us
examine one execution instance of the above code
fragment.

• Assume that there are two threads,

• The initial value of best_cost is 100,

• The values of my_cost are 50 and 75 at threads t1 and t2,
respectively.

• If both threads execute the condition inside the if
statement concurrently, then both threads enter the then
part of the statement.
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Synchronization Primitives: Mutex III

• To understand the problem with shared data access, let us
examine one execution instance of the above code
fragment.

• Assume that there are two threads,

• The initial value of best_cost is 100,

• The values of my_cost are 50 and 75 at threads t1 and t2,
respectively.

• If both threads execute the condition inside the if
statement concurrently, then both threads enter the then
part of the statement.

• Depending on which thread executes first, the value of
best_cost at the end could be either 50 or 75.
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Synchronization Primitives: Mutex III

• To understand the problem with shared data access, let us
examine one execution instance of the above code
fragment.

• Assume that there are two threads,

• The initial value of best_cost is 100,

• The values of my_cost are 50 and 75 at threads t1 and t2,
respectively.

• If both threads execute the condition inside the if
statement concurrently, then both threads enter the then
part of the statement.

• Depending on which thread executes first, the value of
best_cost at the end could be either 50 or 75.

• There are two problems here:
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Synchronization Primitives: Mutex III

• To understand the problem with shared data access, let us
examine one execution instance of the above code
fragment.

• Assume that there are two threads,

• The initial value of best_cost is 100,

• The values of my_cost are 50 and 75 at threads t1 and t2,
respectively.

• If both threads execute the condition inside the if
statement concurrently, then both threads enter the then
part of the statement.

• Depending on which thread executes first, the value of
best_cost at the end could be either 50 or 75.

• There are two problems here:
1 non-deterministic nature of the result;
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Synchronization Primitives: Mutex III

• To understand the problem with shared data access, let us
examine one execution instance of the above code
fragment.

• Assume that there are two threads,

• The initial value of best_cost is 100,

• The values of my_cost are 50 and 75 at threads t1 and t2,
respectively.

• If both threads execute the condition inside the if
statement concurrently, then both threads enter the then
part of the statement.

• Depending on which thread executes first, the value of
best_cost at the end could be either 50 or 75.

• There are two problems here:
1 non-deterministic nature of the result;
2 more importantly, the value 75 of best_cost is inconsistent

in the sense that no serialization of the two threads can
possibly yield this result.
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Synchronization Primitives: Mutex IV

• Race condition occurred because the test-and-update
operation is an atomic operation ;
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Synchronization Primitives: Mutex IV

• Race condition occurred because the test-and-update
operation is an atomic operation ;

• i.e., the operation should not be broken into sub-operations.
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Synchronization Primitives: Mutex IV

• Race condition occurred because the test-and-update
operation is an atomic operation ;

• i.e., the operation should not be broken into sub-operations.

• Furthermore, the code corresponds to a critical segment ;
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Synchronization Primitives: Mutex IV

• Race condition occurred because the test-and-update
operation is an atomic operation ;

• i.e., the operation should not be broken into sub-operations.

• Furthermore, the code corresponds to a critical segment ;

• i.e., a segment that must be executed by only one thread at
any time.
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Synchronization Primitives: Mutex IV

• Race condition occurred because the test-and-update
operation is an atomic operation ;

• i.e., the operation should not be broken into sub-operations.

• Furthermore, the code corresponds to a critical segment ;

• i.e., a segment that must be executed by only one thread at
any time.

• Many statements that seem atomic in higher level
languages such as C may in fact be non-atomic.
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Synchronization Primitives: Mutex IV

• Race condition occurred because the test-and-update
operation is an atomic operation ;

• i.e., the operation should not be broken into sub-operations.

• Furthermore, the code corresponds to a critical segment ;

• i.e., a segment that must be executed by only one thread at
any time.

• Many statements that seem atomic in higher level
languages such as C may in fact be non-atomic.

• i.e., a statement of the form global_count+ = 5 may
comprise several assembler instructions and therefore must
be handled carefully.
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Synchronization Primitives: Mutex IV

• Race condition occurred because the test-and-update
operation is an atomic operation ;

• i.e., the operation should not be broken into sub-operations.

• Furthermore, the code corresponds to a critical segment ;

• i.e., a segment that must be executed by only one thread at
any time.

• Many statements that seem atomic in higher level
languages such as C may in fact be non-atomic.

• i.e., a statement of the form global_count+ = 5 may
comprise several assembler instructions and therefore must
be handled carefully.

• Threaded APIs provide support for implementing critical
sections and atomic operations using mutex -locks (mutual
exclusion locks).
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Synchronization Primitives: Mutex V

• Mutex-locks have two states: locked and unlocked.
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Synchronization Primitives: Mutex V

• Mutex-locks have two states: locked and unlocked.

• At any point of time, only one thread can lock a mutex
lock .
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Synchronization Primitives: Mutex V

• Mutex-locks have two states: locked and unlocked.

• At any point of time, only one thread can lock a mutex
lock .

• A lock is an atomic operation.
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Synchronization Primitives: Mutex V

• Mutex-locks have two states: locked and unlocked.

• At any point of time, only one thread can lock a mutex
lock .

• A lock is an atomic operation.
• To access the shared data, a thread must first try to acquire

a mutex-lock.
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Synchronization Primitives: Mutex V

• Mutex-locks have two states: locked and unlocked.

• At any point of time, only one thread can lock a mutex
lock .

• A lock is an atomic operation.
• To access the shared data, a thread must first try to acquire

a mutex-lock.
• If the mutex-lock is already locked, the process trying to

acquire the lock is blocked .
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Synchronization Primitives: Mutex V

• Mutex-locks have two states: locked and unlocked.

• At any point of time, only one thread can lock a mutex
lock .

• A lock is an atomic operation.
• To access the shared data, a thread must first try to acquire

a mutex-lock.
• If the mutex-lock is already locked, the process trying to

acquire the lock is blocked .
• This is because a locked mutex-lock implies that there is

another thread currently in the critical section and that no
other thread must be allowed in.
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Synchronization Primitives: Mutex V

• Mutex-locks have two states: locked and unlocked.

• At any point of time, only one thread can lock a mutex
lock .

• A lock is an atomic operation.
• To access the shared data, a thread must first try to acquire

a mutex-lock.
• If the mutex-lock is already locked, the process trying to

acquire the lock is blocked .
• This is because a locked mutex-lock implies that there is

another thread currently in the critical section and that no
other thread must be allowed in.

• When a thread leaves a critical section, it must
unlock the mutex-lock so that other threads can enter the
critical section.
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Synchronization Primitives: Mutex V

• Mutex-locks have two states: locked and unlocked.

• At any point of time, only one thread can lock a mutex
lock .

• A lock is an atomic operation.
• To access the shared data, a thread must first try to acquire

a mutex-lock.
• If the mutex-lock is already locked, the process trying to

acquire the lock is blocked .
• This is because a locked mutex-lock implies that there is

another thread currently in the critical section and that no
other thread must be allowed in.

• When a thread leaves a critical section, it must
unlock the mutex-lock so that other threads can enter the
critical section.

• All mutex-locks must be initialized to the unlocked state at
the beginning of the program.
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Synchronization Primitives: Mutex VI

• The function pthread_mutex_lock ;
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Synchronization Primitives: Mutex VI

• The function pthread_mutex_lock ;

• A call to this function attempts a lock on the mutex-lock
mutex_lock.
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Synchronization Primitives: Mutex VI

• The function pthread_mutex_lock ;

• A call to this function attempts a lock on the mutex-lock
mutex_lock.

• The data type of a mutex_lock is predefined to be
pthread_mutex_t.
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Synchronization Primitives: Mutex VI

• The function pthread_mutex_lock ;

• A call to this function attempts a lock on the mutex-lock
mutex_lock.

• The data type of a mutex_lock is predefined to be
pthread_mutex_t.

• If the mutex-lock is already locked, the calling thread
blocks; otherwise the mutex-lock is locked and the calling
thread returns.
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Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads
Mutual Exclusion for Shared
Variables

8.17

Synchronization Primitives: Mutex VI

• The function pthread_mutex_lock ;

• A call to this function attempts a lock on the mutex-lock
mutex_lock.

• The data type of a mutex_lock is predefined to be
pthread_mutex_t.

• If the mutex-lock is already locked, the calling thread
blocks; otherwise the mutex-lock is locked and the calling
thread returns.

• A successful return from the function returns a value 0.
Other values indicate error conditions such as deadlocks.
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Synchronization Primitives: Mutex VII

• The function pthread_mutex_unlock ;
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Synchronization Primitives: Mutex VII

• The function pthread_mutex_unlock ;

• On leaving a critical section, a thread must unlock the
mutex-lock associated with the section.
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Synchronization Primitives: Mutex VII

• The function pthread_mutex_unlock ;

• On leaving a critical section, a thread must unlock the
mutex-lock associated with the section.

• If it does not do so, no other thread will be able to enter
this section, typically resulting in a deadlock.
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Synchronization Primitives: Mutex VII

• The function pthread_mutex_unlock ;

• On leaving a critical section, a thread must unlock the
mutex-lock associated with the section.

• If it does not do so, no other thread will be able to enter
this section, typically resulting in a deadlock.

• On calling pthread_mutex_unlock function, the lock is
relinquished and one of the blocked threads is scheduled
to enter the critical section.
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Synchronization Primitives: Mutex VIII

• The specific thread is determined by the scheduling
policy .
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Synchronization Primitives: Mutex VIII

• The specific thread is determined by the scheduling
policy .

• if the thread priority scheduling is not implied, the
assignment will be left to the native system scheduler and
may appear to be more or less random .
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Synchronization Primitives: Mutex VIII

• The specific thread is determined by the scheduling
policy .

• if the thread priority scheduling is not implied, the
assignment will be left to the native system scheduler and
may appear to be more or less random .

• Mutex variables must be declared with type
pthread_mutex_t, and must be initialized before they can
be used.
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Synchronization Primitives: Mutex VIII

• The specific thread is determined by the scheduling
policy .

• if the thread priority scheduling is not implied, the
assignment will be left to the native system scheduler and
may appear to be more or less random .

• Mutex variables must be declared with type
pthread_mutex_t, and must be initialized before they can
be used.

• There are two ways to initialize a mutex variable:
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Synchronization Primitives: Mutex VIII

• The specific thread is determined by the scheduling
policy .

• if the thread priority scheduling is not implied, the
assignment will be left to the native system scheduler and
may appear to be more or less random .

• Mutex variables must be declared with type
pthread_mutex_t, and must be initialized before they can
be used.

• There are two ways to initialize a mutex variable:
1 Statically, when it is declared. For example:

pthread_mutex_t mymutex =
PTHREAD_MUTEX_INITIALIZER;
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Synchronization Primitives: Mutex VIII

• The specific thread is determined by the scheduling
policy .

• if the thread priority scheduling is not implied, the
assignment will be left to the native system scheduler and
may appear to be more or less random .

• Mutex variables must be declared with type
pthread_mutex_t, and must be initialized before they can
be used.

• There are two ways to initialize a mutex variable:
1 Statically, when it is declared. For example:

pthread_mutex_t mymutex =
PTHREAD_MUTEX_INITIALIZER;

2 Dynamically, with the pthread_mutex_init() routine. This
method permits setting mutex object attributes, attr.
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Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads
Mutual Exclusion for Shared
Variables

8.19

Synchronization Primitives: Mutex VIII

• The specific thread is determined by the scheduling
policy .

• if the thread priority scheduling is not implied, the
assignment will be left to the native system scheduler and
may appear to be more or less random .

• Mutex variables must be declared with type
pthread_mutex_t, and must be initialized before they can
be used.

• There are two ways to initialize a mutex variable:
1 Statically, when it is declared. For example:

pthread_mutex_t mymutex =
PTHREAD_MUTEX_INITIALIZER;

2 Dynamically, with the pthread_mutex_init() routine. This
method permits setting mutex object attributes, attr.

• If a programmer attempts a pthread_mutex_unlock on a
previously unlocked mutex or one that is locked by another
thread, the effect is undefined.
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Synchronization Primitives: Mutex IX

• The function pthread_mutex_init ;
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8.20

Synchronization Primitives: Mutex IX

• The function pthread_mutex_init ;

• We need one more function before we can start using
mutex-locks, namely, a function to initialize a mutex-lock to
its unlocked state.
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Synchronization Primitives: Mutex IX

• The function pthread_mutex_init ;

• We need one more function before we can start using
mutex-locks, namely, a function to initialize a mutex-lock to
its unlocked state.

• The mutex is initially unlocked.
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Synchronization Primitives: Mutex IX

• The function pthread_mutex_init ;

• We need one more function before we can start using
mutex-locks, namely, a function to initialize a mutex-lock to
its unlocked state.

• The mutex is initially unlocked.

• The attributes of the mutex-lock are specified by lock_attr.
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Synchronization Primitives: Mutex IX

• The function pthread_mutex_init ;

• We need one more function before we can start using
mutex-locks, namely, a function to initialize a mutex-lock to
its unlocked state.

• The mutex is initially unlocked.

• The attributes of the mutex-lock are specified by lock_attr.

• If this argument is set to NULL, the default mutex-lock
attributes are used (normal mutex-lock).
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8.21

Synchronization Primitives: Overheads of Locking I

• Locks represent serialization points since critical sections
must be executed by threads one after the other.
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8.21

Synchronization Primitives: Overheads of Locking I

• Locks represent serialization points since critical sections
must be executed by threads one after the other.

• Encapsulating large segments of the program within locks
can, therefore, lead to significant performance
degradation .
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Synchronization Primitives: Overheads of Locking I

• Locks represent serialization points since critical sections
must be executed by threads one after the other.

• Encapsulating large segments of the program within locks
can, therefore, lead to significant performance
degradation .

• It is therefore important to minimize the size of critical
sections and to handle critical sections and shared data
structures with extreme care.
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Synchronization Primitives: Overheads of Locking I

• Locks represent serialization points since critical sections
must be executed by threads one after the other.

• Encapsulating large segments of the program within locks
can, therefore, lead to significant performance
degradation .

• It is therefore important to minimize the size of critical
sections and to handle critical sections and shared data
structures with extreme care.

• It is often possible to reduce the idling overhead
associated with locks using an alternate function,
pthread_mutex_trylock.
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Synchronization Primitives: Overheads of Locking I

• Locks represent serialization points since critical sections
must be executed by threads one after the other.

• Encapsulating large segments of the program within locks
can, therefore, lead to significant performance
degradation .

• It is therefore important to minimize the size of critical
sections and to handle critical sections and shared data
structures with extreme care.

• It is often possible to reduce the idling overhead
associated with locks using an alternate function,
pthread_mutex_trylock.

• It does not have to deal with queues associated with locks
for multiple threads waiting on the lock.
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Synchronization Primitives: Overheads of Locking II

• The function pthread_mutex_trylock ;
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Synchronization Primitives: Overheads of Locking II

• The function pthread_mutex_trylock ;

• This function attempts a lock on mutex_lock.
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8.22

Synchronization Primitives: Overheads of Locking II

• The function pthread_mutex_trylock ;

• This function attempts a lock on mutex_lock.
• If the lock is successful, the function returns a zero.
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Synchronization Primitives: Overheads of Locking II

• The function pthread_mutex_trylock ;

• This function attempts a lock on mutex_lock.
• If the lock is successful, the function returns a zero.
• If it is already locked by another thread, instead of

blocking the thread execution, it returns a value EBUSY.
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Synchronization Primitives: Overheads of Locking II

• The function pthread_mutex_trylock ;

• This function attempts a lock on mutex_lock.
• If the lock is successful, the function returns a zero.
• If it is already locked by another thread, instead of

blocking the thread execution, it returns a value EBUSY.
• This allows the thread to do other work and

to poll the mutex for a lock.
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Synchronization Primitives: Overheads of Locking II

• The function pthread_mutex_trylock ;

• This function attempts a lock on mutex_lock.
• If the lock is successful, the function returns a zero.
• If it is already locked by another thread, instead of

blocking the thread execution, it returns a value EBUSY.
• This allows the thread to do other work and

to poll the mutex for a lock.

• Furthermore, pthread_mutex_trylock is typically much
faster than pthread_mutex_lock on typical systems.
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