
Creating Graphical User Interfaces
Version 7

MATLAB®

The Language of Technical Computing

How to Contact The MathWorks:

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 Phone

508-647-7001 Fax

The MathWorks, Inc. Mail
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

MATLAB Creating Graphical User Interfaces
© COPYRIGHT 2000 - 2004 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and
TargetBox is a trademark of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Printing History: November 2000 Online only New for MATLAB 6.0 (Release12)
June 2001 Online only Revised for MATLAB 6.1 (Release 12.1)
July 2002 Online only Revised for MATLAB 6.5 (Release 13)
June 2004 Online only Revised for MATLAB 7.0 (Release 14)
October 2004 Online only Revised for MATLAB 7.0.1 (Release 14SP1)

i

Contents

1
Getting Started with GUIDE

What Is GUIDE? . 1-2

Starting GUIDE . 1-3

The Layout Editor . 1-4

GUIDE Templates . 1-6

Running a GUI . 1-8

GUI FIG-Files and M-Files . 1-9

Programming the GUI M-file . 1-10

Editing Version 5 GUIs with Version 7 GUIDE 1-12
Saving the GUI in Version 7 GUIDE . 1-12
Updating Callbacks . 1-13

2
Creating a GUI

Designing the GUI . 2-2

Laying Out the GUI . 2-3
View Layout and Code for the Example 2-3
Open a New GUI in the Layout Editor 2-4
Set the GUI Figure Size . 2-6
Add the Components . 2-7
Align the Components . 2-9

ii Contents

Setting Properties for GUI Components 2-11
Name Property . 2-11
Title Property . 2-12
String Property for Push Buttons and Static Text 2-12
String Property for Pop-up Menus . 2-12
Callback Properties . 2-14
The Tag Property . 2-14

Programming the GUI . 2-17
Creating the GUI M-File . 2-17
Opening the GUI M-File . 2-17
Sharing Data Between Callbacks . 2-19
Adding Code to the Opening Function 2-20
Adding Code to the Callbacks . 2-22
Using the Object Browser to Identify Callbacks 2-24

Saving and Running a GUI . 2-26

3
Laying Out GUIs and Setting Properties

Using GUIDE Templates . 3-2
Blank GUI . 3-3
GUI with Uicontrols . 3-4
GUI with Axes and Menu . 3-5
Modal Question Dialog . 3-6

Using the Layout Editor . 3-9
Starting the Layout Editor . 3-9
Selecting Components from the Component Palette 3-10
Adding Components to the Layout Area 3-13
Working with Components in the Layout Area 3-16
Running the GUI . 3-19
Saving the Layout . 3-21
Renaming GUI Files . 3-21
Exporting a GUI to a Single M-File . 3-21
Displaying the GUI . 3-22

iii

Layout Editor Preferences . 3-22
Layout Editor Context Menus . 3-26

Selecting GUI Options . 3-28
Configuring the GUI M-File . 3-28
Resize Behavior . 3-29
Command-Line Accessibility . 3-30
Generate FIG-File and M-File . 3-32
Generate Callback Function Prototypes 3-33
GUI Allows Only One Instance to Run (Singleton) 3-35
Using the System Background Colors 3-35
Generate FIG-File Only . 3-36

Aligning Components in the Layout Editor 3-37
Aligning Groups of Components — The Alignment Tool 3-37
Grids and Rulers . 3-39
Aligning Components to Guide Lines . 3-40
Front-to-Back Positioning . 3-41

Setting Component Properties — The Property Inspector 3-43
Displaying the Property Inspector . 3-43
What Properties Do I Need to Set? . 3-44
Some Commonly Used Properties . 3-45
Setting Properties for Some Specific Components 3-46
Callback Properties . 3-54
Changing Tag and Callback Properties 3-56

Viewing the Object Hierarchy — The Object Browser . . . 3-59

Creating Menus — The Menu Editor 3-60
Defining Menus for the Menu Bar . 3-61
Menu Callbacks . 3-66
Defining Context Menus . 3-68

Setting the Tab Order — The Tab Order Editor 3-72

iv Contents

4
Programming GUIs

Understanding the GUI M-File . 4-2
Sharing Data with the Handles Structure 4-2
Functions and Callbacks in the M-File . 4-3
Opening Function . 4-4
Output Function . 4-5
Callbacks . 4-6
Input and Output Arguments . 4-7

Programming Callbacks for GUI Components 4-8
Toggle Button Callback . 4-8
Radio Buttons . 4-9
Check Boxes . 4-10
Edit Text . 4-10
Sliders . 4-11
List Boxes . 4-11
Pop-Up Menus . 4-12
Panels . 4-13
Button Groups . 4-13
Axes . 4-14
ActiveX Controls . 4-17
Figures . 4-24

Managing GUI Data with the Handles Structure 4-26
Example: Passing Data Between Callbacks 4-26
Application Data . 4-29

Designing for Cross-Platform Compatibility 4-30
Using the Default System Font . 4-30
Using Standard Background Color . 4-31
Cross-Platform Compatible Figure Units 4-32

Types of Callbacks . 4-33
Callback Properties for All Graphics Objects 4-33
Callback Properties for Figures . 4-33
Callbacks for Specific Components . 4-34
Which Callback Executes . 4-34
Adding a Callback . 4-34

v

Interrupting Executing Callbacks . 4-35
Controlling Interruptibility . 4-35
The Event Queue . 4-35
Event Processing During Callback Execution 4-36

Controlling Figure Window Behavior 4-38
Using Modal Figure Windows . 4-38

Example: Using the Modal Dialog to Confirm
an Operation . 4-40

View Completed Layouts and Their GUI M-Files 4-40
Setting Up the Close Confirmation Dialog 4-41
Setting Up the GUI with the Close Button 4-42
Running the GUI with the Close Button 4-43
How the GUI and Dialog Work . 4-44

5
GUI Applications

GUI with Multiple Axes . 5-2
Techniques Used in the Example . 5-2
View Completed Layout and Its GUI M-File 5-3
Design of the GUI . 5-3
Plot Push Button Callback . 5-6

List Box Directory Reader . 5-9
View Layout and GUI M-File . 5-9
Implementing the GUI . 5-10
Specifying the Directory to List . 5-10
Loading the List Box . 5-12

Accessing Workspace Variables from a List Box 5-15
Techniques Used in This Example . 5-15
View Completed Layout and Its GUI M-File 5-16
Reading Workspace Variables . 5-16
Reading the Selections from the List Box 5-17

vi Contents

A GUI to Set Simulink Model Parameters 5-19
Techniques Used in This Example . 5-19
View Completed Layout and Its GUI M-File 5-19
How to Use the GUI (Text of GUI Help) 5-20
Running the GUI . 5-21
Programming the Slider and Edit Text Components 5-22
Running the Simulation from the GUI 5-24
Removing Results from the List Box . 5-26
Plotting the Results Data . 5-27
The GUI Help Button . 5-29
Closing the GUI . 5-29
The List Box Callback and Create Function 5-29

An Address Book Reader . 5-31
Techniques Used in This Example . 5-31
Managing Shared Data . 5-31
View Completed Layout and Its GUI M-File 5-32
Running the GUI . 5-32
Loading an Address Book Into the Reader 5-34
The Contact Name Callback . 5-36
The Contact Phone Number Callback . 5-38
Paging Through the Address Book — Prev/Next 5-39
Saving Changes to the Address Book from the Menu 5-41
The Create New Menu . 5-43
The Address Book Resize Function . 5-43

Index

1
Getting Started with
GUIDE

What Is GUIDE? (p. 1-2) An introduction to GUIDE

Starting GUIDE (p. 1-3) How to start GUIDE and use the Quick Start dialog

The Layout Editor (p. 1-4) The Layout Editor enables you to lay out the GUI
components quickly and easily

GUIDE Templates (p. 1-6) GUIDE templates are simple, pre-constructed GUIs that
you can modify for your own purposes

Running a GUI (p. 1-8) How to run a GUI

GUI FIG-Files and M-Files (p. 1-9) GUIDE stores GUIs in two files, a FIG-file that contains
the layout, and an M-file that controls the GUI

Programming the GUI M-file (p. 1-10) The GUI M-file controls how the GUI functions

Editing Version 5 GUIs with Version 7
GUIDE (p. 1-12)

Editing GUIs created in GUIDE Version 5

1 Getting Started with GUIDE

1-2

What Is GUIDE?
GUIDE, the MATLAB® Graphical User Interface development environment,
provides a set of tools for creating graphical user interfaces (GUIs). These tools
greatly simplify the process of designing and building GUIs. You can use the
GUIDE tools to

• Lay out the GUI

Using the GUIDE Layout Editor, you can lay out a GUI easily by clicking and
dragging GUI components — such as panels, buttons, text fields, sliders,
menus, and so on — into the layout area.

• Program the GUI

GUIDE automatically generates an M-file that controls how the GUI
operates. The M-file initializes the GUI and contains a framework for all the
GUI callbacks — the commands that are executed when a user clicks a GUI
component. Using the M-file editor, you can add code to the callbacks to
perform the functions you want them to.

The following sections provide an overview of creating GUIs with GUIDE.

Starting GUIDE

1-3

Starting GUIDE
To start GUIDE, enter guide at the MATLAB prompt. This displays the
GUIDE Quick Start dialog, as shown in the following figure.

From the Quick Start dialog, you can

• Create a new GUI from one of the GUIDE templates — prebuilt GUIs that
you can modify for your own purposes.

• Open an existing GUI.

Once you have selected one of these options, clicking OK opens the GUI in the
Layout Editor.

1 Getting Started with GUIDE

1-4

The Layout Editor
When you open a GUI in GUIDE, it is displayed in the Layout Editor, which is
the control panel for all of the GUIDE tools. The following figure shows the
Layout Editor with a blank GUI template.

You can lay out your GUI by dragging components, such as push buttons,
pop-up menus, or axes, from the component palette, at the left side of the
Layout Editor, into the layout area. For example, if you drag a push button into
the layout area, it appears as in the following figure.

Component
Palette

Layout Area

The Layout Editor

1-5

You can also use the Layout Editor to set basic properties of the GUI
components.

To learn more about the Layout Editor, see “Using the Layout Editor” on
page 3-9. See “Laying Out the GUI” on page 2-3 for a detailed example of laying
out a GUI.

1 Getting Started with GUIDE

1-6

GUIDE Templates
The GUIDE Quick Start dialog provides templates for several basic types of
GUIs. The advantage of using templates is that often you can modify a
template more quickly and easily than by starting from a blank GUI. When you
select a template in the Templates pane, a preview of it appears in the
right-hand pane. For example, when you select the GUI with Axes and Menu,
the Quick Start dialog appears as in the following figure.

Clicking OK opens the template in the Layout Editor, as shown in the following
figure.

GUIDE Templates

1-7

To display the names of the GUI components in the component palette, select
Preferences from the File menu, check the box next to Show names in
component palette, and click OK.

Note that the Layout Editor does not display the functioning GUI. The next
section describes how to run the actual GUI from the Layout Editor.

To learn more about templates, see “Using GUIDE Templates” on page 3-2.

1 Getting Started with GUIDE

1-8

Running a GUI
To run a GUI, select Run from the Tools menu, or click the run button
on the toolbar. This displays the functioning GUI outside the Layout Editor.
For example, when you run the GUI with Axes and Menu template, it appears
as shown in the following figure.

This GUI displays various MATLAB plots. Select a plot from the pop-up menu
and click Update.

Note If you are running the GUI for the first time and have not yet saved it,
GUIDE first asks you if you want to save the figure and M-files that define the
GUI. If you click Yes, GUIDE displays a Save As dialog box. After you have
saved the files, GUIDE runs the GUI and opens an M-file for the GUI in the
default text editor. See “GUI FIG-Files and M-Files” on page 1-9 for
information about these files.

GUI FIG-Files and M-Files

1-9

GUI FIG-Files and M-Files
GUIDE stores a GUI in two files, which are generated the first time you save
or run the GUI:

• A FIG-file, with extension .fig, which contains a complete description of the
GUI layout and the components of the GUI: push buttons, menus, axes, and
so on.

• An M-file, with extension .m, that contains the code that controls the GUI,
including the callbacks for its components.

These two files correspond to the tasks of laying out and programming the GUI.
When you lay out of the GUI in the Layout Editor, your work is stored in the
FIG-file. When you program the GUI, your work is stored in the M-file.

1 Getting Started with GUIDE

1-10

Programming the GUI M-file
After laying out your GUI, you can program the GUI M-file using the M-file
editor. GUIDE automatically generates this file from your layout the first time
you save or run the GUI. The GUI M-file

• Initializes the GUI

• Contains code to perform tasks before the GUI appears on the screen, such
as creating data or graphics

• Contains the callback functions that are executed each time a user clicks a
GUI component

Initially, each callback contains just a function definition line. You then use the
M-file editor to add code that makes the component function the way you want
it to. To open the M-file, click the M-file Editor icon on the Layout Editor
toolbar. The following figure shows the M-file for the GUI with Axes and Menu
template.

Programming the GUI M-file

1-11

You can view the callback for any of the GUI components by clicking the
function icon on the toolbar. This displays a list of all the callbacks, as
shown in the following figure.

Clicking a callback on the list displays the section of the M-file containing the
callback, where you can edit it. This example shows the callback template for
pushbutton1_Callback.

To learn more about programming the M-file, see Chapter 4, “Programming
GUIs.”

1 Getting Started with GUIDE

1-12

Editing Version 5 GUIs with Version 7 GUIDE
In MATLAB Version 5, GUIDE saved GUI layouts as MAT-file/M-file pairs.
Since MATLAB Version 6, GUIDE saves GUI layouts as FIG-files. GUIDE also
generates an M-file to program the GUI callbacks. However, this M-file does
not contain layout code as did M-files created in Version 5.

Use the following procedure to edit a Version 5 GUI with Version 7 GUIDE:

1 Display the Version 5 GUI.

2 Obtain the handle of the GUI figure. If the figure’s handle is hidden (i.e., the
figure’s HandleVisibility property is set to off), set the root
ShowHiddenHandles property to on:

set(0,'ShowHiddenHandles','on')

Then get the handle from the root’s Children property:

hObject = get(0,'Children');

This statement returns the handles of all figures that exist when you issue
the command. For simplicity, ensure that the GUI is the only figure
displayed.

3 Pass the handle as an argument to the guide command:

guide(hObject)

Saving the GUI in Version 7 GUIDE
When you save the edited GUI with Version 7 GUIDE, MATLAB creates a
FIG-file that contains all the layout information. The original MAT-file/M-file
combination is no longer used. To display the revised GUI, run the M-file
generated by GUIDE.

Editing Version 5 GUIs with Version 7 GUIDE

1-13

Note GUI FIG-files that are created or modified with MATLAB 7.0 or a later
MATLAB version, are not automatically compatible with Version 6.5 and
earlier versions. To make a FIG-file, which is a kind of MAT-file, backward
compatible, you must check the MAT-file Ensure backward compatibility
(-v6) preference in the Preferences dialog box under General -> MAT-Files.

Updating Callbacks
Ensure that the Callback properties of the uicontrols in your GUI are set to the
desired callback string or callback M-file name when you save the FIG-file. If
your Version 5 GUI used an M-file that contained a combination of layout code
and callback routines, then you should restructure the M-file to contain only
the commands needed to initialize the GUI and the callback functions. The
M-file generated by Version 7 GUIDE can provide a model of how to restructure
your code.

1 Getting Started with GUIDE

1-14

2

Creating a GUI

Designing the GUI (p. 2-2) Designing the GUI before actually creating it in GUIDE.

Laying Out the GUI (p. 2-3) Using the GUIDE Layout Editor to arrange the GUI
components, such as push buttons, pop-up menus, and
axes.

Setting Properties for GUI
Components (p. 2-11)

Setting properties for each GUI component.

Programming the GUI (p. 2-17) Using the M-file editor to program the GUI.

Saving and Running a GUI (p. 2-26) Saving and running the GUI from the Layout Editor.

2 Creating a GUI

2-2

Designing the GUI
The GUI used in this example contains an axes that displays either a surface,
mesh, or contour plot of data selected from the pop-up menu. The following
picture shows a sketch that you might use as a starting point for the design.

A panel contains three push buttons that enable you to select the type of plot
you want. The pop-up menu contains three strings — peaks, membrane, and
sinc, which correspond to MATLAB functions. You can select the data to plot
from this menu.

Select Data

peaks

Contour

Mesh

Surf

Axes
Push buttons to select
plot type

Menu for selecting
data

Plot Types
Panel to group push
buttons

Laying Out the GUI

2-3

Laying Out the GUI
This section illustrates how to lay out GUI components (i.e., a panel, axes, and
user interface controls, such as push buttons, pop-up menus, static text, etc.)
in the GUI. We recommend that you create the GUI for yourself, as this is the
best way to learn how to use GUIDE.

The section explains how to

• “View Layout and Code for the Example” on page 2-3

• “Open a New GUI in the Layout Editor” on page 2-4

• “Set the GUI Figure Size” on page 2-6

• “Add the Components” on page 2-7

• “Align the Components” on page 2-9

View Layout and Code for the Example
If you are reading this in the MATLAB Help browser, you can click the
following links to display the GUIDE Layout Editor and the MATLAB Editor
with a completed version of this example. This enables you to see the values of
all component properties and to understand how the components are
assembled to create the GUI. You can also see a complete listing of the code
that is discussed in the following sections.

Note The following links execute MATLAB commands and are designed to
work within the MATLAB Help browser.

• Layout Editor with completed GUI layout

• MATLAB Editor with completed M-file. The M-file contains the code that
controls the GUI.

An Animated Demo of Creating a GUI
The following link displays an animated version of this example.

Show GUIDE demonstration

2 Creating a GUI

2-4

Open a New GUI in the Layout Editor
Open GUIDE by typing guide at the MATLAB prompt. This displays the
Guide Quick Start dialog shown in the following figure.

If GUIDE is already open, you can display a similar dialog, by selecting New
from the File menu. This dialog has no Open Existing GUI tab.

In the Quick Start dialog, select the Blank GUI (default) template. Click OK
to display the blank GUI in the Layout Editor, as shown in the following figure.

Laying Out the GUI

2-5

To display the names of the GUI components in the component palette, select
Preferences from the File menu, check the box next to Show names in
component palette, and click OK. The Layout Editor then appears as shown
in the following figure.

2 Creating a GUI

2-6

Set the GUI Figure Size
Specify the size of the GUI by resizing the grid area in the Layout Editor. Click
on the lower-right corner and resize the grid until it is about 4-by-3 inches.

If you want to set the position or size of the GUI to an exact value, do the
following:

1 Select Property Inspector from the View menu.

2 Select the button next to Units and then select inches from the pop-up
menu

3 Click the + sign next to Position.

4 Type the x and y coordinates of the point where you want the lower left
corner of the GUI to appear, and its width and height, as shown in the
following figure.

5 Reset the Units property to characters.

Click corner to resize

Laying Out the GUI

2-7

Note Setting the Units property to characters gives the GUI a more
consistent appearance across platforms.

Add the Components

1 Add the panel and push buttons to the GUI. Select the following components
from the component palette and drag them into the layout area:

- A panel

- Three push buttons

Select the panel and move it to where it appears in the original sketch. Resize
the panel to approximately 1-by-1.5 inches by selecting it with the mouse,
and then clicking and dragging the lower-left corner. Now, move the three

2 Creating a GUI

2-8

push buttons into the panel. As you move each push button into the panel,
GUIDE highlights the panel to indicate that the panel is the potential parent
of the push button. The following figure shows the highlight.

Note Panels, button groups, and figures can all be parents of component
objects and display this highlight when you move a component into them.

2 Add the remaining components to the GUI.

- A static text

- A pop-up menu

- An axes

Arrange the components as shown in the following figure. Resize the axes
component to approximately 2-by-2.

Laying Out the GUI

2-9

Align the Components
You can use the Alignment Tool to align components with respect to one
another if they have the same parent. For example, to align the three push
buttons:

1 Select all three push buttons by pressing Ctrl and clicking them.

2 Select Align Objects from the Tools menu to display the Alignment Tool.

3 Make the following settings in the Alignment Tool, as shown in the following
figure:

- 20 pixels spacing between push buttons in the vertical direction.

- Left-aligned in the horizontal direction.

4 Click OK.

2 Creating a GUI

2-10

Now align the tops of the axes and the panel. Note that when the panel moves,
its contents move with it.

To learn more about the Layout Editor, see “Using the Layout Editor” on
page 3-9

Setting Properties for GUI Components

2-11

Setting Properties for GUI Components
To set the properties of each GUI component, select the Property Inspector
from the View menu to display the Property Inspector dialog box. When you
select a component in the Layout Editor, the Property Inspector displays that
component’s properties. If no component is selected, the Property Inspector
displays the properties of the GUI figure.

This section tells you how to set these properties:

• “Name Property” on page 2-11

• “Title Property” on page 2-12

• “String Property for Push Buttons and Static Text” on page 2-12

• “String Property for Pop-up Menus” on page 2-12

• “Callback Properties” on page 2-14

• “The Tag Property” on page 2-14

Name Property
The value of a figure’s Name property is the title that displays at the top of the
GUI.

The first time you save or run the GUI, GUIDE sets the value of Name to the
name of the FIG-file. Once the GUI is saved, you can set the value of Name to
the string you want to use as its title. In the field next to Name, type Simple GUI,
as shown in the following figure.

2 Creating a GUI

2-12

Title Property
A panel’s Title property controls the title that appears at the top or bottom of
the panel. Select the panel in the Layout Editor and then scroll down in the
Property Inspector until you come to Title. In the field to the right of Title,
change Panel to Plot Types. Use the TitlePosition property to control the
position of the title.

String Property for Push Buttons and Static Text
You can set the label in some user interface controls, such as push buttons, by
using the String property. For example, to set the label of the top push button,
select the push button in the Layout Editor and then, in the Property Inspector,
scroll down until you come to String. In the field to the right of String, change
Push Button to Surf, as shown in the following figure.

You can view the change by clicking the Layout Editor. Similarly, change the
String property of the middle push button to Mesh, the bottom push button to
Contour, and the Static Text to Select Data.

String Property for Pop-up Menus
A pop-up menu’s String property controls the list of menu items. To set the
pop-up menu items, select the pop-up menu in the Layout Editor. In the
Property Inspector, click the icon next to String. This opens the String
property edit box. Delete Pop-up Menu in the String property edit box, and type
peaks, membrane, and sinc on three separate lines, as shown in the following
figure.

Setting Properties for GUI Components

2-13

When you click on the Layout Editor, the current layout of the GUI appears as
in the following figure.

2 Creating a GUI

2-14

Callback Properties
Components use callbacks to do their work. A callback is a function that
executes when a user performs a specific action such as clicking a push button,
selecting a menu item, or pressing a keyboard key, or when a component is
created or deleted. Each component and menu item has properties that specify
its callbacks. When you create a GUI, you must program the callbacks you need
to control operation of the GUI.

A component can have many callback properties, but the most common one is
the Callback property. The code you provide for the Callback property
performs the primary work of the component. It executes, for example, when a
user presses a push button, moves a slider, or selects a menu item.
“Programming the GUI” on page 2-17 shows you how to program the Callback
property for the push buttons and pop-up menu in this example.

The Tag Property
The Tag property provides a string as a unique identifier for each component.
GUIDE uses this identifier to construct unique callback names for the different
components in the GUI.

Setting Properties for GUI Components

2-15

When you first add a component to a layout, GUIDE sets the value of Tag to a
default string such as pushbutton1. If the component has a Callback property,
GUIDE also sets the value of Callback to the string %automatic. The following
figure shows an example.
-

When you save or run the GUI, GUIDE generates an M-file that includes stubs
for the Callback functions for each component that has one. GUIDE creates a
unique function name for each Callback function in the M-file by prefixing the
value of the Tag property to the string _Callback, for example,
pushbutton1_Callback. GUIDE also changes the value of the Callback
property to a string that is a calling sequence for the callback. For example, if
the name of the GUI M-file is simple_gui, the new value of the Callback
property becomes

 untitled('pushbutton1_Callback',gcbo,[],guidata(gcbo))

...

2 Creating a GUI

2-16

You can redefine the value of Tag to be more descriptive, but the value of each
Tag property must be unique for a given GUI. In this example, change the Tag
property of the pop-up menu to plot_pop-up before you save or run the GUI for
the first time. The following figure shows the new Tag value.

When you save or run the GUI, GUIDE sets the name of the callback
subfunction in the pop-up menu Callback property to plot_pop-up_Callback.
If you later change the Tag, GUIDE updates the Callback property to match
the new Tag — see “Changing a Tag” on page 3-56.

Similarly, change the push button tags to surf_pushbutton, mesh_pushbutton,
and contour_pushbutton.

To learn more, see “Setting Component Properties — The Property Inspector”
on page 3-43.

Set Tag to plot_popup

Programming the GUI

2-17

Programming the GUI
After laying out the GUI and setting component properties, the next step is to
program it. This section explains how to do that. The section covers

• “Creating the GUI M-File” on page 2-17

• “Opening the GUI M-File” on page 2-17

• “Sharing Data Between Callbacks” on page 2-19

• “Adding Code to the Opening Function” on page 2-20

• “Adding Code to the Callbacks” on page 2-22

• “Using the Object Browser to Identify Callbacks” on page 2-24

Creating the GUI M-File
When you first save or run the GUI, GUIDE generates a function M-file that
contains the most commonly used callbacks for each component. It also
contains some initialization code, an opening function callback, and an output
function callback. Each callback is a subfunction that initially consists of a
framework that contains just a function definition. You must add code to the
callbacks to make them work.

You can save a GUI by selecting Save or Save as from the File menu, or by
clicking the Save icon on the toolbar. You can run the GUI by selecting Run
from the Tools menu or by clicking the Run icon on the toolbar.

After GUIDE generates the M-file, it opens the Save GUI as dialog. Type a
name in the File name field. GUIDE assigns the same name to FIG-file and
the M-file. When you click Save, GUIDE saves the M-file and opens it in the
M-file Editor. If you are building the GUI in this example, use the filename
simple_gui.

For more information, see “Understanding the GUI M-File” on page 4-2.

Opening the GUI M-File
In this section you add code to the callbacks for the three push buttons and the
pop-up menu.

Once GUIDE has created the M-file, you can open it in the MATLAB editor by
clicking the M-file Editor icon on the toolbar. In the editor, you can move the

2 Creating a GUI

2-18

cursor to a specific callback by clicking the function icon on the toolbar, then
selecting the callback you want in the pop-up menu that displays.

For example, clicking simple_gui_OpeningFcn moves the cursor to the opening
function. The next topic explains how you can add code to the opening function
to create data for the GUI or perform other tasks.

Click the OpeningFcn
Callback

Programming the GUI

2-19

Sharing Data Between Callbacks
This topic describes the process for sharing data between callbacks in a GUI.
Subsequent topics, “Adding Code to the Opening Function” on page 2-20 and
“Adding Code to the Callbacks” on page 2-22, contain examples.

You can share data between callbacks by storing the data in the MATLAB
handles structure. All components in a GUI share the same handles structure.
It is passed as an input argument to all callbacks generated by GUIDE.

For example, to store data contained in vector X in the handles structure, you

1 Choose a name for the field of the handles structure where you want to store
the data, for example, handles.my_data

2 Add the field to the handles structure and set it equal to X with the following
statement:

handles.my_data = X;

3 Save the handles structure with the guidata function:

guidata(hObject,handles)

Here, hObject is the handle to the component object that executes the callback.
The component’s object handle is passed as the input argument, hObject, to
each of its callbacks that is generated by GUIDE.

2 Creating a GUI

2-20

Note To save any changes that you make to the handles structure, you must
use the command guidata(hObject,handles). It is not sufficient to just set
the value of a handles field.

To retrieve X in another callback, use the command

X = handles.my_data;

You can access the data in the handles structure in any callback because
hObject and handles are input arguments for all the callbacks generated by
GUIDE.

For more detailed information on the handles structure, see “Managing GUI
Data with the Handles Structure” on page 4-26.

Adding Code to the Opening Function

The Opening Function
The opening function is the first callback in every GUI M-file. You can use it to
perform tasks that need to be done before the user has access to the GUI, for
example, to create data or to read data from an external source.The code in the
opening function is executed just before the GUI is made visible to the user, but
after all the components have been created.

In this example, you add code that creates three data sets in the opening
function, using the MATLAB functions peaks, membrane, and sinc.

Note that GUIDE names the opening function with the name of the M-file
prefixed to _OpeningFcn. In this example, the M-file is named simple_gui.m,
so that the opening function is named simple_gui_OpeningFcn.

For more information about the opening function see “Opening Function” on
page 4-4.

Adding the Code
To create data for the GUI to plot, add the following code to the opening
function immediately after the comments following the function declaration.

% --- Executes just before simple_gui is made visible.
function simple_gui_OpeningFcn(hObject, eventdata, handles, varargin)

Programming the GUI

2-21

% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to untitled (see VARARGIN)

% Create the data to plot
handles.peaks=peaks(35);
handles.membrane=membrane;
[x,y] = meshgrid(-8:.5:8);
r = sqrt(x.^2+y.^2) + eps;
sinc = sin(r)./r;
handles.sinc = sinc;
handles.current_data = handles.peaks;
surf(handles.current_data)

The first six executable lines create the data using the MATLAB functions
peaks, membrane and sinc to generate the data.

The next line, handles.current_data = handles.peaks, sets the
current_data field of the handles structure equal to the data for peaks. In the
example GUI, the pop-up menu displays peaks as the initial selection. The
value of handles.current_data changes each time a user selects a different
plot from the pop-up menu — see “Pop-up Menu Callback” on page 2-24.

The last line displays the surf plot for peaks, which appears when the GUI is
first opened.

GUIDE automatically generates two more lines of code in the opening function,
which follow the code that you add:

• handles.output = hObject saves the handle to the GUI for later access by
the output function. While this command is not necessary in this example, it
is useful if you want to return the GUI handle to the command line. For more
information about the output function see “Output Function” on page 4-5.

• guidata(hObject,handles) saves the handles structure.

Add this code Autogenerated code

2 Creating a GUI

2-22

The following figure shows how the GUI now looks when it first displays.

Adding Code to the Callbacks
When the GUI is completed and running, and a user clicks a user interface
control, such as a push button, MATLAB executes the callback specified by the
component’s Callback property. In the example, the name of the Surf push
button callback is surf_pushbutton_Callback. For information about the
naming of callbacks see “The Tag Property” on page 2-14.

This section describes how to add the code for the callbacks.

Push Button Callbacks
Each of the push buttons creates a different type of plot using the data specified
by the current selection in the pop-up menu. Their callbacks get data from the
handles structure and then plot it. To add code to the surf push button
callback, click surf_pushbutton_Callback in the callback pop-up menu.

Programming the GUI

2-23

Add the code after the comments following the function definition, as shown
below:

Surf push button callback:

% --- Executes on button press in surf_pushbutton.
function surf_pushbutton_Callback(hObject, eventdata, handles)
% hObject handle to surf_pushbutton (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Display surf plot of the currently selected data
surf(handles.current_data);

You can add similar code to the Mesh and Contour push button callbacks after
the autogenerated code.

Add this code to the Mesh push button callback:

% Display mesh plot of the currently selected data
mesh(handles.current_data);

Add this code Autogenerated code

2 Creating a GUI

2-24

Add this code to the Contour push button callback:

% Display contour plot of the currently selected data
contour(handles.current_data);

Pop-up Menu Callback
The pop-up menu enables users to select the data to plot. Every time a user
selects one of the three plots, the pop-up menu callback reads the pop-up menu
Value property to determine what item is currently displayed and sets
handles.current_data accordingly. Add the following code to the
plot_popup_Callback after the comments following the function definition.

% --- Executes on selection change in data_popup.
function plot_popup_Callback(hObject, eventdata, handles)
% hObject handle to surf_pushbutton (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

val = get(hObject,'Value');
str = get(hObject, 'String');
switch str{val};
case 'peaks' % User selects peaks
 handles.current_data = handles.peaks;
case 'membrane' % User selects membrane
 handles.current_data = handles.membrane;
case 'sinc' % User selects sinc
 handles.current_data = handles.sinc;
end
guidata(hObject,handles)

Using the Object Browser to Identify Callbacks
In this example, it is easy to keep track of the GUI component that corresponds
to each callback. But in a more complicated GUI, keeping track of callbacks can
be more difficult. To identify the component corresponding to a callback, select
Object Browser from the View menu in the Layout Editor or by clicking the
Object Browser icon on the toolbar. This displays the Object Browser as
shown in the following figure. The Object Browser lists the tag and string

Add this code Autogenerated code

Programming the GUI

2-25

properties of each component of the GUI. Selecting the name of a component in
the list also selects the component in the Layout Editor. For example, in the
following figure, the uicontrol (mesh_pushbutton Mesh) is selected in the
Object Browser. The tag mesh_pushbutton corresponds to the callback
mesh_pushbutton_Callback. Note that the corresponding component, the
mesh push button, is also selected in the Layout Editor.

To learn more about programming GUIs in GUIDE, see Chapter 4,
“Programming GUIs.”

2 Creating a GUI

2-26

Saving and Running a GUI
After writing the callbacks, you can run the GUI by selecting Run from the
Tools menu or clicking the Run button on the GUIDE toolbar. If you have not
saved the GUI recently, GUIDE displays the following dialog box.

If this happens, click Yes and then save the GUI files to a writable directory.

Note GUI FIG-files that are created or modified with MATLAB 7.0 or a later
MATLAB version, are not automatically compatible with Version 6.5 and
earlier versions. To make a FIG-file, which is a kind of MAT-file, backward
compatible, you must check the MAT-file Ensure backward compatibility
(-v6) preference in the Preferences dialog box under General -> MAT-Files.

Note that uibuttongoups and uipanels are introduced in MATLAB 7.0, and
you should not use them in GUIs that you expect to run in earlier MATLAB
versions.

If the directory where you save the GUI is not on the MATLAB path, GUIDE
opens the following dialog, giving you the option of changing the current
working directory to the directory containing the GUI files, or adding that
directory to the MATLAB path.

Saving and Running a GUI

2-27

Click OK to change the current working directory. GUIDE then opens the GUI
as shown in the following figure.

Note The name of the FIG-file saved by the Layout Editor and the generated
M-file must match. See “Renaming GUI Files” if you want to rename files
after first activating the GUI.

Next, select membrane in the pop-up menu and click the Contour push
button. The GUI should look like the following figure.

2 Creating a GUI

2-28

Try experimenting with this GUI by adding another data set in the opening
function, and a push button that displays a plot of the data set. Make sure to
add the name of the new data set to the pop-up menu as well.

For more examples of creating GUIs with GUIDE, see the following sections:

• “GUI Applications” on page 5-1

• “Using GUIDE Templates” on page 3-2

3
Laying Out GUIs and
Setting Properties

Using GUIDE Templates (p. 3-2) Overview of GUIDE templates — simple GUIs that you
modify to create your own GUIs.

Using the Layout Editor (p. 3-9) Add and arrange objects in the figure window.

Selecting GUI Options (p. 3-28) Set the options for your GUI.

Aligning Components in the Layout
Editor (p. 3-37)

Align objects with respect to each other.

Setting Component Properties — The
Property Inspector (p. 3-43)

Inspect and set the property values of the GUI
components.

Viewing the Object Hierarchy — The
Object Browser (p. 3-59)

Observe a hierarchical list of the Handle Graphics® objects
in the current MATLAB session.

Creating Menus — The Menu Editor
(p. 3-60)

Create menus for the window menu bar and context
menus for any component in your layout.

Setting the Tab Order — The Tab
Order Editor (p. 3-72)

Change the order in which GUI components are selected
by tabbing.

3 Laying Out GUIs and Setting Properties

3-2

Using GUIDE Templates
GUIDE provides several templates, which are simple examples that you can
modify to create your own GUIs. The templates are fully functional GUIs: their
callbacks are already programmed. You can view the code for these callbacks
to see how they work, and then modify the callbacks for your own purposes.

You can access the templates in two ways:

• Start GUIDE by entering guide at the MATLAB prompt.

• If GUIDE is already open, select New from the File menu in the Layout
Editor.

Starting GUIDE displays the GUIDE Quick Start dialog as shown in the
following figure.

The Quick Start dialog gives you two options:

• Select the Open Existing GUI tab and open a GUI that you have already
created.

• Select the Create New GUI tab and open one of the templates.

The preceding figure shows the Quick Start dialog with the Create New GUI
tab selected. Selecting a template in the left pane displays a preview in the

Using GUIDE Templates

3-3

right pane. Clicking OK opens the GUI template in the Layout Editor. If you
select Save on startup as and type in name in the field to the right, GUIDE
saves the GUI before opening it in the Layout Editor. If you choose not to save
the GUI at this point, GUIDE prompts you to save it the first time you run the
GUI.

GUIDE provides four templates, which are described in the following sections:

• “Blank GUI” on page 3-3

• “GUI with Uicontrols” on page 3-4

• “GUI with Axes and Menu” on page 3-5

• “Modal Question Dialog” on page 3-6

To view the M-file for any of these templates, open the template in the Layout
Editor and click the M-file Editor icon on the toolbar.

Blank GUI
The blank GUI template displayed in the Layout Editor is shown in the
following figure.

3 Laying Out GUIs and Setting Properties

3-4

Select the blank GUI if the other templates are not suitable starting points for
the GUI you are creating, or if you prefer to start with an empty GUI.

GUI with Uicontrols
The following figure shows the GUI with Uicontrols template displayed in the
Layout Editor.

When you run the GUI by clicking the Run icon , the GUI appears as shown
in the following figure.

Using GUIDE Templates

3-5

When a user enters values for the density and volume of an object, and clicks
the Calculate button, the GUI calculates the mass of the object and displays
the result next to Mass(D*V).

GUI with Axes and Menu
The GUI with axes and menu template is shown in the following figure.

When you run the GUI by clicking the Run icon on the toolbar, the GUI
displays a plot of five random numbers generated by the MATLAB rand(5)
command, as shown in the following figure.

3 Laying Out GUIs and Setting Properties

3-6

You can select other plots in the pop-up menu. Clicking the Update button
displays the currently selected plot on the axes.

The GUI also has a File menu with three items:

• Selecting Open displays a dialog from which you can open files on your
computer.

• Selecting Print executes the printdlg command, which opens the Print
dialog:
printdlg(handles.figure1)

Note that handles.figure1 contains the current plot. Clicking Yes in the
Print dialog prints the plot.

• Selecting Close closes the GUI.

Modal Question Dialog
The modal question dialog template displayed in the Layout Editor is shown in
the following figure.

Using GUIDE Templates

3-7

Running the GUI displays the dialog shown in the following figure:

The GUI returns the text string Yes or No, depending on which button you
press. The GUI is blocking, which means that the current M-file stops
executing until the GUI restores execution. You can make a GUI blocking by
adding the following command to the opening function:

uiwait(handles.figure1);

3 Laying Out GUIs and Setting Properties

3-8

To restore access to other MATLAB windows once a button is clicked, add the
following command to callbacks for both the Yes and No push buttons:

uiresume(handles.figure1);

The GUI is also modal, which means that the user cannot interact with other
MATLAB windows until clicking one of the buttons. See “Using Modal Figure
Windows” on page 4-38 for more information on making a GUI modal.

Select this template if you want your GUI to return a string or to be modal.

See “Example: Using the Modal Dialog to Confirm an Operation” on page 4-40
for an example of using this template with another GUI.

Using the Layout Editor

3-9

Using the Layout Editor
The Layout Editor enables you to select GUI components from the component
palette, at the left side of Layout Editor, and arrange them in the layout area,
to the right. When you click the run icon , the functioning GUI appears
outside the Layout Editor.

This section covers the following topics:

• “Starting the Layout Editor” on page 3-9

• “Selecting Components from the Component Palette” on page 3-10

• “Adding Components to the Layout Area” on page 3-13

• “Working with Components in the Layout Area” on page 3-16

• “Running the GUI” on page 3-19

• “Saving the Layout” on page 3-21

• “Renaming GUI Files” on page 3-21

• “Displaying the GUI” on page 3-22

• “Layout Editor Preferences” on page 3-22

• “Layout Editor Context Menus” on page 3-26

Starting the Layout Editor
To start the Layout Editor, first open the GUIDE Quick Start dialog by
entering guide at the MATLAB prompt. Click OK in the dialog to open a blank
GUI template in the Layout Editor, as shown in the following picture.

3 Laying Out GUIs and Setting Properties

3-10

If you want to load an existing GUI for editing, type

guide filename.fig

or use Open from the File menu on the Layout Editor.

Selecting Components from the Component Palette
The component palette at the left of the Layout Editor contains the components
that you can add to your GUI. This section describes these components.

Component
Palette

Alignment Tool Menu Editor Property Inspector

Run

Layout Area

Figure Resize Tab

Undo

Redo

Object BrowserM-file EditorTab Order Editor

Using the Layout Editor

3-11

After selecting the components for your GUI and placing them in the layout
area, you need to set their properties and program their callbacks. The
following sections describe how to do this:

• “Setting Component Properties — The Property Inspector” on page 3-43

• “Programming Callbacks for GUI Components” on page 4-8

Push Button
Push buttons generate an action when clicked. For example, an OK button
might close a dialog box and apply settings. When you click a push button, it
appears depressed; when you release the mouse, the button appears raised and
its callback executes.

Toggle Button
Toggle buttons generate an action and indicate whether they are turned on or
off. When you click a toggle button, it appears depressed, showing that it is on.
When you release the mouse button, the toggle button’s callback executes.
However, unlike a push button, the toggle button remains depressed until you
click the toggle button a second time. When you do so, the button returns to the
raised state, showing that it is off, and again executes its callback.

Radio Button
Radio buttons are similar to check boxes, but are typically mutually exclusive
within a group of related radio buttons. That is, you can select only one button
at any given time. To activate a radio button, click the mouse button on the
object. The display indicates the state of the button.

Check Box
Check boxes generate an action when checked and indicate their state as
checked or not checked. Check boxes are useful when providing the user with
a number of independent choices that set a mode, for example, displaying a
toolbar or generating callback function prototypes.

Edit Text
Edit text controls are fields that enable users to enter or modify text strings.
Use edit text when you want text as input. The String property contains the
text entered by the user. The callback executes when you press Enter for a

3 Laying Out GUIs and Setting Properties

3-12

single-line edit text, Ctl+Enter for a multi-line edit text, or the focus moves
away.

Static Text
Static text controls display lines of text. Static text is typically used to label
other controls, provide directions to the user, or indicate values associated with
a slider. Users cannot change static text interactively and there is no way to
invoke the callback routine associated with it.

Slider
Sliders accept numeric input within a specific range by enabling the user to
move a sliding bar, which is called a slider or thumb. Users move the slider by
pressing the mouse button and dragging the slider, by clicking in the trough,
or by clicking an arrow. The location of the slider indicates a percentage of the
specified range.

List Box
List boxes display a list of items and enable users to select one or more items.

Pop-Up Menu
Pop-up menus open to display a list of choices when users click the arrow.

Axes
Axes enable your GUI to display graphics (e.g., graphs and images). Like all
graphics objects, axes have properties that you can set to control many aspects
of its behavior and appearance. See “Axes Properties” in the MATLAB
Graphics documentation for more information on axes objects.

Panel
Panels group GUI components. Panels can make a user interface easier to
understand by visually grouping related controls. A panel can have a title and
various borders.

Panel children can be panels and button groups as well as axes and user
interface controls. The position of each component within a panel is interpreted
relative to the panel. If you move the panel, its children move with it and
maintain their positions on the panel.

Using the Layout Editor

3-13

Button Group
Button groups are like panels but can be used to manage exclusive selection
behavior for radio buttons and toggle buttons.

For radio buttons and toggle buttons that are managed by a button group, you
must include the code to control them in the button group’s
SelectionChangeFcn callback function, not in the individual uicontrol
Callback functions. A button group overwrites the Callback properties of
radio buttons and toggle buttons that it manages.

ActiveX Component
ActiveX components enable you to display ActiveX controls in your GUI. See
“Adding an ActiveX Control to a GUI” on page 4-17 for an example.

Note Only figures can have child ActiveX components. Panels and button
groups cannot.

ActiveX components are available only on the Microsoft Windows platform.

Adding Components to the Layout Area
You can place a component in the layout area in one of these ways:

• Drag the component from the component palette into the layout area and
drop it.

• Select the component in the component palette. The cursor changes to a
cross.

- Place the cursor in the layout area where you want the upper-left corner
of the component to be and click.

- Place the cursor in the layout area where you want the upper-left corner
of the component to be, then set the size of the control by clicking and
dragging the cursor to the lower-left corner before releasing the mouse
button.

This is an example of a GUI in the Layout Editor. Note that components in the
Layout Editor are not active. “Running the GUI” on page 3-19describes how to
generate a functioning GUI.

3 Laying Out GUIs and Setting Properties

3-14

Adding a Component to a Panel or Button Group
To add a component to a panel or button group, select the component in the
component palette then move the cursor over the desired panel or button
group. The position of the cursor determines the component’s parent. Notice
that GUIDE highlights the potential parent as shown in the following figure.
The highlight indicates that if you drop the component or click the cursor, the
component will be a child of the highlighted panel, button group, or figure.

Using the Layout Editor

3-15

If the component is not entirely contained in the panel or button group, it
appears to be clipped in the layout editor.

When you run the GUI, the entire component is displayed and straddles the
panel or button group border. The component is nevertheless a child of the
panel and behaves accordingly.

Highlight

Cursor

3 Laying Out GUIs and Setting Properties

3-16

You can use the Object Browser to determine the child objects of a panel or
button group. “Viewing the Object Hierarchy — The Object Browser” on
page 3-59 tells you how.

Adding an ActiveX Control
When you drag an ActiveX component from the component palette into the
layout area, GUIDE opens a dialog that lists all the registered ActiveX controls
on your system. When you select an ActiveX control and click Create, the
control appears as a small box in the Layout Editor.

Note The available ActiveX controls vary on different systems. An ActiveX
control can be the child of a figure only. It cannot be the child of a panel or
button group.

Working with Components in the Layout Area
This topic provides basic information about selecting, moving, copying, and
deleting components in the layout area.

• “Selecting Components” on page 3-17

• “Moving Components” on page 3-17

• “Copying, Cutting, and Clearing Components” on page 3-18

• “Pasting and Duplicating Components” on page 3-18

Other topics that may be of interest are

• “Aligning Components in the Layout Editor” on page 3-37

Using the Layout Editor

3-17

• “Front-to-Back Positioning” on page 3-41

• “Setting the Tab Order — The Tab Order Editor” on page 3-72

Selecting Components
You can select components in the layout area in the following ways.

• Click a single component to select it.

• Press Ctrl+A to select all child objects of the figure. This does not select
components that are child objects of panels or button groups.

• Click and drag the cursor to create a rectangle that encloses the components
you want to select. If the rectangle encloses a panel or button group, only the
panel or button group is selected, not its children. If the rectangle encloses
part of a panel or button group, only the components within the rectangle
that are child objects of the panel or button group are selected.

• Select multiple components using the Shift and Ctrl keys.

Note You can select multiple components only if they have the same parent.
Use the Object Browser to determine the child objects of a figure, panel, or
button group. “Viewing the Object Hierarchy — The Object Browser” on
page 3-59 tells you how.

Moving Components
Select one or more components that you want to move, then do one of the
following:

• Drag the selected components to the desired position and drop them. You can
move components from the figure into a panel or button group. You can move
components from a panel or button group into the figure or into another
panel or button group.

The position of the cursor when you drop the components determines the
parent of all the selected components. Look for the highlight as described in
“Adding a Component to a Panel or Button Group” on page 3-14.

In some cases, one or more of the selected components may lie outside its
parent’s boundary. Such a component is not visible in the Layout Editor but

3 Laying Out GUIs and Setting Properties

3-18

can be selected by dragging a rectangle that encloses it. It is visible, however,
in the active GUI.

• Press and hold the arrow keys until the components have moved to the
desired position. Note that the components remain children of the figure,
panel, or button group from which you move them, even if they move outside
its boundaries.

Copying, Cutting, and Clearing Components
Use standard menu and pop-up menu commands, toolbar icons, keyboard keys,
and shortcut keys to copy, cut, and clear components.

Copying. Copying places a copy of the selected components on the clipboard. A
copy of a panel or button group includes its children.

Cutting. Cutting places a copy of the selected components on the clipboard and
deletes them from the layout area. If you cut a panel or button group, you also
cut all its children.

Clearing. Clearing deletes the selected components from the layout area. It does
not place a copy of the components on the clipboard.

Pasting and Duplicating Components

Pasting. Use standard menu and pop-up menu commands, toolbar icons, and
short-cut keys to paste components. GUIDE pastes the contents of the
clipboard to the location of the last mouse click. It positions the upper left
corner of the contents at the mouse click

Consecutive pastes place each copy to the lower right of the last one.

Duplicating. Select one or more components that you want to duplicate, then do
one of the following:

• Copy and paste the selected components as described above.

• Select Duplicate from the Edit menu or the pop-up menu. Duplicate places
the copy to the lower right of the original.

• Right-click and drag the component to the desired location. The position of
the cursor when you drop the components determines the parent of all the

Using the Layout Editor

3-19

selected components. Look for the highlight as described in “Adding a
Component to a Panel or Button Group” on page 3-14.

Running the GUI
To run the GUI you design in the Layout Editor, select Run in the Tools menu
or click the Run icon on the toolbar.

When you run a GUI, the following occurs:

• GUIDE first prompts you to save both the M-file and FIG-file with the dialog
shown in the following figure.

• If you click Yes and you have not saved the GUI previously, GUIDE opens a
Save As dialog box so you can select a name for both the FIG-file and the
M-file GUIDE generates.

• When you click Save in the Save As dialog box, GUIDE saves the FIG-file
with the same name as the M-file, but with a .fig extension.

• If an M-file with the same name exists, GUIDE prompts you to replace or
append to the existing code in the M-file.

3 Laying Out GUIs and Setting Properties

3-20

Replace — writes over the existing file.

Append — inserts new callbacks for components added since the last save
and make changes to the code based on change made from the Application
Options dialog.

• If the directory in which you saved the GUI is not on the MATLAB path,
GUIDE opens a dialog box with three options, as shown in the following
figure.

Change MATLAB current directory — changes the MATLAB current
directory to the directory where you saved the GUI.

Add directory to the top of the MATLAB path — adds the directory where
you saved the GUI to the top of the MATLAB path.

Add directory to the bottom of the MATLAB path — adds the directory
where you saved the GUI to the bottom of the MATLAB path.

• MATLAB executes the M-file to display the GUI. The options specified in the
Application Options dialog are functional in the GUI.

Using the Layout Editor

3-21

Note GUIDE automatically saves both the M-file and the FIG-file when you
run the GUI.

Saving the Layout
Once you have created the GUI layout, you can save it as a FIG-file (a binary
file that saves the contents of a figure) using the Save or Save As item from the
File menu. GUIDE generates the M-file automatically when you save or run
the figure.

Note GUI FIG-files that are created or modified with MATLAB 7.0 or a later
MATLAB version, are not automatically compatible with Version 6.5 and
earlier versions. To make a FIG-file, a kind of MAT-file, backward compatible,
you must check the MAT-file Ensure backward compatibility (-v6)
preference in the Preferences dialog box under General -> MAT-Files.

Renaming GUI Files
Use Save As from the Layout Editor File menu to rename the GUI FIG-file.
GUIDE renames the FIG-file and the GUI M-file and also resets the callback
properties to properly execute the callbacks.

Exporting a GUI to a Single M-File
You can export a GUI from GUIDE to a single M-file that does not require a
FIG-file. This enables you to

• View the layout code for the GUI

• Run the GUI in MATLAB 6.1

Note If the GUI contains a panel or a button group, you will not be able to
run it in MATLAB versions earlier than 7.0.

3 Laying Out GUIs and Setting Properties

3-22

To export your GUI, do the following steps:

1 Save the GUI in GUIDE, if you have not already done so.

2 Select Export from the File menu. If you changed the GUI since you last
saved it, this opens a dialog informing you that exporting will save changes
to your figure and M-file, and asking if you want to continue.

3 Click OK in the confirmation dialog.

4 Save the exported M-file in the Save As dialog. By default, GUIDE gives the
exported M-file the name of the GUI M-file with _export appended.

Note If you save a large data set in the GUI figure or in a uicontrol, GUIDE
might also export a MAT-file containing the data in addition to exporting an
M-file. For example, the data could be saved in a figure or uicontrol UserData
property, or in a figure Colormap property. The name of the MAT-file is the
same as the exported M-file except for the extension .mat.

Displaying the GUI
You can display the GUI figure using the openfig, open, or hgload command.
These commands load FIG-files into the MATLAB workspace. Note that the
displayed GUI is not active.

Generally, however, you launch your GUI by executing the M-file that GUIDE
generates. This M-file contains the commands to load the GUI and provides a
framework for the component callbacks. See “Configuring the GUI M-File” on
page 3-28 for more information.

Layout Editor Preferences
You can set preferences for the Layout Editor by selecting Preferences from
the File menu.

Using the Layout Editor

3-23

The following topics describe the preferences in this dialog:

• “Show Toolbar” on page 3-23

• “Show Names in Component Palette” on page 3-24

• “Show File Extension in Window Title” on page 3-24

• “Show File Path in Window Title” on page 3-25

• “Show Save Confirmation on Activate” on page 3-25

• “Show Save Confirmation on Export” on page 3-25

• “Add Comments for Newly Generated Callback Functions” on page 3-25

This topic describes a preference related to compatibility with MATLAB
Version 6.5 and earlier.

• “Ensure Backward Compatibility (-v6)” on page 3-26

Show Toolbar
Displays the following toolbar in the Layout Editor window.

3 Laying Out GUIs and Setting Properties

3-24

Show Names in Component Palette
Displays both icons and names in the component palette. When unchecked,
the icons alone are displayed in a two-column array.

Show File Extension in Window Title
Displays the filename with its file extension in the Layout Editor window title.
If unchecked, only the filename is displayed.

Alignment Tool

Menu Editor

Property Inspector
Run

Undo

Redo
Object Browser

M-file Editor

Tab Order Editor

Using the Layout Editor

3-25

Show File Path in Window Title
Displays the full file path in the Layout Editor window title. If unchecked, the
file path is not displayed.

Show Save Confirmation on Activate
When you activate a GUI by clicking the Run button , a dialog box informs
you of the impending save and lets you choose whether or not you want to
continue.

Show Save Confirmation on Export
When you select Export from the File menu, a dialog box informs you of the
impending save and lets you choose whether or not you want to continue.

Add Comments for Newly Generated Callback Functions
When this preference is checked, GUIDE includes the comment lines shown in
the following example to all callbacks that are added to the M-file. Some
callbacks are added automatically because their associated components are
part of the original GUDE template that you chose. Other commonly used
callbacks are added automatically when you add components. You can also add

3 Laying Out GUIs and Setting Properties

3-26

callbacks explicitly by selecting them from View Callbacks on the View menu
or on the component’s context menu.

% --- Executes during object deletion, before destroying properties.

function figure1_DeleteFcn(hObject, eventdata, handles)

% hObject handle to figure1 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

If this preference is unchecked, GUIDE includes comments only for callbacks
that are automatically included to support the original GUIDE template. No
comments are included for any other callbacks that are added to the M-file.

Ensure Backward Compatibility (-v6)
GUI FIG-files that are created or modified with MATLAB 7.0 or a later
MATLAB version, are not automatically compatible with Version 6.5 and
earlier versions. To make a FIG-file, a kind of MAT-file, backward compatible,
you must check the MAT-file Ensure backward compatibility (-v6)
preference in the Preferences dialog box under General -> MAT-Files.

Layout Editor Context Menus
When working in the Layout Editor, you can select an object with the left
mouse button and then click the right button to display a context menu.

Like the View menu in the Layout Editor, these context menus enable you to
add a callback subfunction to your GUI M-file for any of the object properties
that define callback routines. See “Callback Properties” on page 3-54 for more
information.

Figure Context Menus
The following picture shows the context menu associated with a figure object.
Note that all properties that define callback routines for figures are listed in
the submenu.

Using the Layout Editor

3-27

Component Context Menus
The following picture shows the context menu associated with user interface
control components, as well as with axes, panels, and button groups. The
callback properties listed in the View Callbacks submenu differ for different
components.

3 Laying Out GUIs and Setting Properties

3-28

Selecting GUI Options
After opening a new GUI template in the Layout Editor, but before saving the
GUI, you can configure the GUI using the GUI Options dialog. Access the
dialog by selecting GUI Options from the Layout Editor Tools menu.

Configuring the GUI M-File
The GUI Options dialog enables you to select whether you want GUIDE to
generate only a FIG-file for your layout or both a FIG-file and an M-file. You
can also select a number of different behaviors for your GUI.

The following sections describe the options in this dialog:

• “Resize Behavior” on page 3-29

• “Command-Line Accessibility” on page 3-30

• “Generate FIG-File and M-File” on page 3-32

• “Generate Callback Function Prototypes” on page 3-33

• “GUI Allows Only One Instance to Run (Singleton)” on page 3-35

• “Using the System Background Colors” on page 3-35

• “Generate FIG-File Only” on page 3-36

Selecting GUI Options

3-29

Resize Behavior
You can control whether users can resize the figure window containing your
GUI and how MATLAB handles resizing. GUIDE provides three options:

• Non-resizable — Users cannot change the window size (default).

• Proportional — MATLAB automatically rescales the components in the
GUI in proportion to the new figure window size.

• Other (Use ResizeFcn) — Program the GUI to behave in a certain way when
users resize the figure window.

The first two approaches simply set properties appropriately and require no
other action. Other (Use ResizeFcn) requires you to write a callback routine
that recalculates sizes and positions of the components based on the new figure
size. The following sections discuss each approach.

Making Your GUI Nonresizable
Certain types of GUIs are typically nonresizable. Warning and simple question
dialog boxes, particularly modal windows, are usually not resizable. After a
simple interaction, users dismiss these GUIs so changing their size is not
necessary.

Property Settings. GUIDE sets the following properties to create nonresizable
GUIs:

• Units properties of the figure, axes, user interface controls, panels, and
button groups are set to characters (the Layout Editor default) so the GUI
displays at the correct size on different computers.

• Resize figure property is set to off.

• ResizeFcn figure property is left unset.

Allowing Proportional GUI Resizing
Use this approach if you want to allow users to resize the GUI and are satisfied
with a behavior that simply scales each component’s size and relative position
in proportion to the new figure size. Note that the font size of component labels
does not resize and, if the size is reduced enough, these labels may become
unreadable. This approach works well with simple GUI tools and dialog boxes
that apply settings without closing.

3 Laying Out GUIs and Setting Properties

3-30

Property Settings. GUIDE sets the following properties to create proportional
resizing GUIs:

• Units properties of the axes, user interface controls, panels, and button
groups are set to normalized so that these components resize and reposition
as the figure window changes size.

• Units property of the figure is set to characters so the GUI displays at the
correct size at run-time, based on any changes in font size.

• Resize figure property set to on (the default).

• ResizeFcn figure property is left unset.

User-Specified Resize Operation
You can create GUIs that accommodate resizing, while at the same time
maintain the appearance and usability of your original design by programming
the figure ResizeFcn callback routine. This callback routine allows you to
recalculate the size and position of each component based on the new figure
size.

This approach to handling figure resizing is used most typically in GUI-based
applications that require user interaction on an ongoing basis. Such an
application might contain axes for displaying data and various components
whose position and size are critical to the successful use of the interface.

Property Settings. GUIDE sets the following properties to implement this style of
GUI:

• Units properties of the figure, axes, user interface controls, panels, and
button groups are set to characters so the GUI displays at the correct size
at run-time.

• Resize figure property is set to on (the default).

• ResizeFcn figure property requires a callback routine to handle resizing.

See “The Address Book Resize Function” on page 5-43 for an example of a
user-written resize function.

Command-Line Accessibility
You can restrict access to the GUI figure handle from the command line with
the Command-line accessibility options. This prevents users from
inadvertently changing the appearance of the GUI by entering commands,

Selecting GUI Options

3-31

such as plot, that alter the current figure. With the default option, which is
Callback (GUI becomes Current Figure within Callbacks), the GUI can
become the MATLAB current figure, by the command gcf, only while a
callback is executing.

There may be occasions when you want the GUI figure handle to be accessible
from the command line. For example, you might want the GUI to display plots
created at the command line. In this case, you should select On (GUI may
become Current Figure from Command Line).

Access Options
There are four options for Command-line accessibility:

• Callback (GUI becomes Current Figure within Callbacks)

• Off (GUI never becomes Current Figure)

• On (GUI may become Current Figure from Command Line)

• Other (Use settings from Property Inspector)

The following table summarizes how the four Command-line accessibility
options configure HandleVisibility and IntegerHandle in the Property
Inspector (see Figure Properties That Control Access):

Figure Properties That Control Access
There are two figure properties that control command-line accessibility of the
figure:

• HandleVisibility — Determines whether the figure’s handle is visible to
commands that attempt to access the current figure.

• IntegerHandle — Determines if a figure’s handle is an integer or a
floating-point value.

Option Handle Visibility Integer Handle

Callback Callback off

Off off off

On on on

Other user specifies user specifies

3 Laying Out GUIs and Setting Properties

3-32

HandleVisibility — Callback. Setting HandleVisibility to callback causes
handles to be visible from within callback routines or functions invoked by
callback routines, but not from within functions invoked from the command
line. This provides a means to protect GUIs from command-line users, while
allowing callback routines to have complete access to object handles. You
should use this option if your GUI contains axes.

HandleVisibility — Off. Setting the HandleVisibility property to off removes
the handle of the figure from the list of root object children so it will not become
the current figure (which is the target for graphics output). The handle remains
valid, however, so a command that specifies the handle explicitly still works
(such as close(1)). However, you cannot use commands that operate only on
the current figure or axes. These commands include xlabel, ylabel, zlabel,
title, gca, gcf, and findobj.

HandleVisibility — On. Handles are always visible when HandleVisibility is on.

IntegerHandle. Setting the IntegerHandle property to off causes MATLAB to
assign nonreusable real-number handles (e.g., 67.0001221...) instead of
integers. This greatly reduces the likelihood of someone accidently performing
an operation on the figure.

Using findobj
When you set the Command-line accessibility to off, the handle of the GUI
figure is hidden. This means you cannot use findobj to locate the handles of
the uicontrols in the GUI. As an alternative, the GUI M-file creates an object
handle structure that contains the handles of each uicontrol in the GUI and
passes this structure to subfunctions.

Generate FIG-File and M-File
Select Generate FIG-file and M-file in the GUI Options dialog if you want
GUIDE to create both the FIG-file and the GUI M-file (this is the default). Once
you have selected this option, you can select any of the following items in the
frame to configure the M-file:

• Generate callback function prototypes

• Application allows only one instance to run (singleton)

• Use system color scheme for background

Selecting GUI Options

3-33

Generate Callback Function Prototypes
When you select Generate callback function prototypes in the GUI Options
dialog, GUIDE adds the most commonly used subfunctions to the GUI M-file
for any component you add to the GUI. You must then write the code for the
callback in this subfunction.

GUIDE also adds a subfunction whenever you edit a callback routine from the
Layout Editor’s right-click context menu and when you add menus to the GUI
using the Menu Editor.

Naming Callback Subfunctions
When you add a component to your GUI layout, GUIDE assigns a value to its
Tag property, which is then used to generate the name of the callback.

For example, the first push button you add to the layout is tagged pushbutton1.
When generating the M-file, GUIDE adds a callback subfunction called
pushbutton1_Callback. If you define a ButtonDownFcn for the same push
button, GUIDE names its subfunction pushbutton1_ButtonDownFcn.

Callback Function Syntax
The callback function syntax is of the form

function objectTag_Callback(hObject, eventdata, handles)

The arguments are listed in the following table.

For example, if you create a layout having a push button whose Tag property is
set to pushbutton1, then GUIDE generates the following subfunction header
in the GUI M-file.

Argument Description

hObject The handle of the object whose callback is executing.

eventdata Empty — reserved for future use.

handles A structure containing the handles of all components in the
GUI whose fieldnames are defined by the object’s Tag
property. Can also be used to pass data to other callback
functions or the command line.

3 Laying Out GUIs and Setting Properties

3-34

function pushbutton1_Callback(hObject, eventdata, handles)

Assigning a Callback Property String
When you first add a component to your GUI layout, its Callback property is
set to the string %automatic. This string signals GUIDE to replace it with one
that calls the appropriate callback subfunction in the GUI M-file when you
save or run the GUI. For example, GUIDE sets the Callback property for
pushbutton1 uicontrol to

my_gui('pushbutton1_Callback',gcbo,[],guidata(gcbo))

where

• my_gui is the name of the GUI M-file.

• pushbutton1 is the value of the component’s Tag property.

• pushbutton1_Callback is the name of the callback routine subfunction
defined in my_gui.

• gcbo is a command that returns the handle of the callback object (i.e.,
pushbutton1).

• [] is a place holder for the currently unused eventdata argument.

• guidata(gcbo) returns the handles structure.

See “Callback Function Syntax” on page 3-33 for more information on callback
function arguments and “Changing Tag and Callback Properties” on page 3-56
for more information on how to change the names used by GUIDE.

Adding Callbacks to the M-file
If you want GUIDE to include other callbacks in the GUI M-file and provide
names for them, you can do one of the following:

• In the Property Inspector, set the value of the callback property, e.g.,
KeyPressFcn, to the string %automatic. GUIDE adds the callback to the
M-file the next time you save the GUI.

• In the View menu, select View Callbacks. Then select the desired callback,
e.g., KeyPressFcn. GUIDE adds the callback to the M-file, opens the M-file
if it is not already open, and scrolls to the first line of the new callback.

Selecting GUI Options

3-35

GUI Allows Only One Instance to Run (Singleton)
This option allows you to select between two behaviors for the GUI figure:

• Allow MATLAB to display only one instance of the GUI at a time.

• Allow MATLAB to display multiple instances of the GUI.

If you allow only one instance, MATLAB reuses the existing GUI figure
whenever the command to run the GUI is issued. If a GUI already exists,
MATLAB brings it to the foreground rather than creating a new figure.

If you clear this option, MATLAB creates a new GUI figure whenever you issue
the command to run the GUI.

Using the System Background Colors
The color used for GUI components varies on different computer systems. This
option enables you to make the figure background color the same as the default
uicontrol background color, which is system dependent.

If you select Use system color scheme for background (the default), GUIDE
changes the figure background color to match the color of the GUI components.

The following figures illustrate the results with and without system color
matching.

3 Laying Out GUIs and Setting Properties

3-36

Generate FIG-File Only
Select Generate FIG-file only in the GUI Options dialog if you do not want
GUIDE to generate the M-file. When you save the GUI from the Layout Editor,
GUIDE creates a FIG-file, which you can redisplay using the open command.

When you select this option, you must set the Callback property of each
component in your GUI to a string that MATLAB can evaluate and perform the
desired action. This string can be an expression or the name of an M-file.

Select this option if you want to use a completely different programming style
than that provided by the GUI M-file.

With system color matchingWithout system color matching

Aligning Components in the Layout Editor

3-37

Aligning Components in the Layout Editor
You can select and drag any component or group of components that has the
same parent within the layout area. In addition, the Layout Editor provides a
number of features that facilitate more precise alignment of objects with
respect to one another:

• Alignment Tool — align and distribute groups of components.

• Grid and Rulers — align components on a grid with optional snap to grid.

• Guide Lines — vertical and horizontal snap-to guides at arbitrary locations.

• Bring to Front, Send to Back, Bring Forward, Send Backward — control the
front to back arrangement of components.

Aligning Groups of Components — The Alignment
Tool
The Alignment Tool enables you to position objects with respect to each other
and to adjust the spacing between selected objects. The specified alignment
operations apply to all components that are selected when you press the Apply
button.

Note To select multiple components, they must be contained in the same
figure, panel, or button group.

3 Laying Out GUIs and Setting Properties

3-38

The alignment tool provides two types of alignment operations:

• Align — align all selected components to a single reference line.

• Distribute — space all selected components uniformly with respect to each
other.

Both types of alignment can be applied in the vertical and horizontal
directions. Note that, in many cases, it is better to apply alignments
independently to the vertical or to the horizontal using two separate steps.

Align Options
There are both vertical and horizontal align options. Each option aligns
selected components to a reference line, which is determined by the bounding
box that encloses the selected objects. For example, the following picture of the
layout area shows the bounding box (indicated by the dashed line) formed by
three selected push buttons.

Aligning Components in the Layout Editor

3-39

All of the align options (vertical top, center, bottom and horizontal left, center,
right) place the selected components with respect to corresponding edge (or
center) of this bounding box.

Distribute Options
Distributing components adds equal space between all components in the
selected group. The distribute options operate in two different modes:

• Equally space selected components within the bounding box (default)

• Space selected components to a specified value in pixels (check Set spacing
and specify a pixel value)

Both modes enable you to specify how the spacing is measured, as indicated by
the button labels on the alignment tool. These options include spacing
measured with respect to the following edges:

• Vertical — inner, top, center, and bottom

• Horizontal — inner, left, center, and right

Grids and Rulers
The layout area displays a grid and rulers to facilitate component layout. Grid
lines are spaced at 50-pixel intervals by default and you can select from a

Bounding box for the
selected components

3 Laying Out GUIs and Setting Properties

3-40

number of other values ranging from 10 to 200 pixels. You can optionally
enable snap-to-grid, which causes any object that is moved or resized to within
9 pixels of a grid line to jump to that line. Snap-to-grid works with or without
a visible grid.

Use the Grid and Rulers dialog (accessed by selecting Grid and Rulers from
the Tools menu) to:

• Control visibility of rulers, grid, and guide lines

• Set the grid spacing

• Enable or disable snap-to-grid

Aligning Components to Guide Lines
The Layout Editor has both vertical and horizontal snap-to guide lines.
Components snap to the line when you move or resize them to within nine
pixels of the line.

Guide lines are useful when you want to establish a reference for component
alignment at an arbitrary location in the Layout Editor.

Creating Guide Lines
To create a guide line, click on the top or left ruler and drag the line into the
layout area.

Aligning Components in the Layout Editor

3-41

Front-to-Back Positioning
MATLAB figures maintain separate stacks that control the front-to-back
positioning for different kinds of components:

• User interface controls such as buttons, sliders, and pop-up menus

• Panels, button groups, and axes

• ActiveX controls

You can control the front-to-back positioning of components that overlap only
if those components are in the same stack. For overlapping components that
are in different stacks:

• User interface controls always appear on top of panels, button groups, axes,
and ActiveX controls they overlap.

• Panels, button groups, and axes always appear on top of ActiveX controls.

Guide lines used for horizontal
alignment

Click on the top or left ruler
and drag the guide to the
desired position

Guide line used for vertical
alignment

3 Laying Out GUIs and Setting Properties

3-42

The Layout Editor provides four operations that enable you to control
front-to-back positioning:

• Bring to Front — move the selected object(s) in front of nonselected objects
(available from the right-click context menu, the Layout menu, or the
Ctrl+F shortcut).

• Send to Back — move the selected object(s) behind nonselected objects
(available from the right-click context menu, the Layout menu, or the
Ctrl+B shortcut).

• Bring Forward — move the selected object(s) forward by one level, i.e., in
front of the object directly forward of it, but not in front of all objects that
overlay it (available from the Layout menu).

• Send Backward — move the selected object(s) back by one level, i.e., behind
the object directly in back of it, but not behind all objects that are behind it
(available from the Layout menu).

Setting Component Properties — The Property Inspector

3-43

Setting Component Properties — The Property Inspector
The Property Inspector enables you to set the properties of the components in
your layout. It provides a list of all settable properties and displays the current
value. Each property in the list is associated with an editing device that is
appropriate for the values accepted by the particular property. For example, a
color picker to change the BackgroundColor, a pop-up menu to set FontAngle,
and a text field to specify the Callback string.

See “Programming Callbacks for GUI Components” on page 4-8 to learn how to
use these properties when you program callbacks.

This section covers the following topics:

• “Displaying the Property Inspector” on page 3-43

• “What Properties Do I Need to Set?” on page 3-44

• “Some Commonly Used Properties” on page 3-45

• “Setting Properties for Some Specific Components” on page 3-46

• “Changing a Tag” on page 3-56

Displaying the Property Inspector
You can display the Property Inspector by any of the following actions:

• Double-clicking on a component in the Layout Editor

• Selecting Property Inspector in the View menu

• Right-clicking on a component and selecting Inspect Properties from the
context menu

This displays the Property Inspector, as shown in the following figure.

3 Laying Out GUIs and Setting Properties

3-44

To change a property, click in the field to the right of the property name, delete
its current value, and type a new value.

What Properties Do I Need to Set?
The properties you need to set depend on the component. The property
descriptions will help you decide which properties you need to set. For
descriptions of each property, see the property reference pages for each kind of
component. They are listed in the following table.

Component Property Reference Page

User interface controls, including push
button, slider, radio button, check box, edit
text, static text, list box, and toggle button

Uicontrol Properties

Axes Axes Properties

Setting Component Properties — The Property Inspector

3-45

Some Commonly Used Properties
As examples, this section describes four important and commonly used
properties of user interface control components: Tag, Callback, String, and
Value.

Tag
The Tag property is an identifier for the component. GUIDE assigns a value to
the Tag property of every component you insert in your layout (e.g.,
pushbutton1) and then uses this string to name the callback associated with
the Callback property (e.g., pushbutton1_Callback). You should change the
Tag property to a more descriptive name, so that you can more easily identify
the component’s callback in the M-file. For example, if you add a push button
that closes the GUI, you might set its tag to close_button.

GUIDE uses the Tag property to

• Construct the name of the generated callback (e.g., close_button_Callback)
when you run or save the GUI

• Set corresponding callback properties to point to the callback.

• Add a field to the handles structure containing the handle of the object (e.g.,
handles.close_button)

Note Since GUIDE uses the Tag property to name functions and structure
fields, the tag you select must be a valid MATLAB variable name. Use
isvarname to determine if the string you want to use is valid.

Panel Uipanel Properties

Button group Uibuttongroup Properties

Menu Uimenu Properties

Context menu (associated with a
component using its Uicontextmenu
property)

Uicontextmenu Properties

Component Property Reference Page

3 Laying Out GUIs and Setting Properties

3-46

Callback
The Callback property specifies the callback that is executed in the GUI M-file
when a user activates the component.

String
The String property contains text for the component. The following are
examples:

• For buttons, check boxes, list boxes, edit text, and static text, the String text
is displayed on or next to the component.

• For an edit text, the String property contains a list of strings that is
displayed in the text box. When a user edits the text, the String property is
updated.

Note Except for the edit text, if the String you specify does not fit in the
component, the text is clipped in the active GUI and an ellipsis (...) is
appended. However, the ellipsis does not appear in the GUIDE Layout Editor.

Value
The Value property contains a numerical value for the component, which must
lie in the range specified by the Max and Min properties. The following are
examples:

• For radio buttons and check boxes, Max and Min are set to 1 and 0,
respectively, by default. The Value property is set to 1 when the radio button
or check box is selected, and 0 when it is cleared.

• When a user drags a slider, the Value is set to a number between Max and
Min corresponding to the location of the slider button.

Setting Properties for Some Specific Components
This section describes how to set properties for some specific components. The
section covers the following topics:

• “Setting Radio Button Properties” on page 3-47

• “Setting Edit Text Box Properties” on page 3-47

Setting Component Properties — The Property Inspector

3-47

• “Setting List Box Properties” on page 3-47

• “Setting Slider Properties” on page 3-48

• “Setting Pop-Up Menu Properties” on page 3-50

• “Enabling or Disabling Controls” on page 3-51

• “Setting Panel and Button Group Properties” on page 3-52

Setting Radio Button Properties
Radio buttons have two states — selected and not selected. You can query and
set the state of a radio button through its Value property:

• Value = Max, button is selected (1 by default)

• Value = Min, button is not selected (0 by default)

To make radio buttons mutually exclusive within a group, the callback for each
radio button must set the Value property to 0 on all other radio buttons in the
group. MATLAB sets the Value property to 1 on the radio button clicked by the
user.

The following subfunction, when added to the GUI M-file, can be called by each
radio button callback. The argument is an array containing the handles of all
other radio buttons in the group that must be cleared.

function mutual_exclude(off)
set(off,'Value',0)

See “Radio Buttons” on page 4-9 for an example of such a function.

Setting Edit Text Box Properties
The values of the Min and Max properties for an edit text box determine whether
users can enter single or multiple lines of text:

• If Max Min > 1, editable text boxes accept multiline input.

• If Max Min <= 1, editable text boxes accept only single-line input.

Setting List Box Properties
List boxes display a list of items and enable users to select one or more items.
The String property contains the list of strings displayed in the list box. The
first item in the list has an index of 1. Enter the list box items using the
Property Inspector, one per line.

3 Laying Out GUIs and Setting Properties

3-48

The values of the Min and Max properties for a list box determine whether users
can select single or multiple lines of text:

• If Max Min > 1, users can select multiple lines.

• If Max Min <= 1, users can select only a single line.

The Value property contains the index into the list of strings that corresponds
to the selected item. If the user selects multiple items, then Value is a vector of
indices.

By default, the first item in the list is highlighted when the list box is first
displayed. If you do not want any item highlighted, then set the Value property
to empty, []. This works only when multiple selection is enabled.

The ListboxTop property defines which string in the list displays as the top
most item when the list box is not large enough to display all list entries.
ListboxTop is an index into the array of strings defined by the String property
and must have a value between 1 and the number of strings. Noninteger values
are fixed to the next lowest integer.

Selection Type. MATLAB sets Selection Type to normal on the first click and to
open on the second click. The callback can query the Selection Type property
to determine if it was a single- or double-click.

Setting Slider Properties
The following sections describe how to set properties for a slider.

Slider Orientation. You can orient the slider either horizontally or vertically by
setting the relative width and height of the Position property:

• Horizontal slider — Width is greater than height.

• Vertical slider — Height is greater than width.

For example, these settings create a horizontal slider.

Setting Component Properties — The Property Inspector

3-49

Note If you have set units for your GUI to characters, certain combinations
of width and height produce a slider with the opposite orientation from the
intended. This is because a character is rectangular, i.e., it is higher than it is
wide.

Current Value, Range, and Step Size. There are four properties that control the
range and step size of the slider:

• Value contains the current value of the slider.

• Max defines the maximum slider value.

• Min defines the minimum slider value.

• SliderStep specifies the size of a slider step with respect to the range.

The Value property contains the numeric value of the slider. You can set this
property to specify an initial condition and query it in the slider’s callback to
obtain the value set by the user. For example, your callback could contain the
statement

slider_value = get(handles.slider1,'Value');

The Max and Min properties specify the slider’s range (Max - Min).

3 Laying Out GUIs and Setting Properties

3-50

The SliderStep property controls the amount the slider Value property
changes when you click the mouse on the arrow button or on the slider trough.
Specify SliderStep as a two-element vector. The default, [0.01 0.10], provides
a 1 percent change for clicks on an arrow and a 10 percent change for clicks in
the trough. The actual step size is a function of the slider step and the slider
range.

Designing a Slider. Suppose you want to create a slider with the following
behavior:

• Slider range = 5 to 8

• Arrow step size = 0.4

• Trough step size = 1

• Initial value = 6.5

Set the following slider properties using the Property Inspector. X denotes the
first element of the SliderStep vector. Y denotes the second element.

• SliderStep, X .133
• SliderStep, Y .333
• Max 8
• Min 5
• Value 6.5

SliderStep is a percentage of the slider range, which is 3. In this example,
SliderStep for the arrow step size is 0.4/3 = 0.1333. SliderStep for the
trough step size is 1/3 = 0.3333.

Setting Pop-Up Menu Properties
Pop-up menus open to display a list of choices when users click the arrow.

Adding Items to the Pop-Up Menu. The String property contains the list of strings
displayed in the pop-up menu. Use the Property Inspector to add items to the
pop-up menu by typing one per line in the String edit box:

Setting Component Properties — The Property Inspector

3-51

Determining Which Item Is Selected. The Value property contains the index of the
selected item. For example, if the String contains the three items, peaks,
membrane, and sinc and the Value property has a value of 2, then the item
selected is membrane.

When not open, a pop-up menu displays the current choice, which is
determined by the index contained in the Value property. The first item in the
list has an index of 1.

Pop-up menus are useful when you want to provide users with a number of
mutually exclusive choices, but do not want to take up the amount of space that
a series of radio buttons requires.

Enabling or Disabling Controls
You can control whether a control responds to mouse button clicks by setting
the Enable property. Controls have three states:

• on — The control is operational.

3 Laying Out GUIs and Setting Properties

3-52

• off — The control is disabled and its label (set by the string property) is
grayed out.

• inactive — The control is disabled, but its label is not grayed out.

When a control is disabled, clicking on it with the left mouse button does not
execute its callback routine. However, the left-click causes two other callback
routines to execute:

1 First the figure WindowButtonDownFcn callback executes

2 Then the control’s ButtonDownFcn callback executes

A right mouse button click on a disabled control posts a context menu, if one is
defined for that control. See the Enable property description for more details.

Setting Panel and Button Group Properties
Panels and button groups group related components. A panel or button group
can have a title and a border. You can also specify the background and border
colors.

Title. Panel and button group properties enable you to set the title, as well as
its font, font size, font angle, font weight, and its position relative to the panel.
Suppose you want a panel with the title “Plot Types” and you want the title:

• Displayed in Times font, 12-point, italic, bold

• Positioned at the top right of the panel

Set the following panel properties:

• Title: Plot Types
• FontName: Times
• FontUnits: points
• FontSize: 12
• FontAngle: italic
• FontWeight: bold
• TitlePosition: righttop

Border. Suppose, in addition, you want the panel to have a 2-point wide, white
and blue, beveled-out border.

Setting Component Properties — The Property Inspector

3-53

Set the following panel properties:

• BorderType: beveledout
• BorderWidth: 2

• HighlightColor (white)
- red: 1.0
- green: 1.0
- blue: 1.0

• ShadowColor (blue)
- red: 0.0
- green: 0.0
- blue: 1.0

3 Laying Out GUIs and Setting Properties

3-54

Callback Properties
A callback is a function that executes when a user performs a specific action
such as clicking a push button or pressing a keyboard key, or when a
component is created or deleted. Each component and menu item has
properties that specify its callbacks. When you create a GUI, you must program
the callbacks you need to control operation of the GUI.

Setting Component Properties — The Property Inspector

3-55

The following table lists the various callback properties and briefly describes
the purpose of each callback. See the components’ property reference pages to
find out which callbacks apply to a specific component.

Adding Callbacks to the M-file
If you checked Generate callback function prototypes in the GUI Options
dialog, GUIDE automatically adds the most commonly used callbacks to the
GUI M-file. If you want GUIDE to include other callbacks in the GUI M-file and
provide names for them, you can do one of the following:

• In the Property Inspector, set the value of the callback property, e.g.,
KeyPressFcn, to the string %automatic. GUIDE adds the callback to the
M-file the next time you save the GUI.

Callback Property Description

ButtonDownFcn Executes when the user presses a mouse button
while the pointer is on or within five pixels of a
component.

Callback Performs the primary work of the component. It
executes, for example, when a user clicks a push
button or selects a menu item. See “The Tag
Property” on page 2-14 for additional information.

CreateFcn Initializes the component when it is created. It
executes when the component is created, but before
it becomes visible.

DeleteFcn Performs cleanup operations just before the
component is destroyed.

KeyPressFcn Executes when the user presses a keyboard key and
the callback’s component has focus.

ResizeFcn Executes when a user resizes a panel or button
group whose Resize behavior is set to Other.

SelectionChangeFcn Executes when a user selects a different radio
button or toggle button in a button group
component.

3 Laying Out GUIs and Setting Properties

3-56

• In the View menu, select View Callbacks. Then select the desired callback,
e.g., KeyPressFcn. GUIDE adds the callback to the M-file, opens the M-file
if it is not already open, and scrolls to the first line of the new callback.

Changing Tag and Callback Properties
This section discusses what you need to keep in mind if you change a
component’s tag or the value of any of its callback properties. This section
covers the following topics:

• “Changing a Tag” on page 3-56

• “Changing Callback Properties” on page 3-56

Changing a Tag
Once GUIDE generates the GUI M-file, if you subsequently change a
component’s Tag in the Property Inspector, GUIDE can correctly update the
following items according to the new Tag, provided that all components have
distinct tags:

• The component’s callback functions in the M-file

• The value of component’s callback properties, which you can view in the
Property Inspector

• References in the M-file to the field of the handles structure that contains
the component’s handle

As an example, you might want to assign the same tag to each of a set of radio
buttons if you want the same callback to service all of them. In this case, you
must also change the name of the callback functions in their callback property
values to be the same.

Changing Callback Properties
You can change the value of a callback property using the Property Inspector.
The initial value of a callback property for a push button in an untitled GUI is
similar to

untitled('pushbutton1_Callback',gcbo,[],guidata(gcbo))

where pushbutton1_Callback is the name of the callback function for that
push button in the M-file.

Setting Component Properties — The Property Inspector

3-57

Making the Change in the Property Editor. For example, to change the callback name
in a push button’s callback property, select the push button in the Layout
Editor and then select Property Inspector in the View menu. Scroll down in
the Property Inspector until you come to Callback, as shown in the following
figure.

As shown, the callback property points to pushbutton1_Callback in the M-file.
If you need to change the callback property to Closebutton_Callback, replace
the string pushbutton1_Callback with Closebutton_Callback in the
Callback field, as shown in the following figure.

Making Sure Your GUI Still Works. If you change the value of any callback
properties manually in the Property Inspector, GUIDE does not update the
corresponding callbacks in the M-file, and might not be able to update the
callback properties or references to the handles structure. If you change the
value of a callback property, you must make sure that

• Callback functions in the M-file are updated.

• Callback function names in the callback properties agree with the names of
the appropriate callback functions in the M-file.

3 Laying Out GUIs and Setting Properties

3-58

• References in the M-file to the field of the handles structure that contains
the component’s handle are updated.

Viewing the Object Hierarchy — The Object Browser

3-59

Viewing the Object Hierarchy — The Object Browser
The Object Browser displays a hierarchical list of the objects in the figure. The
following illustration shows the figure object and its child objects. It also shows
the child objects of the panel and a menu that was created. See “Creating
Menus — The Menu Editor” on page 3-60.

To determine a component’s place in the hierarchy, select it in the Layout
Editor. It is automatically selected in the Object Browser. Similarly, if you
select an object in the Object Browser, it is automatically selected in the Layout
Editor.

3 Laying Out GUIs and Setting Properties

3-60

Creating Menus — The Menu Editor
MATLAB enables you to create two kinds of menus:

• Menu bar objects — drop-down menus whose titles appear on the figure
menu bar.

• Context menu objects — pop up when users right-click on graphics objects.
They are also known as shortcut menus.

You can create both types of menus using the Menu Editor. Access the Menu
Editor from the Tools menu or from the Layout Editor toolbar.

These menus are implemented with uimenu and uicontextmenu objects. See
“Menu Callbacks” on page 3-66 for information about defining callback
subfunctions for your menus.

Create a new menu

Create a new menu item

Create a new context menu

Delete selected item

Move selected menu item

Creating Menus — The Menu Editor

3-61

Defining Menus for the Menu Bar
When you create a drop-down menu, MATLAB adds its title to the figure menu
bar. You can then create menu items for that menu. Each menu item can have
a cascading menu, also known as a submenu, and these items can have
cascading menus, and so on.

Creating a Menu
The first step is to click the New Menu tool to create a drop-down menu.

Specifying Menu Properties
Click on the menu title, Untitled 1 in the picture above, to display fields that
allow you to set the Label, Tag, Accelerator, Separator, Checked, and Enable
menu properties as well as specify the Callback string. GUIDE applies any
property changes immediately. Click More options to display the Property
Inspector where you can edit all the properties for the selected item.

The View button displays the callback subfunction in an editor. See “Menu
Callbacks” on page 3-66 for more information.

3 Laying Out GUIs and Setting Properties

3-62

Adding Items to a Menu
Use the New Menu Item tool to define the menu items that are displayed in
the drop-down menu.

Creating Menus — The Menu Editor

3-63

For example, to add an Open menu item under File, select File then click the
New Menu Item tool.

Fill in the Label and Tag fields for the new menu item.

You can also

• Choose a keyboard accelerator for the menu item with the Accelerator
pop-up menu.

• Select the Separator above this item check box to display a separator above
the menu item.

• Select the Check mark this item check box to display a check next to the
menu item when the menu is first opened. A check indicates the current
state of the menu item. See the example in “Adding Items to the Context
Menu” on page 3-69.

• Select the Enable this item check box so that the user can select this item
when the menu is first opened. If you deselect this option, the menu item
appears dimmed when the menu is first opened, and the user cannot select it.

• Click the More options button to open the Property Inspector where you can
change all uimenu properties.

3 Laying Out GUIs and Setting Properties

3-64

To create additional drop-down menus, use the New Menu tool in the same
way you did to create the File menu. For example, the following picture also
shows an Edit drop-down menu.

To create a cascading menu, select the menu item that will be the title for the
cascading menu, then click the New Menu Item tool. In the example below,
select Copy then click the New Menu Item tool.

Laying Out Three Menus
The following Menu Editor illustration shows three menus defined for the
figure menu bar.

Creating Menus — The Menu Editor

3-65

When you run the GUI, the menu titles appear in the menu bar.

3 Laying Out GUIs and Setting Properties

3-66

Menu Callbacks
By default, the Callback text field in the Menu Editor is set to the string
%automatic. This causes GUIDE to add the empty callback subfunction to the
GUI M-file when you save or run the GUI. If you change this string before
saving the GUI, GUIDE does not add a subfunction for that menu item.

Note that if you click the View button before saving the GUI, GUIDE asks you
to save the GUI. It then runs the GUI, adds the appropriate callback
subfunctions to the M-file, and opens the M-file for editing.

Functions Generated in the GUI M-file
The Menu Editor generates an empty callback subfunction for every menu
item. Because clicking on a menu title automatically displays the menu below
it, you may not need to program callbacks at the title level. However, the
callback associated with a menu title can be a good place to enable or disable
menu items below it.

Consider the example from the previous section, as illustrated in the following
picture.

When a user selects the to file option under the Edit menu’s Copy option, only
the to file callback is required to perform the action.

Suppose, however, that only certain objects can be copied to a file. You can use
the Copy item callback to enable or disable the to file item, depending on the
type of object selected.

Creating Menus — The Menu Editor

3-67

Syntax of the Callback Subfunction
The GUI M-file contains all callbacks for the GUI, including the menu
callbacks. All generated callbacks use the same syntax.

For example, the Select all menu item from the previous example has following
callback string:

MyGui('menu_edit_selectall_Callback',gcbo,[],guidata(gcbo))

where:

• MyGui — is the name of the GUI M-file that launches the figure containing
the menus.

• menu_edit_selectall_Callback — is the name of the subfunction callback
for the Select All menu item (derived from the Tag specified in the Menu
Editor).

• gcbo — is the handle of the Select All uimenu item.

• [] — is an empty matrix used as a place holder for future use.

• guidata(gcbo) — gets the handles structure from the figure’s application
data.

Tag forms the
name of the
callback

3 Laying Out GUIs and Setting Properties

3-68

This is the automatically generated callback subfunction that you see if you
click the View button after saving the GUI, or if you edit the GUI M-file.

function menu_edit_selectall_Callback(hObject, eventdata,...
 handles)
% hObject handle to menu_edit_selectall (see GCBO)
% eventdata reserved - to be defined in a future version of
% MATLAB
% handles structure with handles and user data (see GUIDATA)

Defining Context Menus
A context menu is displayed when a user right-clicks on the object for which the
menu is defined. The Menu Editor enables you to define context menus and
associate them with objects in the layout.

See “Defining Menus for the Menu Bar” on page 3-61 for information about
defining menus in general.

Creating the Parent Menu
All items in a context menu are children of a menu that is not displayed on the
figure menu bar. To define the parent menu, select New Context Menu from
the Menu Editor’s toolbar.

Creating Menus — The Menu Editor

3-69

Note You must select the Menu Editor’s Context Menus tab before you begin
to define a context menu.

Select the menu and specify the Tag to identify the context menu
(axes_context_menu in this example).

Adding Items to the Context Menu
Create the items that will appear in the context menu using New Menu Item
on the Menu Editor’s toolbar.

When you select the menu item, the Menu Editor displays fields for you to
enter the Label and Tag properties of the menu item.

3 Laying Out GUIs and Setting Properties

3-70

You can also

• Select the Separator above this item check box to display a separator above
the menu item when the menu is first opened.

• Select the Check mark this item check box to display a check next to the
menu item when the menu is first opened.

A check is particularly useful to indicate the current state of the menu item.
For example, suppose you have a menu item called Show axes that toggles
the visibility of an axes between visible and invisible each time the user
selects the menu item. If you want a check to appear next to the menu item
when the axes are visible, add the following code to the callback for the Show
axes menu item:
if strcmp(get(gcbo, 'Checked'),'on')
 set(gcbo, 'Checked', 'off');
else
 set(gcbo, 'Checked', 'on');

Creating Menus — The Menu Editor

3-71

end

This changes the value of the Checked property of the menu item from on to
off or vice versa each time a user selects the menu item.

If you set the axes to be visible when a user first opens the GUI, make sure
to select the Check mark this item check box in the Menu Editor, so that a
check will appear next to the Show axes menu item initially.

• Select the Enable this item check box so that the user can select this item
when the menu is first opened. If you deselect this option, the menu item
appears dimmed when the menu is first opened, and the user cannot select it.

• Click the More options button to open the Property Inspector where you can
change all uimenu properties.

Associating the Context Menu with an Object
In the Layout Editor, select the object for which you are defining the context
menu. Use the Property Inspector to set this object’s UIContextMenu property
to the name of the desired context menu.

In the GUI M-file, complete the callback subfunction for each item in the
context menu. Each callback executes when a user selects the associated
context menu item. See “Menu Callbacks” on page 3-66 for information on
defining the syntax.

3 Laying Out GUIs and Setting Properties

3-72

Setting the Tab Order — The Tab Order Editor
A GUI’s tab order is the order in which components of the GUI are selected
when a user presses the Tab key on the keyboard. When you create a GUI,
GUIDE sets the tab order at each level to be the order in which you add
components to that level in the Layout Editor. This is often not the best order
for the user.

The tab order for each level is determined independently. The figure is the base
level, and each panel or button group establishes its own level. If, in tabbing
through the components at the figure level, a user tabs to a panel or button
group, then subsequent tabs sequence through the components of the panel or
button group before returning to the level from which the panel or button group
was reached.

The figure in the following GUI contains an axes, a slider, a panel, a static text,
and a pop-up menu. Of these, only the slider, the panel, and the pop-up menu
at the figure level can be tabbed. The panel contains three push buttons, which
can all be tabbed.

Setting the Tab Order — The Tab Order Editor

3-73

To examine and change the tab order of the panel components, click the panel
background to select it, then select Tab Order Editor in the Tools menu of the
Layout Editor.
.

The Tab Order Editor displays the panel’s components in their current tab
order. To change the tab order, select a component and press the up or down
arrow to move the component up or down in the list. If you set the tab order for
the three components in the example to be

1 Surf push button

2 Contour push button

3 Mesh push button

the user first tabs to the Surf push button, then to the Contour push button
and then to the Mesh push button. Subsequent tabs sequence through the
remaining components at the figure level.

3 Laying Out GUIs and Setting Properties

3-74

4

Programming GUIs

Understanding the GUI M-File (p. 4-2) The GUI M-file programs the GUI. This section describes
the functioning of the GUI M-file, both the generated and
user-written code.

Programming Callbacks for GUI
Components (p. 4-8)

Explains how to program the callbacks for some specific
GUI components.

Managing GUI Data with the Handles
Structure (p. 4-26)

The handles structure provides easy access to all
component handles in the GUI. In addition, you can use
this structure to store all shared data required by your
GUI.

Designing for Cross-Platform
Compatibility (p. 4-30)

Discusses the settings (used by default with GUIDE) that
enable you to make your GUI look good on different
computer platforms.

Types of Callbacks (p. 4-33) Shows you how to define callbacks. This section discusses
the types available and their applications.

Interrupting Executing Callbacks
(p. 4-35)

Describes how you can control whether user actions can
interrupt executing callbacks.

Controlling Figure Window Behavior
(p. 4-38)

Discusses how a GUI figure can block MATLAB execution
and can be modal.

Example: Using the Modal Dialog to
Confirm an Operation (p. 4-40)

Illustrates use of a modal dialog GUI to confirm that the
user wants to proceed with an operation.

4 Programming GUIs

4-2

Understanding the GUI M-File
The GUI M-file generated by GUIDE controls the GUI and determines how it
responds to a user’s action, such as pressing a push button or selecting a menu
item. The M-file contains all the code needed to run the GUI, including the
callbacks for the GUI components. While GUIDE generates the framework for
this M-file, you must program the callbacks, which are subfunctions of the
M-file, to perform the functions you want them to.

This section explains the overall structure of the M-file. The section covers the
following topics:

• “Sharing Data with the Handles Structure” on page 4-2

• “Functions and Callbacks in the M-File” on page 4-3

• “Opening Function” on page 4-4

• “Output Function” on page 4-5

• “Callbacks” on page 4-6

• “Input and Output Arguments” on page 4-7

To learn more about programming callbacks, see Subfunctions in the online
MATLAB documentation.

Sharing Data with the Handles Structure
When you run a GUI, the M-file creates a handles structure that contains all
the data for GUI objects, such as controls, menus, and axes. The handles
structure is passed as an input to each callback. You can use the handles
structure to

• Share data between callbacks

• Access GUI data

Sharing Data
To store data that is contained in a variable X, set a field of the handles
structure equal to X and then save the handles structure with the guidata
function:

handles.current_data = X;
guidata(hObject,handles)

Understanding the GUI M-File

4-3

You can retrieve the data in any other callback with the command

X = handles.current_data;

For an example of sharing data between callbacks, see “Example: Passing Data
Between Callbacks” on page 4-26.

For more information about handles, see “Managing GUI Data with the
Handles Structure” on page 4-26.

Accessing GUI Data
You can access any of the data for the GUI components from the handles
structure. For example, suppose your GUI has a pop-up menu, whose Tag is
my_menu, containing three items, whose String properties are chocolate,
strawberry, and vanilla. You want another component in the GUI — a push
button, for example — to execute a command on the currently selected menu
item. In the callback for the push button, you can insert the command

all_choices = get(handles.my_menu, 'String')
current_choice = all_choices{get(handles.my_menu, 'Value')};

The command sets the value of current_choice to chocolate, strawberry, or
vanilla, depending on which item is currently selected in the menu.

You can also access the data for the entire GUI from the handles structure. If
the figure’s Tag is figure1, then

handles.figure1

contains the figure’s handle. For example, you can make the GUI close itself
with the command

delete(handles.figure1)

For an example of closing a GUI with this command, look at the callback for
the Close push button for the template described in “GUI with Axes and Menu”
on page 3-5.

Functions and Callbacks in the M-File
You can add code to the following parts of the GUI M-file:

• Opening function — executes before the GUI becomes visible to the user.

• Output function — outputs data to the command line, if necessary.

4 Programming GUIs

4-4

• Callbacks — execute each time the user activates the corresponding
component of the GUI.

Common Input Arguments
All functions in the M-file have the following input arguments corresponding
to the handles structure:

• hObject — the handle to the figure or Callback object

• handles — structure with handles and user data (see guidata)

The handles structure is saved at the end of each function with the command

guidata(hObject, handles);

Additional arguments for the opening and output functions are described in the
following sections.

Opening Function
The opening function contains code that is executed just before the GUI is
made visible to the user. You can access all the components for the GUI in the
opening function, because all objects in the GUI are created before the opening
function is called. You can add code to the opening function to perform tasks
that need to be done before the user has access to the GUI — for example,
creating data, plots or images, or making the GUI blocking with the uiwait
command.

For a GUI whose file name is my_gui, the definition line for the opening
function is

function my_gui_OpeningFcn(hObject, eventdata, handles, varargin)

Besides the arguments hObject and handles (see “Common Input Arguments”
preceding), the opening function has the following input arguments:

• eventdata reserved for a future version of MATLAB

• varargin command line arguments to untitled (see varargin)

All command line arguments are passed to the opening function via varargin.
If you open the GUI with a property name/property value pair as arguments,
the GUI opens with the property set to the specified value. For example,

Understanding the GUI M-File

4-5

my_gui('Position', [71.8 44.9 74.8 19.7]) opens the GUI at the specified
position, since Position is a valid figure property.

If the input argument is not a valid figure property, you must add code to the
opening function to make use of the argument. For an example, look at the
opening function for the modal question dialog template. The added code
enables you to open the modal dialog with the syntax

my_gui('String','Do you want to exit?')

which displays the text 'Do you want to exit' on the GUI. In this case, it is
necessary to add code to the opening function because 'String' is not a valid
figure property.

Output Function
The output function returns output arguments to the command line. This is
particularly useful if you want to return a variable to another GUI. For an
example, see “Example: Using the Modal Dialog to Confirm an Operation” on
page 4-40.

GUIDE generates the following lines of code in the output function:

% --- Outputs from this function are returned to the command line.
function varargout = my_gui_OutputFcn(hObject, eventdata,
handles)
% Get default command line output from handles structure
varargout{1} = handles.output;

If the GUI is not blocking — in other words, if the M-file does not contain the
command uiwait — the output is simply the handle to the GUI, which is
assigned to handles.output in the opening function.

To make the GUI return a different output — for example, if you want it to
return the result of a user response, such as pressing a push button — do the
following:

• Add the command uiwait; to the opening function to make the M-file halt
execution until a user activates a component in the GUI.

• For each component of the GUI where you expect a user response, make the
callback update the value of handles.output, and execute uiresume.

4 Programming GUIs

4-6

For example, if the GUI contains a push button whose String property is
'Yes', add the following code to its callback to make the GUI return 'Yes'
when the user presses the push button:

handles.output = 'Yes';
guidata(hObject, handles);
uiresume;

See the section “Managing GUI Data with the Handles Structure” on page 4-26
for more information about passing data with the handles structure.

When the GUI is called with the command

OUT = my_gui

and a user presses the Yes push button, the GUI returns the output
OUT = 'Yes' to the command line.

The output varargout, which is a cell array, can contain any number of output
arguments. By default, GUIDE creates just one output argument,
handles.output. To create a second output argument, add the command

varargout{2} = handles.second_output;

to the output function. You can set the value of handles.second_output in any
callback and then save it with the guidata command.

If you want, you can choose more descriptive names than output or
second_output for the fields of the handles structure corresponding to the
output arguments.

Callbacks
When a user activates a component of the GUI, the GUI executes the
corresponding callback. The name of the callback is determined by the
component’s Tag property and the type of callback. For example, a push button
with the Tag print_button executes the callback

function print_button_Callback(hObject, eventdata, handles)

Understanding the GUI M-File

4-7

Input and Output Arguments
The following examples illustrate various ways to call a GUI named my_gui
with different arguments. All arguments are passed to the opening function in
the GUI M-file.

• Calling my_gui with no arguments opens my_gui.

• Calling H = my_gui opens my_gui and returns the handle to my_gui.

• Calling my_gui('Property', Value,...), where 'Property' is a valid
figure property, opens my_gui using the given property-value pair. You can
call the GUI with more than one property-value pair.

For example, my_gui('Position', [71.8 44.9 74.8 19.7]) opens the GUI
at the specified position, since Position is a valid figure property. See the
reference page for figure for a list of figure properties.

• Calling my_gui('My_function', hObject, eventdata, handles,...) calls
the subfunction My_function in the GUI M-file with the given input
arguments.

• Calling my_gui('Key_word', Value,...), where 'Key_word' is any string
that is not a valid figure property or the name of a subfunction, creates a new
my_gui, and passes the pair 'Key_word', Value to the opening function in the
GUI M-file via varargin.

You can use this calling syntax to pass arguments that are not figure
properties to the GUI. For example, my_gui('Temperature', 98.6) opens
the GUI and passes the vector ['Temperature', 98.6] to the opening
function.

See “An Address Book Reader” on page 5-31 for an example that uses this
syntax. The example creates a GUI called address_book. Calling the GUI with
the syntax address_book('book', my_contacts) opens the GUI with the
MAT-file my_contacts, which contains a list of names and addresses you want
to display. Note that you can use any string that is not a valid figure property
or the name of a callback in place of the string 'book'. See the reference page
for figure for a list of figure properties.

Note If you call a GUI with multiple property value pairs, all the pairs that
correspond to valid figure properties must precede all the pairs that do not
correspond to valid figure properties in the sequence of arguments.

4 Programming GUIs

4-8

Programming Callbacks for GUI Components
This section explains how to program the callbacks for some specific GUI
components. “Callback Properties” on page 3-54 describes the different kinds
of callbacks.

See a component’s property reference page to determine which callbacks apply
for that component. “Setting Component Properties — The Property Inspector”
on page 3-43 provides links to the property reference pages.

This section provides information on the following topics:

• “Toggle Button Callback” on page 4-8

• “Radio Buttons” on page 4-9

• “Check Boxes” on page 4-10

• “Edit Text” on page 4-10

• “Sliders” on page 4-11

• “List Boxes” on page 4-11

• “Pop-Up Menus” on page 4-12

• “Panels” on page 4-13

• “Button Groups” on page 4-13

• “Axes” on page 4-14

• “ActiveX Controls” on page 4-17

• “Figures” on page 4-24

Toggle Button Callback
The callback for a toggle button needs to query the toggle button to determine
what state it is in. MATLAB sets the Value property equal to the Max property
when the toggle button is depressed (Max is 1 by default) and equal to the Min
property when the toggle button is not depressed (Min is 0 by default).

From the GUI M-file
The following code illustrates how to program the callback in the GUI M-file.

function togglebutton1_Callback(hObject, eventdata, handles)
button_state = get(hObject,'Value');
if button_state == get(hObject,'Max')

Programming Callbacks for GUI Components

4-9

% toggle button is pressed

elseif button_state == get(hObject,'Min')
% toggle button is not pressed

end

Note If you have toggle buttons that are managed by a button group
component, you must include the code to control them in the button group’s
SelectionChangeFcn callback function, not in the individual toggle button
Callback functions. A button group overwrites the Callback properties of
radio buttons and toggle buttons that it manages. See “Button Groups” on
page 4-13 for more information.

Adding an Image to a Push Button or Toggle Button
Assign the CData property an m-by-n-by-3 array of RGB values that define a
truecolor image. For example, the array a defines 16-by-128 truecolor image
using random values between 0 and 1 (generated by rand).

a(:,:,1) = rand(16,128);
a(:,:,2) = rand(16,128);
a(:,:,3) = rand(16,128);
set(hObject,'CData',a)

See ind2rgb for information on converting an (X, MAP) image to an RGB image.

Radio Buttons
You can determine the current state of a radio button from within its callback
by querying the state of its Value property, as illustrated in the following
example:

if (get(hObject,'Value') == get(hObject,'Max'))
% then rsdio button is selected-take approriate action

else
% radio button is not selected-take approriate action

end

4 Programming GUIs

4-10

Note If you have radio buttons that are managed by a button group
component, you must include the code to control them in the button group’s
SelectionChangeFcn callback function, not in the individual radio button
Callback functions. A button group overwrites the Callback properties of
radio buttons and toggle buttons that it manages. See “Button Groups” on
page 4-13 for more information.

Check Boxes
You can determine the current state of a check box from within its callback by
querying the state of its Value property, as illustrated in the following
example:

function checkbox1_Callback(hObject, eventdata, handles)
if (get(hObject,'Value') == get(hObject,'Max'))

% then checkbox is checked-take approriate action

else
% checkbox is not checked-take approriate action

end

Edit Text
To obtain the string a user typed in an edit box, get the String property in the
callback.

function edittext1_Callback(hObject, eventdata, handles)
user_string = get(hObject,'string');
% proceed with callback...

For example, setting Max to 2, with the default value of 0 for Min, enables users
to select multiple lines

Obtaining Numeric Data from an Edit Text Component
MATLAB returns the value of the edit text String property as a character
string. If you want users to enter numeric values, you must convert the
characters to numbers. You can do this using the str2double command, which
converts strings to doubles. If the user enters nonnumeric characters,
str2double returns NaN.

Programming Callbacks for GUI Components

4-11

You can use the following code in the edit text callback. It gets the value of the
String property and converts it to a double. It then checks whether the
converted value is NaN (isnan), indicating the user entered a nonnumeric
character and displays an error dialog (errordlg).

function edittext1_Callback(hObject, eventdata, handles)

user_entry = str2double(get(hObject,'string'));

if isnan(user_entry)

errordlg('You must enter a numeric value','Bad Input','modal')

end

% proceed with callback...

Triggering Callback Execution
For both UNIX and Windows, clicking on the menu bar of the figure window
causes the edit text callback to execute. Clicking on other components or the
background of the GUI also executes the callback.

Sliders
You can determine the current value of a slider from within its callback by
querying its Value property, as illustrated in the following example:

function slider1_Callback(hObject, eventdata, handles)
slider_value = get(hObject,'Value');
% proceed with callback...

The Max and Min properties specify the slider’s range (Max - Min).

List Boxes

Triggering Callback Execution
MATLAB evaluates the list box’s callback after the mouse button is released or
after certain key press events.

• The arrow keys change the Value property and trigger callback execution.

• Enter and Space do not change the Value property but trigger callback
execution.

If the user double-clicks, the callback executes after each click. MATLAB sets
Selection Type to normal on the first click and to open on the second click. The

4 Programming GUIs

4-12

callback can query the Selection Type property to determine if it was a single-
or double-click.

List Box Examples
See the following examples for more information on using list boxes:

• “List Box Directory Reader” on page 5-9 — Shows how to creates a GUI that
displays the contents of directories in a list box and enables users to open a
variety of file types by double-clicking on the filename.

• “Accessing Workspace Variables from a List Box” on page 5-15 — Shows how
to access variables in the MATLAB base workspace from a list box GUI.

Pop-Up Menus
You can program the popup menu callback to work by checking only the index
of the item selected (contained in the Value property) or you can obtain the
actual string contained in the selected item.

This callback checks the index of the selected item and uses a switch statement
to take action based on the value. If the contents of the popup menu is fixed,
then you can use this approach.

function popupmenu1_Callback(hObject, eventdata, handles)
val = get(hObject,'Value');
switch val
case 1
% The user selected the first item
case 2
% The user selected the second item
% proceed with callback...

This callback obtains the actual string selected in the pop-up menu. It uses the
value to index into the list of strings. This approach may be useful if your
program dynamically loads the contents of the pop-up menu based on user
action and you need to obtain the selected string. Note that it is necessary to
convert the value returned by the String property from a cell array to a string.

function popupmenu1_Callback(hObject, eventdata, handles)
val = get(hObject,'Value');
string_list = get(hObject,'String');

Programming Callbacks for GUI Components

4-13

selected_string = string_list{val}; % convert from cell array
 % to string
% proceed with callback...

Panels
Panels group GUI components and can make a user interface easier to
understand by visually grouping related controls. Panel children can be panels
and button groups as well as axes and user interface controls. The position of
each component within a panel is interpreted relative to the panel. If the panel
is resized, you may want to reposition its components.

The following callback executes and gets the Position property of uipanel2
whenever the panel is resized. Once you have the size data contained in the
Position property, you can modify the Position properties of the child
components to reposition them. Use the Children property of uipanel2 to get
the handles of its child components.

function uipanel2_ResizeFcn(hObject, eventdata, handles)

% hObject handle to uipanel1 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

pos = get(hObject,'Position');

% proceed with callback...

Button Groups
Button groups are like panels, but can be used to manage exclusive selection
behavior for radio buttons and toggle buttons. The button group’s
SelectionChangeFcn callback is called whenever a selection is made.

For radio buttons and toggle buttons that are managed by a button group, you
must include the code to control them in the button group’s
SelectionChangeFcn callback function, not in the individual uicontrol
Callback functions. A button group overwrites the Callback properties of
radio buttons and toggle buttons that it manages.

This example of a SelectionChangeFcn callback uses the Tag property of the
selected object to choose the appropriate code to execute.

function uibuttongroup1_SelectionChangeFcn(hObject,eventdata,handles)

% hObject handle to uipanel1 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

4 Programming GUIs

4-14

% handles structure with handles and user data (see GUIDATA)

switch get(hObject,'Tag') % Get Tag of selected object

 case 'radiobutton1'

 % code piece when radiobutton1 is selected goes here

 case 'radiobutton2'

 % code piece when radiobutton2 is selected goes here

 % ...

end

Note For a uibuttongroup, contrary to the automatically generated
comment, hObject is the handle of the selected radio button or toggle button,
and not the handle of the uibuttongroup. Use handles.uipaneln as the
handle of the uibuttongroup.

The code above refers to the handle of uipanel1 rather than the handle of
uibuttongroup1, because a uibuttongroup is a kind of uipanel.

Axes
Axes enable your GUI to display graphics (e.g., graphs and images). Like all
graphics objects, axes have properties that you can set to control many aspects
of its behavior and appearance. See “Axes Properties” in the MATLAB
Graphics documentation for general information on axes objects.

Axes Callbacks
Axes are not uicontrol objects, but can be programmed to execute a callback
when users click a mouse button in the axes. Use the axes ButtonDownFcn
property to define the callback.

Plotting to Axes in GUIs
If your GUI contains axes, you should make sure that the Command-line
accessibility option in the GUI Options dialog is set to Callback (the default).
This enables you to issue plotting commands from callbacks without explicitly
specifying the target axes. See “Command-Line Accessibility” on page 3-30 for
more information about how this option works.

Programming Callbacks for GUI Components

4-15

Note If your GUI is opened as the result of another GUI’s callback, you might
need to explicitly specify the target axes. See “GUIs with Multiple Axes” on
page 4-16.

Example: Displaying an Image on an Axes
This example shows how to display an image on an axes. The example

• Displays an image file on an axes.

• Resizes the axes to fit the image.

• Resizes the GUI so that its width and height are 100 pixels larger than the
image file.

To build the example:

1 Open a blank template in the Layout Editor.

2 Drag an axes into the layout area.

3 Select M-file editor from the View menu.

4 Add the following code to the opening function:

set(hObject, 'Units', 'pixels');
handles.banner = imread([matlabroot filesep 'demos' filesep
'banner.jpg']); % Read the image file banner.jpg
info = imfinfo([matlabroot filesep 'demos' filesep
'banner.jpg']); % Determine the size of the image file
position = get(hObject, 'Position');
set(hObject, 'Position', [position(1:2) info.Width + 100
info.Height + 100]);
axes(handles.axes1);
image(handles.banner)
set(handles.axes1, ...
 'Visible', 'off', ...
 'Units', 'pixels', ...
 'Position', [50 50 info.Width info.Height]);

When you run the GUI, it appears as in the following figure.

4 Programming GUIs

4-16

The preceding code performs the following operations:

• Reads the image file banner.jpg using the command imread.

• Determines the size of the image file in pixels using the command imfinfo.

• Sets the width and height of the GUI to be 100 pixels greater than the
corresponding dimensions of the image file, which are stored as info.Width
and info.Height, respectively. The width and height of the GUI are the
third and fourth entries of the vector position.

• Displays the image in the axes using the command image(handles.banner).

• Makes the following changes to the axes properties:

- Sets 'Visible' to 'off' so that the axes are invisible

- Sets 'Units' to 'pixels' to match the units of the vector position

- Sets 'Position' to [50, 50, info.Width info.Height] to set the size of
the axes equal to that of the image file, and center the image file on the
GUI.

GUIs with Multiple Axes
If a GUI has multiple axes, you should explicitly specify which axes you want
to target when you issue plotting commands. You can do this using the axes
command and the handles structure. For example,

axes(handles.axes1)

makes the axes whose Tag property is axes1 the current axes, and therefore the
target for plotting commands. You can switch the current axes whenever you
want to target a different axes. See “GUI with Multiple Axes” on page 5-2 for
an example that uses two axes.

Programming Callbacks for GUI Components

4-17

ActiveX Controls
You can insert an ActiveX control into your GUI if you are running MATLAB
on Microsoft Windows. When you drag an ActiveX component from the
component palette into the layout area, GUIDE displays a dialog in which you
can select any registered ActiveX control on your system. When you select an
ActiveX control and click Create, the control appears as a small box in the
Layout Editor. You can then program the control to do what you want it to.

See MATLAB COM Client Support in the online MATLAB documentation to
learn more about ActiveX controls.

This section covers the following topics:

• “Adding an ActiveX Control to a GUI” on page 4-17

• “Viewing the ActiveX Properties with the Property Inspector” on page 4-19

• “Adding a Callback to an ActiveX Control to Change a Property” on page 4-20

• “Adding a Uicontrol to Change an ActiveX Control Property” on page 4-21

• “Viewing the Methods for an ActiveX Control” on page 4-23

Adding an ActiveX Control to a GUI
This section shows how to add an ActiveX control to a GUI. The section
describes a simple ActiveX control that displays a circle. After adding the
ActiveX control, you can program the GUI to change the radius of the circle and
display the new value of the radius.

Note If MATLAB is not installed locally on your computer — for example, if
you are running MATLAB over a network — you might not find the ActiveX
control described in this example. To register the control, see Registering
Controls and Servers in the online MATLAB documentation.

To make the example,

1 Open a new GUI in GUIDE and drag an ActiveX control from the component
palette into the Layout Editor.

4 Programming GUIs

4-18

2 Scroll down the ActiveX Control List and select Mwsamp Control. This
displays a preview of the ActiveX control Mwsamp, as shown in the following
figure.

3 Click Create to display the ActiveX control in the Layout Editor, and resize
the control to approximately the size of the square shown in the preview
pane. You can do this by clicking and dragging a corner of the control, as
shown in the following figure.

Programming Callbacks for GUI Components

4-19

4 Click the Run button on the toolbar and save the GUI when prompted.
GUIDE displays the GUI shown in the following figure.

Viewing the ActiveX Properties with the Property Inspector
To view the properties of the ActiveX control, right-click the control in the
Layout Editor and select Property Inspector, or select Property Inspector

Resize the control by clicking and dragging

4 Programming GUIs

4-20

from the View menu. This displays the Property Inspector, as shown in the
following figure.

The ActiveX control mwsamp has just two properties:

• Label, which contains the text that appears at the top of the control

• Radius, the default radius of the circle, which is 20

The example in the next section shows how to program the GUI to

• Change the radius when a user clicks the circle

• Change the label to display the new radius

Adding a Callback to an ActiveX Control to Change a Property
To change a property of the control when a user performs an action, you need
to add a callback to an ActiveX control. For example, to make mwsamp decrease
the radius of the circle by 10 percent and display the new value each time a
user clicks the ActiveX control, you can add an event, or callback, corresponding
to the click action. To do so,

1 Right-click the ActiveX control in the Layout Editor to bring up its context
menu.

2 In the context menu, place the cursor over View Callbacks and select Click.
This creates a callback called activex1_Click and opens the GUI M-file
with the first line of the callback highlighted.

3 Add the following commands to the activex1_Click callback:

hObject.radius = .9*hObject.radius;
hObject.label = ['Radius = ' num2str(hObject.radius)];

Programming Callbacks for GUI Components

4-21

refresh(handles.figure1);

4 Add the following command to the opening function:

handles.activex1.label = ...
['Radius = ' num2str(handles.activex1.radius)];

5 Run the GUI.

Now, each time you click the ActiveX control, the radius of the circle is reduced
by 10 percent and the new value of the radius is displayed, as shown in the
following figure.
G

GUI After Clicking the Circle Six Times

If you click the GUI enough times, the circle disappears entirely.

Adding a Uicontrol to Change an ActiveX Control Property
You can also add other Uicontrols to the GUI to change the properties of an
ActiveX control. For example, you can add a slider that changes the radius of
the circle in the Mwsamp GUI. To do so,

1 Drag a slider into the layout area.

2 Right-click the slider and select M-file Editor.

3 Add the following command to the slider1 callback:

4 Programming GUIs

4-22

handles.activex1.radius = ...
get(hObject, 'Value')*handles.default_radius;
handles.activex1.label = ...
['Radius = ' num2str(handles.activex1.radius)];
refresh(handles.figure1);

4 Add the following command to the opening function:

handles.default_radius = handles.activex1.radius;

5 Add the following command at the end of the code in the activex1_Click
callback:

set(handles.slider1, 'Value', ...
hObject.radius/handles.default_radius);

6 Run the GUI.

When you move the slider by clicking and dragging, the radius changes to a
new value between 0 and the default radius of 20, as shown in the following
figure.

The command

handles.activex1.radius = ...
get(hObject, 'Value')*handles.default_radius;

does the following:

Programming Callbacks for GUI Components

4-23

- Gets the Value of the slider, which in this example is a number between 0
and 1, the default values of the slider’s Min and Max properties.

- Sets handles.activex1.radius equal to the Value times the default
radius.

Note that clicking the ActiveX control causes the slider to change position
corresponding to the new value of the radius. The command

set(handles.slider1, 'Value', ...
hObject.radius/handles.default_radius);

in the activex1_Click callback resets the slider’s Value each time the user
clicks the ActiveX control.

Viewing the Methods for an ActiveX Control
To view the available methods for the ActiveX control, you first need to obtain
the handle to the control. One way to do this is the following:

1 In the GUI M-file, add the command keyboard on a separate line of the
activex1_Click callback. The command keyboard puts MATLAB in debug
mode and pauses at the activex1_Click callback when you click the
ActiveX control.

2 Run the GUI and click the ActiveX control.

The handle to the control is now set to hObject. To view the methods for the
control, enter

methodsview(hObject)

at the MATLAB prompt. This displays the available methods in a new window,
as shown in the following figure.

4 Programming GUIs

4-24

Alternatively, you can enter

methods(hObject)

which displays the available methods in the Command Window.

For more information about methods for ActiveX controls, see Invoking
Methods in the online MATLAB documentation. See the reference pages for
methodsview and methods for more information about these functions.

Figures
Figures are the windows that contain the GUIs you design with the Layout
Editor. See the Figure Properties reference page for information on what figure
characteristics you can control.

Displaying Plots in a Separate Figure
To prevent a figure from becoming the target of plotting commands issued at
the command line or by other GUIs, you can set the HandleVisibility and
IntegerHandle properties to off. However, this means the figure is also

Programming Callbacks for GUI Components

4-25

hidden from plotting commands issued by your GUI. To issue plotting
commands from your GUI,

• Create a figure and axes.

• Save the handle of the figure in the handles structure.

• Create an axes, save its handle, and set its Parent property to the figure
handle.

• Create the plot, save the handles, and set their Parent properties to the
handle of the axes.

The following code illustrates these steps:

fHandle =
figure('HandleVisibility','off','IntegerHandle','off',...
 'Visible','off');
aHandle = axes('Parent',fHandle);
pHandles = plot(PlotData,'Parent',aHandle);
set(fHandle,'Visible','on')

Note that not all plotting commands accept property name/property value
specifications as arguments. Consult the reference page for the specific
command to see what arguments you can specify.

4 Programming GUIs

4-26

Managing GUI Data with the Handles Structure
GUIDE provides a mechanism, called the handles structure, for storing and
retrieving shared data using the same structure that contains the GUI
component handles. The handles structure, which contains the handles of all
the components in the GUI, is passed to each callback in the GUI M-file.
Therefore, this structure is useful for saving any shared data. The following
example illustrates this technique.

If you are not familiar with MATLAB structures, see Structures for more
information.

This section covers the following topics:

• “Example: Passing Data Between Callbacks” on page 4-26

• “Application Data” on page 4-29

Example: Passing Data Between Callbacks
This example demonstrates how to use the handles structure to pass data
between callbacks. The example passes data between a slider and an editable
text box in the following way:

• When a user moves the slider, the text box displays the slider’s current value.

• When a user types a value into the text box, the slider updates to this value.

• If a user enters a value in the text box that is out of range for the slider —
that is, a value that is not between 0 an 1 — the application returns a
message indicating how many times he has entered an erroneous value.

The following figure shows the GUI with a static text field above the edit text
box.

Managing GUI Data with the Handles Structure

4-27

Defining the Data Fields in the Opening Function
The GUI records the number of times a user enters an erroneous value in the
text box and stores this number in a field of the handles structure. You can
define this field, called number_errors, in the opening function as follows:

handles.number_errors = 0;

Type this command before the following line, which GUIDE automatically
inserts into the opening function.

guidata(hObject, handles); % Save the updated structure

The guidata command saves the handles structure so that it can be retrieved
in the callbacks.

Note To save any changes that you make to the handles structure, you must
add the command guidata(hObject, handles) following the code that
implements the changes.

Setting the Edit Text Value from the Slider Callback
The following command in the slider callback updates the value displayed in
the edit text when a user moves the slider and releases the mouse button.

set(handles.edit1,'String',...

4 Programming GUIs

4-28

num2str(get(handles.slider1,'Value')));

The code combines three commands:

• The get command obtains the current value of the slider.

• The num2str command converts the value to a string.

• The set command resets the String property of the edit text to the updated
value.

Setting the Slider Value from the Edit Text Callback
The edit text callback sets the slider’s value to the number the user types in,
after checking to see if it is a single numeric value between 0 and 1. If the value
is out of range, then the error count is incremented and the edit text displays
a message telling the user how many times they have entered an invalid
number.

val = str2double(get(handles.edit1,'String'));
% Determine whether val is a number between 0 and 1
if isnumeric(val) & length(val)==1 & ...

val >= get(handles.slider1,'Min') & ...
val <= get(handles.slider1,'Max')
set(handles.slider1,'Value',val);

else
% Increment the error count, and display it

handles.number_errors = handles.number_errors+1;
guidata(hObject,handles); % store the changes
set(handles.edit1,'String',...
['You have entered an invalid entry ',...

num2str(handles.number_errors),' times.']);
end

If the user types a number between 0 and 1 in the edit box and then clicks
outside the edit box, the callback sets handles.slider1 to the new value and
the slider moves to the corresponding position.

If the entry is invalid — for example, 2.5 — the GUI increments the value of
handles.number_errors and displays a message like the following:

Managing GUI Data with the Handles Structure

4-29

Application Data
Application data provides a way for applications to save and retrieve data
stored with the GUI. This technique enables you to create what is essentially
a user-defined property for an object. You can use this property to store data.

The GUI M-file uses application data to store the handles structure.

When using the GUIDE-generated M-file, it is simpler to use guidata than to
access application data directly.

Functions for Accessing Application Data
The following functions provide access to application data.

Functions for Accessing Application-Defined Data

Function Purpose

setappdata Specify application data

getappdata Retrieve named application data

isappdata True if the named application data exists

rmappdata Remove the named application data

4 Programming GUIs

4-30

Designing for Cross-Platform Compatibility
You can use specific property settings to create a GUI that behaves more
consistently when run on different platforms:

• Use the default font (uicontrol FontName property).

• Use the default background color (uicontrol BackgroundColor property).

• Use figure character units (figure Units property).

Using the Default System Font
By default, uicontrols use the default font for the platform on which they are
running. For example, when displaying your GUI on PCs, uicontrols uses MS
San Serif. When your GUI runs on a different platform, it uses that computer’s
default font. This provides a consistent look with respect to your GUI and other
application GUIs.

If you have set the FontName property to a named font and want to return to
the default value, you can set the property to the string default. This ensures
that MATLAB uses the system default at runtime.

From within the GUI M-file, use the set command. For example, if there is a
push button in your GUI and its handle is stored in the pushbutton1 field of
the handles structure, then the statement,

set(handles.pushbutton1,'FontName','default')

sets the FontName property to use the system default. You can also use the
Property Inspector to set this property:

Designing for Cross-Platform Compatibility

4-31

Specifying a Fixed-Width Font
If you want to use a fixed-width font for a uicontrol, set its FontName property
to the string fixedwidth. This special identifier ensures that your GUI uses
the standard fixed-width font for the target platform.

You can find the name of the fixed-width font that is used on a given platform
by querying the root FixedWidthFontName property.

get(0,'FixedWidthFontName')

Using a Specific Font Name
You can specify an actual font name (such as Times or Courier) for the
FontName property. However, doing so may cause your GUI to look poorly when
run on a different computer. If the target computer does not have the specified
font, it will substitute another font that may not look good in your GUI or may
not be the standard font used for GUIs on that system. Also, different versions
of the same named font may have different size requirements for a given set of
characters.

Using Standard Background Color
By default, uicontrols use the standard background color for the platform on
which it is running (e.g., the standard shade of gray on the PC differs from that

4 Programming GUIs

4-32

on UNIX). When your GUI is deployed on a different platform, it uses that
computer’s standard color. This provides a consistent look with respect to your
GUI and other application GUIs.

If you change the BackgroundColor to another value, MATLAB always uses
the specified color.

Cross-Platform Compatible Figure Units
Cross-platform compatible GUIs should look correct on computers having
different screen sizes and resolutions. Since the size of a pixel can vary on
different computer displays, using the default figure Units of pixels does not
produce a GUI that looks the same on all platforms.

For this reason, GUIDE sets the figure Units property to characters.

System-Dependent Units
Figure character units are defined by characters from the default system font;
one character unit equals the width of the letter x in the system font. The
height of one character is the distance between the baselines of two lines of text
(note that character units are not square).

GUIDE sets the figure Units property to characters so that your GUIs
automatically adjust the size and relative spacing of components as the GUI
displays on different computers. For example, if the size of the text label on a
component becomes larger because of different system font metrics, then the
component size and the relative spacing between components increases
proportionally.

Types of Callbacks

4-33

Types of Callbacks
The primary mechanism for implementing a GUI is programming the callbacks
of the GUI components used to build the interface.

Callback Properties for All Graphics Objects
All graphics objects have three properties that enable you to define callback
routines:

• ButtonDownFcn — MATLAB executes this callback when users click the left
mouse button and the cursor is over the object or within a five-pixel border
around the object. See “Which Callback Executes” for information specific to
uicontrols

• CreateFcn — MATLAB executes this callback when creating the object.

• DeleteFcn — MATLAB executes this callback just before deleting the object.

Callback Properties for Figures
Figures have additional properties that execute callback routines with the
appropriate user action. Only the CloseRequestFcn has a callback defined by
default:

• CloseRequestFcn — MATLAB executes the specified callback when a
request is made to close the figure (by a close command, by the window
manager menu, or by quitting MATLAB).

• KeyPressFcn — MATLAB executes the specified callback when users press a
key and the cursor is within the figure window and no component has focus.

• ResizeFcn — MATLAB executes the specified callback routine when users
resize the figure window.

• WindowButtonDownFcn — MATLAB executes the specified callback when
users click the mouse button and the cursor is within the figure, but not over
an enabled uicontrol.

• WindowButtonMotionFcn — MATLAB executes the specified callback when
users move the mouse button within the figure window.

• WindowButtonUpFcn — MATLAB executes the specified callback when users
release the mouse button, after having pressed the mouse button within the
figure.

4 Programming GUIs

4-34

Callbacks for Specific Components
Some components have additional properties that execute callback routines
with the appropriate user action:

• Callback — MATLAB executes the specified callback when a user activates
a user interface control (uicontrol) or menu (uimenu) object, for example,
when a user presses a push button or selects a menu item.

• KeyPressFcn — MATLAB executes the specified callback when a user
presses a key and the callback’s component has focus.

• ResizeFcn — MATLAB executes the specified callback routine when users
resize a panel (uipanel) or button group (uibuttongroup) object.

• SelectionChangeFcn — MATLAB executes the specified callback routine
when a user selects a different radio button or toggle button in a button
group component.

Which Callback Executes
Clicking on an enabled uicontrol prevents any ButtonDownFcn and
WindowButtonDownFcn callbacks from executing. If you click on an inactive
uicontrol, figure, or other graphics objects having callbacks defined, MATLAB
first executes the WindownButtonDownFcn of the figure (if defined) and then the
ButtonDownFcn of the object targeted by the mouse click.

Adding a Callback
To add a callback subfunction to the GUI M-file, click the right mouse button
while the object is selected to display the Layout Editor context menu. Select
the desired callback from the context menu and GUIDE adds the subfunction
stub to the GUI M-file.

Interrupting Executing Callbacks

4-35

Interrupting Executing Callbacks
By default, MATLAB allows an executing callback to be interrupted by
subsequently invoked callbacks. For example, suppose you have created a
dialog box that displays a progress indicator while loading data. This dialog
could have a “Cancel” button that stops the loading operation. The “Cancel”
button’s callback routine would interrupt the currently executing callback
routine.

There are cases where you may not want user actions to interrupt an executing
callback. For example, a data analysis tool may need to perform lengthy
calculations before updating a graph. An impatient user may inadvertently
click the mouse on other components and thereby interrupt the calculations
while in progress. This could change the MATLAB state before returning to the
original callback.

The following sections provide more information on this topic:

• “Controlling Interruptibility”

• “The Event Queue”

• “Event Processing During Callback Execution”

Controlling Interruptibility
All graphics objects have an Interruptible property that determines whether
their callbacks can be interrupted. The default value is on, which means that
callbacks can be interrupted. However, MATLAB checks the event queue only
when it encounters certain commands — drawnow, figure, getframe, pause,
and, waitfor. Otherwise, the callback continues to completion.

The Event Queue
MATLAB commands that perform calculations or assign values to properties
execute as they are encountered in the callback. However, commands or actions
that affect the state of the figure window generate events that are placed in a
queue. Events are caused by any command that causes the figure to be redrawn
or any user action, such as a button click or cursor movement, for which there
is a callback routine defined.

MATLAB processes the event queue only when the callback finishes execution
or when the callback contains the following commands:

4 Programming GUIs

4-36

• drawnow

• figure
• getframe
• pause
• waitfor

When MATLAB encounters one of these commands in a callback, it suspends
execution and processes the events in the event queue. The way MATLAB
handles an event depends on the event type and the setting of the callback
object’s Interruptible property:

• Events that would cause another callback to execute (e.g., clicking a push
button or figure window mouse button actions) can execute the callback only
if the current callback object’s Interruptible property is on.

• Events that cause the figure window to redraw execute the redraw
regardless of the value of the current callback object’s Interruptible
property.

Note that callbacks defined for an object’s DeleteFcn or CreateFcn or a figure’s
CloseRequestFcn or ResizeFcn interrupt an executing callback regardless of
the value of the object’s Interruptible property.

What Happens to Events That Are Blocked — BusyAction Property
All objects have a BusyAction property that determines what happens to their
events when processed during noninterruptible callback routine execution.

BusyAction has two possible values:

• queue — Keep the event in the event queue and process it after the
noninterruptible callback finishes.

• cancel — Discard the event and remove it from the event queue.

Event Processing During Callback Execution
The following sequence describes how MATLAB processes events while a
callback executes:

1 If MATLAB encounters a drawnow, figure, getframe, pause, or waitfor
command in the callback routine, MATLAB suspends execution and begins
processing the event queue.

Interrupting Executing Callbacks

4-37

2 If the event at the top of the queue calls for a figure window redraw,
MATLAB performs the redraw and proceeds to the next event in the queue.

3 If the event at the top of the queue would cause a callback to execute,
MATLAB determines whether the object whose callback is suspended is
interruptible.

4 If the callback is interruptible, MATLAB executes the callback associated
with the interrupting event. If that callback contains a drawnow, figure,
getframe, pause, or waitfor command, MATLAB repeats these steps for the
remaining events in the queue.

5 If the callback is not interruptible, MATLAB checks the BusyAction
property of the object that generated the event.

a If BusyAction is queue, MATLAB leaves the event in the event queue.

b If BusyAction is cancel, MATLAB discards the event.

6 When all events have been processed (either left in the queue, discarded, or
handled as a redraw), MATLAB resumes execution of the interrupted
callback routine.

This process continues until the callback completes execution. When MATLAB
returns the prompt to the command window, all events have been processed.

4 Programming GUIs

4-38

Controlling Figure Window Behavior
When designing a GUI you need to consider how you want the figure window
to behave. The appropriate behavior for a particular GUI depends on intended
use. Consider the following examples:

• A GUI that implements tools for annotating graphs is usually designed to be
available while the user performs other MATLAB tasks. Perhaps this tool
operates on only one figure at a time so you need a new instance of this tool
for each graph.

• A dialog that requires an answer to a question may need to block MATLAB
execution until the user answers the question. However, the user may need
to look at other MATLAB windows to obtain information needed to answer
the question. The dialog is blocking.

• A dialog that warns users that the specified operation will delete files so you
want to force the user to respond to the warning before performing any other
action. In this case, the dialog is both blocking and modal.

The following techniques are useful for handling these GUI design issues:

• Allow single or multiple instances of the GUI at any one time.

• Use modal figure windows that allow users to interact only with the GUI.

Using Modal Figure Windows
Modal windows trap all keyboard and mouse events that occur in any visible
MATLAB window. This means a modal GUI figure can process the user
interactions with any of its components, but does not allow the user to access
any other MATLAB window (including the command window). In addition, a
modal window remains stacked on top of other MATLAB windows until it is
deleted, at which time focus returns to the window that last had focus. See the
figure WindowStyle property for more details.

Use modal figures when you want to force users to respond to your GUI before
allowing them to take other actions in MATLAB.

Making a Figure Modal
Set the figure’s WindowStyle property to modal to make the window modal. You
can use the Property Inspector to change this property or add a statement in

Controlling Figure Window Behavior

4-39

the initialization section of the GUI M-file in the opening function with the set
command.

set(hObject,'WindowStyle','modal')

Dismissing a Modal Figure
A GUI using a modal figure must take one of the following actions in a callback
routine to release control:

• Delete the figure.
delete(handles.figure1)

• Make the figure invisible.
set(handles.figure1,'Visible','off')

• Change the figure’s WindowStyle property to normal.
set(handles.figure1,'WindowStyle','normal')

The user can also type Ctrl+C in a modal figure to convert it to a normal
window.

4 Programming GUIs

4-40

Example: Using the Modal Dialog to Confirm an Operation
This example illustrates how to use the modal dialog GUI together with
another GUI that has a Close button. Clicking the Close button displays the
modal dialog, which asks users to confirm that they really want to proceed with
the close operation.

The following figure illustrates the dialog positioned over the GUI application,
awaiting the user’s response.

The example is presented in the following sections:

• “View Completed Layouts and Their GUI M-Files” on page 4-40

• “Setting Up the Close Confirmation Dialog” on page 4-41

• “Setting Up the GUI with the Close Button” on page 4-42

• “Running the GUI with the Close Button” on page 4-43

• “How the GUI and Dialog Work” on page 4-44

View Completed Layouts and Their GUI M-Files
If you are reading this in the MATLAB Help Browser, you can click the
following links to display the GUIDE Layout Editor and the MATLAB Editor
with a completed version of this example. This enables you to see the values of
all component properties and to understand how the components are
assembled to create the GUI. You can also see a complete listing of the code
that is discussed in the following sections.

Example: Using the Modal Dialog to Confirm an Operation

4-41

Note The following links execute MATLAB commands and are designed to
work within the MATLAB Help browser. If you are reading this online or in
PDF, you should go to the corresponding section in the MATLAB Help
Browser to use the links.

• Click here to display the GUIs in the Layout Editor.

• Click here to display the GUI M-files in the editor.

Setting Up the Close Confirmation Dialog
To set up the dialog, do the following:

1 Select New from the File menu in the GUIDE Layout Editor.

2 In the GUIDE Quick Start dialog, select the Modal Question Dialog
template and click OK.

3 Right-click the static text, Do you want to create a question dialog?,
in the Layout Editor and select Property Inspector from the pop-up menu.

4 Scroll down to String in the Property Inspector and change the String
property to Are you sure you want to close?

5 Select Save from the File menu and type modaldlg.fig in the File name
field.

The GUI should now appear as in the following figure.

4 Programming GUIs

4-42

Setting Up the GUI with the Close Button
To set up the second GUI with a Close button, do the following:

1 Select New from the File menu in the GUIDE Layout Editor.

2 In the GUIDE Quick Start dialog, select Blank GUI (Default) and click OK.
This opens the blank GUI in a new Layout Editor window.

3 Drag a push button from the Component palette of the Layout Editor into
the layout area.

4 Right-click the push button and select Property Inspector from the pop-up
menu.

5 Change the String property to Close.

6 Change the Tag property to close_pushbutton.

7 Click the M-file editor icon on the toolbar of the Layout Editor.

8 Click the callback icon on the toolbar of the M-file editor and select
close_pushbutton_Callback from the menu.

The following generated code for the close button callback should appear in
the M-file editor:

% --- Executes on button press in close_pushbutton.
function close_pushbutton_Callback(hObject, eventdata, handles)
% hObject handle to close_pushbutton (see GCBO)

Example: Using the Modal Dialog to Confirm an Operation

4-43

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

9 After these comments, add the following code:

% Get the current position of the GUI from the handles structure
% to pass to the modal dialog.
pos_size = get(handles.figure1,'Position');
% Call modaldlg with the argument 'Position'.
user_response = modaldlg('Title','Confirm Close');
switch user_response
case {'No'}

% take no action
case 'Yes'

% Prepare to close GUI application window
% .
% .
% .
delete(handles.figure1)

end

Running the GUI with the Close Button
Run the GUI with the Close button by clicking the Run button on the Layout
Editor toolbar. The GUI appears as in the following figure:

When you click the Close button on the GUI, the modal dialog appears as
shown in the following figure:

4 Programming GUIs

4-44

Clicking the Yes button closes both the close dialog and the GUI that calls it.
Clicking the No button closes just the dialog.

How the GUI and Dialog Work
This section describes what occurs when you click the Close button on the GUI:

1 User clicks the Close button. Its callback then

- Gets the current position of the GUI from the handles structure with the
command

pos_size = get(handles.figure1,'Position')

- Calls the modal dialog with the command
user_response = modaldlg('Title','Confirm Close');

This is an example of calling a GUI with a property value pair. In this case,
the figure property is 'Title', and its value is the string 'Confirm
Close'. Opening modaldlg with this syntax displays the text “Confirm
Close” at the top of the dialog. See “Input and Output Arguments” on
page 4-7 for more information about the options for calling a GUI.

2 The modal dialog opens with the 'Position' obtained from the GUI that
calls it.

3 The opening function in the modal dialog M-file:

- Makes the dialog modal.

- Executes the uiwait command, which causes the dialog to wait for the
user to click the Yes button or the No button, or click the close box (X) on
the window border.

Example: Using the Modal Dialog to Confirm an Operation

4-45

4 When a user clicks one of the two push buttons, the callback for the push
button

- Updates the output field in the handles structure

- Executes uiresume to return control to the opening function where uiwait
is called.

5 The output function is called, which returns the string Yes or No as an output
argument, and deletes the dialog with the command

delete(handles.figure1)

6 When the GUI with the Close button regains control, it receives the string
Yes or No. If the answer is 'No', it does nothing. If the answer is 'Yes', the
close button callback closes the GUI with the command

delete(handles.figure1)

4 Programming GUIs

4-46

5

GUI Applications

GUI with Multiple Axes (p. 5-2) Analyze data and generate frequency and time domain
plots in the GUI figure.

List Box Directory Reader (p. 5-9) List the contents of a directory, navigate to other
directories, and define what command to execute when
users double-click on a given type of file.

Accessing Workspace Variables from a
List Box (p. 5-15)

List variables in the base MATLAB workspace from a
GUI and plot them. This example illustrates selecting
multiple items and executing commands in a different
workspace.

A GUI to Set Simulink Model
Parameters (p. 5-19)

Set parameters in a Simulink® model, save and plot the
data, and implement a help button.

An Address Book Reader (p. 5-31) Read data from MAT-files, edit and save the data, and
manage GUI data using the handles structure.

5 GUI Applications

5-2

GUI with Multiple Axes
This example creates a GUI that contains two axes for plotting data. For
simplicity, this example obtains data by evaluating an expression using
parameters entered by the user.

Techniques Used in the Example
GUI-building techniques illustrated in this example include

• Controlling which axes is the target for plotting commands.

• Using edit text controls to read numeric input and MATLAB expressions.

GUI with Multiple Axes

5-3

View Completed Layout and Its GUI M-File
If you are reading this in the MATLAB Help browser, you can click the
following links to display the GUIDE Layout Editor and the MATLAB Editor
with a completed version of this example. This enables you to see the values of
all component properties and to understand how the components are
assembled to create the GUI. You can also see a complete listing of the code
that is discussed in the following sections.

Note The following links execute MATLAB commands and are designed to
work within the MATLAB Help browser. If you are reading this online or in
PDF, you should go to the corresponding section in the MATLAB Help
Browser to use the links.

• Click here to display this GUI in the Layout Editor.

• Click here to display the GUI M-file in the MATLAB Editor.

Design of the GUI
This GUI requires three input values:

• Frequency one (f1)

• Frequency two (f1)

• A time vector (t)

When the user clicks the Plot button, the GUI puts these values into a
MATLAB expression that is the sum of two sine function:

x = sin(2*pi*f1*t) + sin(2*pi*f2*t)

The GUI then calculates the FFT of x and creates two plots — one frequency
domain and one time domain.

Specifying Default Values for the Inputs
The GUI uses default values for the three inputs. This enables users to click on
the Plot button and see a result as soon as the GUI is run. It also helps to
indicate what values the user might enter.

5 GUI Applications

5-4

To create the default values, set the String property of the edit text. The
following figure shows the value set for the time vector.

Identifying the Axes
Since there are two axes in this GUI, you must be able to specify which one you
want to target when you issue the plotting commands. To do this, use the
handles structure, which contains the handles of all components in the GUI.

The field name in the handles structure that contains the handle of any given
component is derived from the component’s Tag property. To make code more
readable (and to make it easier to remember) this examples sets the Tag to
descriptive names.

GUI with Multiple Axes

5-5

For example, the Tag of the axes used to display the FFT is set to
frequency_axes. Therefore, within a callback, you access its handle with

handles.frequency_axes

Likewise, the Tag of the time axes is set to time_axes.

See “Managing GUI Data with the Handles Structure” on page 4-26 for more
information on the handles structure. See “Plot Push Button Callback” on
page 5-6 for the details of how to use the handle to specify the target axes.

GUI Option Settings
There are two GUI option settings that are particularly important for this GUI:

• Resize behavior: Proportional

• Command-line accessibility: Callback

Proportional Resize Behavior. Selecting Proportional as the resize behavior
enables users to change the GUI to better view the plots. The components
change size in proportion to the GUI figure size. This generally produces good
results except when extremes of dimensions are used.

Callback Accessibility of Object Handles. When GUIs include axes, handles should
be visible from within callbacks. This enables you to use plotting commands

5 GUI Applications

5-6

like you would on the command line. Note that Callback is the default setting
for command-line accessibility.

See “Selecting GUI Options” on page 3-28 for more information.

Plot Push Button Callback
This GUI uses only the Plot button callback; the edit text callbacks are not
needed and have been deleted from the GUI M-file. When a user clicks the Plot
button, the callback performs three basic tasks — it gets user input from the
edit text components, calculates data, and creates the two plots.

Getting User Input
The three edit text boxes provide a way for the user to enter values for the two
frequencies and the time vector. The first task for the callback is to read these
values. This involves:

• Reading the current values in the three edit text boxes using the handles
structure to access the edit text handles.

• Converting the two frequency values (f1 and f2) from string to doubles using
str2double.

• Evaluating the time string using eval to produce a vector t, which the
callback used to evaluate the mathematical expression.

The following code shows how the callback obtains the input.

% Get user input from GUI
f1 = str2double(get(handles.f1_input,'String'));
f2 = str2double(get(handles.f2_input,'String'));
t = eval(get(handles.t_input,'String'));

Calculating Data
Once the input data has been converted to numeric form and assigned to local
variables, the next step is to calculate the data needed for the plots. See the fft
function for an explanation of how this is done.

Targeting Specific Axes
The final task for the callback is to actually generate the plots. This involves

GUI with Multiple Axes

5-7

• Making the appropriate axes current using the axes command and the
handle of the axes. For example,
axes(handles.frequency_axes)

• Issuing the plot command.

• Setting any properties that are automatically reset by the plot command.

The last step is necessary because many plotting commands (including plot)
clear the axes before creating the graph. This means you cannot use the
Property Inspector to set the XMinorTick and grid properties that are used in
this example, since they are reset when the callback executes plot.

When looking at the following code listing, note how the handles structure is
used to access the handle of the axes when needed.

Plot Button Code Listing
function plot_button_Callback(hObject, eventdata, handles)
% hObject handle to plot_button (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get user input from GUI
f1 = str2double(get(handles.f1_input,'String'));
f2 = str2double(get(handles.f2_input,'String'));
t = eval(get(handles.t_input,'String'));

% Calculate data
x = sin(2*pi*f1*t) + sin(2*pi*f2*t);
y = fft(x,512);
m = y.*conj(y)/512;
f = 1000*(0:256)/512;;

% Create frequency plot
axes(handles.frequency_axes) % Select the proper axes
plot(f,m(1:257))
set(handles.frequency_axes,'XMinorTick','on')
grid on

% Create time plot
axes(handles.time_axes) % Select the proper axes

5 GUI Applications

5-8

plot(t,x)
set(handles.time_axes,'XMinorTick','on')
grid on

List Box Directory Reader

5-9

List Box Directory Reader
This example uses a list box to display the files in a directory. When the user
double clicks on a list item, one of the following happens:

• If the item is a file, the GUI opens the file appropriately for the file type.

• If the item is a directory, the GUI reads the contents of that directory into
the list box.

• If the item is a single dot (.), the GUI updates the display of the current
directory.

• If the item is two dots (..), the GUI changes to the directory up one level and
populates the list box with the contents of that directory.

The following figure illustrates the GUI.

View Layout and GUI M-File
If you are reading this in the MATLAB Help browser, you can click the
following links to display the GUIDE Layout Editor and the MATLAB Editor
with a completed version of this example. This enables you to see the values of
all component properties and to understand how the components are
assembled to create the GUI. You can also see a complete listing of the code
that is discussed in the following sections.

5 GUI Applications

5-10

Note The following links execute MATLAB commands and are designed to
work within the MATLAB Help browser. If you are reading this online or in
PDF, you should go to the corresponding section in the MATLAB Help
Browser to use the links.

• Click here to display this GUI in the Layout Editor.

• Click here to display the GUI M-file in the editor.

Implementing the GUI
The following sections describe the implementation:

• “Specifying the Directory to List” — shows how to pass a directory path as
input argument when the GUI is run.

• “Loading the List Box” — describes the subfunction that loads the contents
of the directory into the list box. This subfunction also saves information
about the contents of a directory in the handles structure.

• “The List Box Callback” — explains how the list box is programmed to
respond to user double clicks on items in the list box.

Specifying the Directory to List
You can specify the directory to list when the GUI is first opened by passing the
string 'create' and a string containing the full path to the directory as
arguments. The syntax for doing this is list_box('create','dir_path'). If
you do not specify a directory (i.e., if you call the GUI M-file with no input
arguments), the GUI then uses the MATLAB current directory.

The default behavior of the GUI M-file that GUIDE generates is to run the GUI
when there are no input arguments or to call a subfunction when the first input
argument is a character string. This example changes this behavior so that you
can call the M-file with

• No input arguments — run the GUI using the MATLAB current directory.

• First input argument is 'create' and second input argument is a string that
specifies a valid path to a directory — run the GUI, displaying the specified
directory.

List Box Directory Reader

5-11

• First input argument is not a directory, but is a character string and there is
more than one argument — execute the subfunction identified by the
argument (execute callback).

The following code listing show the setup section of the GUI M-file, which does
one the following:

• Sets the list box directory to the current directory, if no directory is specified.

• Changes the current directory, if a directory is specified.

function lbox2_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to untitled (see VARARGIN)

% Choose default command line output for lbox2
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

if nargin == 3,
 initial_dir = pwd;
elseif nargin > 4
 if strcmpi(varargin{1},'dir')
 if exist(varargin{2},'dir')
 initial_dir = varargin{2};
 else
 errordlg({'Input argument must be a valid',...
 'directory'},'Input Argument Error!')
 return
 end
 else
 errordlg('Unrecognized input argument',...
 'Input Argument Error!');
 return;
 end
end

5 GUI Applications

5-12

% Populate the listbox
load_listbox(initial_dir,handles)

Loading the List Box
This example creates a subfunction to load items into the list box. This
subfunction accepts the path to a directory and the handles structure as input
arguments. It performs these steps:

• Change to the specified directory so the GUI can navigate up and down the
tree as required.

• Use the dir command to get a list of files in the specified directory and to
determine which name is a directory and which is a file. dir returns a
structure (dir_struct) with two fields, name and isdir, which contain this
information.

• Sort the file and directory names (sortrows) and save the sorted names and
other information in the handles structure so this information can be passed
to other functions.

The name structure field is passed to sortrows as a cell array, which is
transposed to get one file name per row. The isdir field and the sorted index
values, sorted_index, are saved as vectors in the handles structure.

• Call guidata to save the handles structure.

• Set the list box String property to display the file and directory names and
set the Value property to 1. This is necessary to ensure Value never exceeds
the number of items in String, since MATLAB updates the Value property
only when a selection occurs and not when the contents of String changes.

• Displays the current directory in the text box by setting its String property
to the output of the pwd command.

The load_listbox function is called by the opening function of the GUI M-file
as well as by the list box callback.

function load_listbox(dir_path, handles)
cd (dir_path)
dir_struct = dir(dir_path);
[sorted_names,sorted_index] = sortrows({dir_struct.name}');
handles.file_names = sorted_names;
handles.is_dir = [dir_struct.isdir];
handles.sorted_index = [sorted_index];

List Box Directory Reader

5-13

guidata(handles.figure1,handles)
set(handles.listbox1,'String',handles.file_names,...

'Value',1)
set(handles.text1,'String',pwd)

The List Box Callback
The list box callback handles only one case: a double-click on an item. Double
clicking is the standard way to open a file from a list box. If the selected item
is a file, it is passed to the open command; if it is a directory, the GUI changes
to that directory and lists its contents.

Defining How to Open File Types
The callback makes use of the fact that the open command can handle a
number of different file types. However, the callback treats FIG-files
differently. Instead of opening the FIG-file, it passes it to the guide command
for editing.

Determining Which Item the User Selected
Since a single click on an item also invokes the list box callback, it is necessary
to query the figure SelectionType property to determine when the user has
performed a double click. A double-click on an item sets the SelectionType
property to open.

All the items in the list box are referenced by an index from 1 to n, where 1
refers to the first item and n is the index of the nth item. MATLAB saves this
index in the list box Value property.

The callback uses this index to get the name of the selected item from the list
of items contained in the String property.

Determining if the Selected Item is a File or Directory
The load_listbox function uses the dir command to obtain a list of values
that indicate whether an item is a file or directory. These values (1 for
directory, 0 for file) are saved in the handles structure. The list box callback
queries these values to determine if current selection is a file or directory and
takes the following action:

• If the selection is a directory — change to the directory (cd) and call
load_listbox again to populate the list box with the contents of the new
directory.

5 GUI Applications

5-14

• If the selection is a file — get the file extension (fileparts) to determine if
it is a FIG-file, which is opened with guide. All other file types are passed to
open.

The open statement is called within a try/catch block to capture errors in an
error dialog (errordlg), instead of returning to the command line.

function listbox1_Callback(hObject, eventdata, handles)

if strcmp(get(handles.figure1,'SelectionType'),'open') % If double click

index_selected = get(handles.listbox1,'Value');

file_list = get(handles.listbox1,'String');

filename = file_list{index_selected}; % Item selected in list box

if handles.is_dir(handles.sorted_index(index_selected)) % If directory

cd (filename)

load_listbox(pwd,handles) % Load list box with new directory

else

[path,name,ext,ver] = fileparts(filename);

switch ext

case '.fig'

guide (filename) % Open FIG-file with guide command

otherwise

try

open(filename) % Use open for other file types

catch

errordlg(lasterr,'File Type Error','modal')

end

end

end

end

Opening Unknown File Types
You can extend the file types that the open command recognizes to include any
file having a three-character extension. You do this by creating an M-file with
the name openxyz, where xyz is the extension. Note that the list box callback
does not take this approach for FIG-files since openfig.m is required by the
GUI M-file. See open for more information.

Accessing Workspace Variables from a List Box

5-15

Accessing Workspace Variables from a List Box
This GUI uses a list box to display workspace variables, which the user can
then plot.

Techniques Used in This Example
This example demonstrates how to:

• Populate the list box with the variable names that exist in the base
workspace.

• Display the list box with no items initially selected.

• Enable multiple item selection in the list box.

• Update the list items when the user press a button.

• Evaluate the plotting commands in the base workspace.

The following figure illustrates the layout.

Note that the list box callback is not used in this program because the plotting
actions are initiated by push buttons. In this situation you must do one of the
following:

• Leave the empty list box callback in the GUI M-file.

5 GUI Applications

5-16

• Delete the string assigned to the list box Callback property.

View Completed Layout and Its GUI M-File
If you are reading this in the MATLAB Help browser, you can click the
following links to display the GUIDE Layout Editor and the MATLAB Editor
with a completed version of this example. This enables you to see the values of
all component properties and to understand how the components are
assembled to create the GUI. You can also see a complete listing of the code
that is discussed in the following sections.

Note The following links execute MATLAB commands and are designed to
work within the MATLAB Help browser. If you are reading this online or in
PDF, you should go to the corresponding section in the MATLAB Help
Browser to use the links.

• Click here to display this GUI in the Layout Editor.

• Click here to display the GUI M-file in the editor.

Reading Workspace Variables
When the GUI initializes, it needs to query the workspace variables and set the
list box String property to display these variable names. Adding the following
subfunction to the GUI M-file accomplishes this using evalin to execute the
who command in the base workspace. The who command returns a cell array of
strings, which are used to populate the list box.

function update_listbox(handles)
vars = evalin('base','who');
set(handles.listbox1,'String',vars)

The function’s input argument is the handles structure generated by the GUI
M-file. This structure contains the handle of the list box, as well as the handles
all other components in the GUI.

The callback for the Update Listbox push button also calls update_listbox.

Accessing Workspace Variables from a List Box

5-17

Reading the Selections from the List Box
This GUI requires the user to select two variables from the workspace and then
choose one of three plot commands to create the graph: plot, semilogx, or
semilogy.

Enabling Multiple Selection
To enable multiple selection in a list box, you must set the Min and Max
properties so that Max Min > 1. This requires you to change the default Min
and Max values of 0 and 1 to meet these conditions. Use the Property Inspector
to set these properties on the list box.

How Users Select Multiple Items
List box multiple selection follows the standard for most systems:

• Control-click left mouse button — noncontiguous multi-item selection

• Shift-click left mouse button — contiguous multi-item selection

Users must use one of these techniques to select the two variables required to
create the plot.

Returning Variable Names for the Plotting Functions
The get_var_names subroutine returns the two variable names that are
selected when the user clicks on one of the three plotting buttons. The function

• Gets the list of all items in the list box from the String property.

• Gets the indices of the selected items from the Value property.

• Returns two string variables, if there are two items selected. Otherwise
get_var_names displays an error dialog explaining that the user must select
two variables.

Here is the code for get_var_names:

function [var1,var2] = get_var_names(handles)
list_entries = get(handles.listbox1,'String');
index_selected = get(handles.listbox1,'Value');
if length(index_selected) ~= 2

errordlg('You must select two variables',...
'Incorrect Selection','modal')

else

5 GUI Applications

5-18

var1 = list_entries{index_selected(1)};
var2 = list_entries{index_selected(2)};

end

Callbacks for the Plotting Buttons
The callbacks for the plotting buttons call get_var_names to get the names of
the variables to plot and then call evalin to execute the plot commands in the
base workspace.

For example, here is the callback for the plot function:

function plot_button_Callback(hObject, eventdata, handles)
[x,y] = get_var_names(handles);
evalin('base',['plot(' x ',' y ')'])

The command to evaluate is created by concatenating the strings and variables
that result in the command:

plot(x,y)

A GUI to Set Simulink Model Parameters

5-19

A GUI to Set Simulink Model Parameters
This example illustrates how to create a GUI that sets the parameters of a
Simulink® model. In addition, the GUI can run the simulation and plot the
results. The following picture shows the GUI after running three simulations
with different values for controller gains.

Techniques Used in This Example
This example illustrates a number of GUI building techniques:

• Opening and setting parameters on a Simulink model from a GUI.

• Implementing sliders that operate in conjunction with text boxes, which
display the current value as well as accepting user input.

• Enabling and disabling controls, depending on the state of the GUI.

• Managing a variety of shared data using the handles structure.

• Directing graphics output to figures with hidden handles.

• Adding a help button that displays .html files in the MATLAB Help
browser.

View Completed Layout and Its GUI M-File
If you are reading this in the MATLAB Help browser, you can click the
following links to display the GUIDE Layout Editor and the MATLAB Editor
with a completed version of this example. This enables you to see the values of

5 GUI Applications

5-20

all component properties and to understand how the components are
assembled to create the GUI. You can also see a complete listing of the code
that is discussed in the following sections.

Note The following links execute MATLAB commands and are designed to
work within the MATLAB Help browser. If you are reading this online or in
PDF, you should go to the corresponding section in the MATLAB Help
Browser to use the links.

• Click here to display this GUI in the Layout Editor.

• Click here to display the GUI M-file in the editor.

How to Use the GUI (Text of GUI Help)
You can use the F14 Controller Gain Editor to analyze how changing the gains
used in the Proportional-Integral Controller affect the aircraft's angle of attack
and the amount of G force the pilot feels.

Note that the Simulink diagram f14.mdl must be open to run this GUI. If you
close the F14 Simulink model, the GUI reopens it whenever it requires the
model to execute.

Changing the Controller Gains
You can change gains in two blocks:

• The Proportional gain (Kf) in the Gain block

• The Integral gain (Ki) in the Transfer Function block

You can change either of the gains in one of the two ways:

• Move the slider associated with that gain.

• Type a new value into the Current value edit field associated with that gain.

The block’s values are updated as soon as you enter the new value in the GUI.

A GUI to Set Simulink Model Parameters

5-21

Running the Simulation
Once you have set the gain values, you can run the simulation by clicking the
Simulate and store results button. The simulation time and output vectors
are stored in the Results list.

Plotting the Results
You can generate a plot of one or more simulation results by selecting the row
of results (Run1, Run2, etc.) in the Results list that you want to plot and clicking
the Plot button. If you select multiple rows, the graph contains a plot of each
result.

The graph is displayed in a figure, which is cleared each time you click the Plot
button. The figure’s handle is hidden so that only the GUI can display graphs
in this window.

Removing Results
To remove a result from the Results list, select the row or rows you want to
remove and click the Remove button.

Running the GUI
The GUI is nonblocking and nonmodal since it is designed to be used as an
analysis tool.

GUI Options Settings
This GUI uses the following GUI option settings:

• Resize behavior: Non-resizable

• Command-line accessibility: Off

• M-file options selected:

- Generate callback function prototypes

- GUI allows only one instance to run

Opening the Simulink Block Diagrams
This example is designed to work with the F14 Simulink model. Since the GUI
sets parameters and runs the simulation, the F14 model must be open when
the GUI is displayed. When the GUI M-file runs the GUI, it executes the
model_open subfunction. The purpose of the subfunction is to

5 GUI Applications

5-22

• Determine if the model is open (find_system).

• Open the block diagram for the model and the subsystem where the
parameters are being set, if not open already (open_system).

• Change the size of the controller Gain block so it can display the gain value
(set_param).

• Bring the GUI forward so it is displayed on top of the Simulink diagrams
(figure).

• Set the block parameters to match the current settings in the GUI.

Here is the code for the model_open subfunction.

function model_open(handles)

if isempty(find_system('Name','f14')),

open_system('f14'); open_system('f14/Controller')

set_param('f14/Controller/Gain','Position',[275 14 340 56])

figure(handles.F14ControllerEditor)

set_param('f14/Controller Gain','Gain',...

get(handles.KfCurrentValue,'String'))

set_param('f14/Controller/Proportional plus integral compensator',...

'Numerator',...

get(handles.KiCurrentValue,'String'))

end

Programming the Slider and Edit Text Components
This GUI employs a useful combination of components in its design. Each
slider is coupled to an edit text component so that:

• The edit text displays the current value of the slider.

• The user can enter a value into the edit text box and cause the slider to
update to that value.

• Both components update the appropriate model parameters when activated
by the user.

Slider Callback
The GUI uses two sliders to specify block gains since these components enable
the selection of continuous values within a specified range. When a user
changes the slider value, the callback executes the following steps:

A GUI to Set Simulink Model Parameters

5-23

• Calls model_open to ensure that the Simulink model is open so that
simulation parameters can be set.

• Gets the new slider value.

• Sets the value of the Current value edit text component to match the slider.

• Sets the appropriate block parameter to the new value (set_param).

Here is the callback for the Proportional (Kf) slider.

function KfValueSlider_Callback(hObject, eventdata, handles)
% Ensure model is open
model_open(handles)
% Get the new value for the Kf Gain from the slider
NewVal = get(hObject, 'Value');
% Set the value of the KfCurrentValue to the new value set by
slider
set(handles.KfCurrentValue,'String',NewVal)
% Set the Gain parameter of the Kf Gain Block to the new value
set_param('f14/Controller/Gain','Gain',num2str(NewVal))

Note that, while a slider returns a number and the edit text requires a string,
uicontrols automatically convert the values to the correct type.

The callback for the Integral (Ki) slider follows a similar approach.

Current Value Edit Text Callback
The edit text box enables users to type in a value for the respective parameter.
When the user clicks on another component in the GUI after typing into the
text box, the edit text callback executes the following steps:

• Calls model_open to ensure that the Simulink model is open so that it can set
simulation parameters.

• Converts the string returned by the edit box String property to a double
(str2double).

• Checks whether the value entered by the user is within the range of the
slider:

If the value is out of range, the edit text String property is set to the value
of the slider (rejecting the number typed in by the user).

If the value is in range, the slider Value property is updated to the new value.

5 GUI Applications

5-24

• Sets the appropriate block parameter to the new value (set_param).

Here is the callback for the Kf Current value text box.

function KfCurrentValue_Callback(hObject, eventdata, handles)
% Ensure model is open
model_open(handles)
% Get the new value for the Kf Gain
NewStrVal = get(hObject, 'String');
NewVal = str2double(NewStrVal);
% Check that the entered value falls within the allowable range
if isempty(NewVal) | (NewVal< -5) | (NewVal>0),

% Revert to last value, as indicated by KfValueSlider
OldVal = get(handles.KfValueSlider,'Value');
set(hObject, 'String',OldVal)

else, % Use new Kf value
% Set the value of the KfValueSlider to the new value
set(handles.KfValueSlider,'Value',NewVal)
% Set the Gain parameter of the Kf Gain Block to the new value
set_param('f14/Controller/Gain','Gain',NewStrVal)

end

The callback for the Ki Current value follows a similar approach.

Running the Simulation from the GUI
The GUI Simulate and store results button callback runs the model
simulation and stores the results in the handles structure. Storing data in the
handles structure simplifies the process of passing data to other subfunction
since this structure can be passed as an argument.

When a user clicks on the Simulate and store results button, the callback
executes the following steps:

• Calls sim, which runs the simulation and returns the data that is used for
plotting.

• Creates a structure to save the results of the simulation, the current values
of the simulation parameters set by the GUI, and the run name and number.

• Stores the structure in the handles structure.

• Updates the list box String to list the most recent run.

A GUI to Set Simulink Model Parameters

5-25

Here is the Simulate and store results button callback.

function SimulateButton_Callback(hObject, eventdata, handles)
[timeVector,stateVector,outputVector] = sim('f14');
% Retrieve old results data structure
if isfield(handles,'ResultsData') &
~isempty(handles.ResultsData)

ResultsData = handles.ResultsData;
% Determine the maximum run number currently used.
maxNum = ResultsData(length(ResultsData)).RunNumber;
ResultNum = maxNum+1;

else
% Set up the results data structure
ResultsData = struct('RunName',[],'RunNumber',[],...
'KiValue',[],'KfValue',[],'timeVector',[],...
'outputVector',[]);
ResultNum = 1;

end
if isequal(ResultNum,1),

% Enable the Plot and Remove buttons
set([handles.RemoveButton,handles.PlotButton],'Enable','on')

end
% Get Ki and Kf values to store with the data and put in the
results list.
Ki = get(handles.KiValueSlider,'Value');
Kf = get(handles.KfValueSlider,'Value');
ResultsData(ResultNum).RunName = ['Run',num2str(ResultNum)];
ResultsData(ResultNum).RunNumber = ResultNum;
ResultsData(ResultNum).KiValue = Ki;
ResultsData(ResultNum).KfValue = Kf;
ResultsData(ResultNum).timeVector = timeVector;
ResultsData(ResultNum).outputVector = outputVector;
% Build the new results list string for the listbox
ResultsStr = get(handles.ResultsList,'String');
if isequal(ResultNum,1)

ResultsStr = {['Run1',num2str(Kf),' ',num2str(Ki)]};
else

ResultsStr = [ResultsStr;...
{['Run',num2str(ResultNum),' ',num2str(Kf),' ', ...
num2str(Ki)]}];

5 GUI Applications

5-26

end
set(handles.ResultsList,'String',ResultsStr);
% Store the new ResultsData
handles.ResultsData = ResultsData;
guidata(hObject, handles)

Removing Results from the List Box
The GUI Remove button callback deletes any selected item from the
Results list list box. It also deletes the corresponding run data from the
handles structure. When a user clicks on the Remove button, the callback
executes the following steps:

• Determines which list box items are selected when a user clicks on the
Remove button and removes these items from the list box String property
by setting each item to the empty matrix [].

• Removes the deleted data from the handles structure.

• Displays the string <empty> and disables the Remove and Plot buttons
(using the Enable property), if all the items in the list box are removed.

• Save the changes to the handles structure (guidata).

Here is the Remove button callback.

function RemoveButton_Callback(hObject, eventdata, handles)
currentVal = get(handles.ResultsList,'Value');
resultsStr = get(handles.ResultsList,'String');
numResults = size(resultsStr,1);
% Remove the data and list entry for the selected value
resultsStr(currentVal) =[];
handles.ResultsData(currentVal)=[];
% If there are no other entries, disable the Remove and Plot button
% and change the list sting to <empty>
if isequal(numResults,length(currentVal)),

resultsStr = {'<empty>'};
currentVal = 1;

set([handles.RemoveButton,handles.PlotButton],'Enable','off')
end
% Ensure that list box Value is valid, then reset Value and String
currentVal = min(currentVal,size(resultsStr,1));

A GUI to Set Simulink Model Parameters

5-27

set(handles.ResultsList,'Value',currentVal,'String',resultsStr)
% Store the new ResultsData
guidata(hObject, handles)

Plotting the Results Data
The GUI Plot button callback creates a plot of the run data and adds a legend.
The data to plot is passed to the callback in the handles structure, which also
contains the gain settings used when the simulation ran. When a user clicks on
the Plot button, the callback executes the following steps:

• Collects the data for each run selected in the Results list, including two
variables (time vector and output vector) and a color for each result run to
plot.

• Generates a string for the legend from the stored data.

• Creates the figure and axes for plotting and saves the handles for use by the
Close button callback.

• Plots the data, adds a legend, and makes the figure visible.

Plotting Into the Hidden Figure
The figure that contains the plot is created invisible and then made visible
after adding the plot and legend. To prevent this figure from becoming the
target for plotting commands issued at the command line or by other GUIs, its
HandleVisibility and IntegerHandle properties are set to off. However, this
means the figure is also hidden from the plot and legend commands.

Use the following steps to plot into a hidden figure:

• Save the handle of the figure when you create it.

• Create an axes, set its Parent property to the figure handle, and save the
axes handle.

• Create the plot (which is one or more line objects), save these line handles,
and set their Parent properties to the handle of the axes.

• Make the figure visible.

Plot Button Callback Listing
Here is the Plot button callback.

function PlotButton_Callback(hObject, eventdata, handles)

5 GUI Applications

5-28

currentVal = get(handles.ResultsList,'Value');
% Get data to plot and generate command string with color
% specified
legendStr = cell(length(currentVal),1);
plotColor = {'b','g','r','c','m','y','k'};
for ctVal = 1:length(currentVal);

PlotData{(ctVal*3)-2} =
handles.ResultsData(currentVal(ctVal)).timeVector;

PlotData{(ctVal*3)-1} =
handles.ResultsData(currentVal(ctVal)).outputVector;

numColor = ctVal - 7*(floor((ctVal-1)/7));
PlotData{ctVal*3} = plotColor{numColor};
legendStr{ctVal} =

[handles.ResultsData(currentVal(ctVal)).RunName,...
'; Kf=', ...

num2str(handles.ResultsData(currentVal(ctVal)).KfValue),...
'; Ki=', ...

num2str(handles.ResultsData(currentVal(ctVal)).KiValue)];
end
% If necessary, create the plot figure and store in handles
% structure
if ~isfield(handles,'PlotFigure') |
~ishandle(handles.PlotFigure),

handles.PlotFigure = figure('Name','F14 Simulation
Output',...

'Visible','off','NumberTitle','off',...
'HandleVisibility','off','IntegerHandle','off');

handles.PlotAxes = axes('Parent',handles.PlotFigure);
guidata(hObject, handles)

end
% Plot data
pHandles = plot(PlotData{:},'Parent',handles.PlotAxes);
% Add a legend, and bring figure to the front
legend(pHandles(1:2:end),legendStr{:})
% Make the figure visible and bring it forward
figure(handles.PlotFigure)

A GUI to Set Simulink Model Parameters

5-29

The GUI Help Button
The GUI Help button callback displays an HTML file in the MATLAB Help
browser. It uses two commands:

• The which command returns the full path to the file when it is on the
MATLAB path

• The web command displays the file in the Help browser.

This is the Help button callback.

function HelpButton_Callback(hObject, eventdata, handles)
HelpPath = which('f14ex_help.html');
web(HelpPath);

You can also display the help document in a Web browser or load an external
URL. See the Web documentation for a description of these options.

Closing the GUI
The GUI Close button callback closes the plot figure, if one exists and then
closes the GUI. The handle of the plot figure and the GUI figure are available
from the handles structure. The callback executes two steps:

• Checks to see if there is a PlotFigure field in the handles structure and if it
contains a valid figure handle (the user could have closed the figure
manually).

• Closes the GUI figure

This is the Close button callback.

function CloseButton_Callback(hObject, eventdata, handles)
% Close the GUI and any plot window that is open
if isfield(handles,'PlotFigure') & ishandle(handles.PlotFigure),

close(handles.PlotFigure);
end
close(handles.F14ControllerEditor);

The List Box Callback and Create Function
This GUI does not use the list box callback since the actions performed on list
box items are carried out by push buttons (Simulate and store results,
Remove, and Plot). However, GUIDE automatically inserts a callback stub

5 GUI Applications

5-30

when you add the list box and automatically sets the Callback property to
execute this subfunction whenever the callback is triggered (which happens
when users select an item in the list box).

In this case, there is no need for the list box callback to execute, so you should
delete it from the GUI M-file. It is important to remember to also delete the
Callback property string so MATLAB does not attempt to execute the callback.
You can do this using the property inspector:

See the description of list boxes for more information on how to trigger the list
box callback.

Setting the Background to White
The list box create function enables you to determine the background color of
the list box. The following code shows the create function for the list box that
is tagged ResultsList.

function ResultsList_CreateFcn(hObject, eventdata, handles)

% Hint: listbox controls usually have a white background, change

% 'usewhitebg' to 0 to use default. See ISPC and COMPUTER.

usewhitebg = 1;

if usewhitebg

 set(hObject,'BackgroundColor','white');

else

set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));

end

An Address Book Reader

5-31

An Address Book Reader
This example shows how to implement a GUI that displays names and phone
numbers, which it reads from a MAT-file.

Techniques Used in This Example
This example demonstrates the following GUI programming techniques:

• Uses open and save dialogs to provide a means for users to locate and open
the address book MAT-files and to save revised or new address book
MAT-files.

• Defines callbacks written for GUI menus.

• Uses the GUI’s handles structure to save and recall shared data.

• Uses a GUI figure resize function.

Managing Shared Data
One of the key techniques illustrated in this example is how to keep track of
information and make it available to the various subfunctions. This
information includes

• The name of the current MAT-file

5 GUI Applications

5-32

• The names and phone numbers stored in the MAT-file

• An index pointer that indicates the current name and phone number, which
must be updated as the user pages through the address book

• The figure position and size

• The handles of all GUI components

The descriptions of the subfunctions that follow illustrate how to save and
retrieve information from the handles structure. See “Sharing Data with the
Handles Structure” on page 4-2 for background information on this structure.

View Completed Layout and Its GUI M-File
If you are reading this in the MATLAB Help browser, you can click the
following links to display the GUIDE Layout Editor and the MATLAB Editor
with a completed version of this example. This enables you to see the values of
all component properties and to understand how the components are
assembled to create the GUI. You can also see a complete listing of the code
that is discussed in the following sections.

Note The following links execute MATLAB commands and are designed to
work within the MATLAB Help browser. If you are reading this online or in
PDF, you should go to the corresponding section in the MATLAB Help
Browser to use the links.

• Click here to display this GUI in the Layout Editor.

• Click here to display the GUI M-file in the MATLAB Editor.

Running the GUI
The GUI is nonblocking and nonmodal since it is designed to be displayed while
you perform other MATLAB tasks.

GUI Option Settings
This GUI uses the following GUI option settings:

• Resize behavior: User-specified

• Command-line accessibility: Off

An Address Book Reader

5-33

• GUI M-file options selected:

Generate callback function prototypes

Application allows only one instance to run

Calling the GUI
You can call the GUI M-file with no arguments, in which case the GUI uses the
default address book MAT-file, or you can specify an alternate MAT-file from
which the GUI reads information. In this example, the user calls the GUI with
a pair of arguments, address_book('book', 'my_list.mat'). The first
argument, 'book', is a key word that the M-file looks for in the opening
function. If the M-file finds the key word, it knows tho use the second argument
as the MAT-file for the address book. Calling the GUI with this syntax is
analogous to calling it with a valid property-value pair, such as ('color',
'red'). However, since 'book' is not a valid figure property, in this example
the opening function in the M-file includes code to recognize the pair ('book',
'my_list.mat').

Note that it is not necessary to use the key word 'book'. You could program
the M-file to accept just the MAT-file as an argument, using the syntax
address_book('my_list.mat'). The advantage of calling the GUI with the
pair ('book', 'my_list.mat') is that you can program the GUI to accept
other user arguments, as well as valid figure properties, using the
property-value pair syntax. The GUI can then identify which property the user
wants to specify from the property name.

The following code shows how to program the opening function to look for the
key word 'book', and if it finds the key word, to use the MAT-file specified by
the second argument as the list of contacts.

function address_book_OpeningFcn(hObject, eventdata, handles, varargin)

% Choose default command line output for address_book

handles.output = hObject;

% Update handles structure

guidata(hObject, handles);

% User added code follows

if nargin < 4

 % Load the default address book

 Check_And_Load([],handles);

 % If first element in varargin is 'book' and the second element is a

 % MATLAB file, then load that file

5 GUI Applications

5-34

elseif (length(varargin) == 2 & strcmpi(varargin{1},'book') & (2 ==

exist(varargin{2},'file')))

 Check_And_Load(varargin{2},handles);

else

 errordlg('File Not Found','File Load Error')

 set(handles.Contact_Name,'String','')

 set(handles.Contact_Phone,'String','')

end

Loading an Address Book Into the Reader
There are two ways in which an address book (i.e., a MAT-file) is loaded into
the GUI:

• When running the GUI, you can specify a MAT-file as an argument. If you
do not specify an argument, the GUI loads the default address book
(addrbook.mat).

• The user can select Open under the File menu to browse for other MAT-files.

Validating the MAT-file
To be a valid address book, the MAT-file must contain a structure called
Addresses that has two fields called Name and Phone. The Check_And_Load
subfunction validates and loads the data with the following steps:

• Loads (load) the specified file or the default if none is specified.

• Determines if the MAT-file is a valid address book.

• Displays the data if it is valid. If it is not valid, displays an error dialog
(errordlg).

• Returns 1 for valid MAT-files and 0 if invalid (used by the Open menu
callback)

• Saves the following items in the handles structure:

- The name of the MAT-file

- The Addresses structure

- An index pointer indicating which name and phone number are currently
displayed

An Address Book Reader

5-35

Check_And_Load Code Listing
This is the Check_And_Load function.

function pass = Check_And_Load(file,handles)
% Initialize the variable "pass" to determine if this is a valid
% file.
pass = 0;
% If called without any file then set file to the default file
% name.
% Otherwise if the file exists then load it.
if isempty(file)

file = 'addrbook.mat';
handles.LastFile = file;
guidata(handles.Address_Book,handles)

end
if exist(file) == 2

data = load(file);
end
% Validate the MAT-file
% The file is valid if the variable is called "Addresses" and it
% has fields called "Name" and "Phone"
flds = fieldnames(data);
if (length(flds) == 1) & (strcmp(flds{1},'Addresses'))

fields = fieldnames(data.Addresses);
if (length(fields) == 2) &(strcmp(fields{1},'Name')) &

(strcmp(fields{2},'Phone'))
pass = 1;

end
end
% If the file is valid, display it
if pass

% Add Addresses to the handles structure
handles.Addresses = data.Addresses;
guidata(handles.Address_Book,handles)
% Display the first entry
set(handles.Contact_Name,'String',data.Addresses(1).Name)
set(handles.Contact_Phone,'String',data.Addresses(1).Phone)
% Set the index pointer to 1 and save handles
handles.Index = 1;
guidata(handles.Address_Book,handles)

5 GUI Applications

5-36

else
errordlg('Not a valid Address Book','Address Book Error')

end

The Open Menu Callback
The address book GUI contains a File menu that has an Open submenu for
loading address book MAT-files. When selected, Open displays a dialog
(uigetfile) that enables the user to browser for files. The dialog displays only
MAT-files, but users can change the filter to display all files.

The dialog returns both the filename and the path to the file, which is then
passed to fullfile to ensure the path is properly constructed for any platform.
Check_And_Load validates and load the new address book.

Open_Callback Code Listing
function Open_Callback(hObject, eventdata, handles)
[filename, pathname] = uigetfile(...

{'*.mat', 'All MAT-Files (*.mat)'; ...
'*.*','All Files (*.*)'}, ...

'Select Address Book');
% If "Cancel" is selected then return
if isequal([filename,pathname],[0,0])

return
% Otherwise construct the fullfilename and Check and load the file
else

File = fullfile(pathname,filename);
% if the MAT-file is not valid, do not save the name
if Check_And_Load(File,handles)

handles.LastFIle = File;
guidata(hObject, handles)

end
end

See the “Creating Menus — The Menu Editor” on page 3-60 section for
information on creating the menu.

The Contact Name Callback
The Contact Name text box displays the name of the address book entry. If you
type in a new name and press enter, the callback performs these steps:

An Address Book Reader

5-37

• If the name exists in the current address book, the corresponding phone
number is displayed.

• If the name does not exist, a question dialog (questdlg) asks you if you want
to create a new entry or cancel and return to the name previously displayed.

• If you create a new entry, you must save the MAT-file with the File -> Save
menu.

Storing and Retrieving Data
This callback makes use of the handles structure to access the contents of the
address book and to maintain an index pointer (handles.Index) that enables
the callback to determine what name was displayed before it was changed by
the user. The index pointer indicates what name is currently displayed. The
address book and index pointer fields are added by the Check_And_Load
function when the GUI is run.

If the user adds a new entry, the callback adds the new name to the address
book and updates the index pointer to reflect the new value displayed. The
updated address book and index pointer are again saved (guidata) in the
handles structure.

Contact Name Callback
function Contact_Name_Callback(hObject, eventdata, handles)
% Get the strings in the Contact Name and Phone text box
Current_Name = get(handles.Contact_Name,'string');
Current_Phone = get(handles.Contact_Phone,'string');
% If empty then return
if isempty(Current_Name)

return
end
% Get the current list of addresses from the handles structure
Addresses = handles.Addresses;
% Go through the list of contacts
% Determine if the current name matches an existing name
for i = 1:length(Addresses)

if strcmp(Addresses(i).Name,Current_Name)
set(handles.Contact_Name,'string',Addresses(i).Name)
set(handles.Contact_Phone,'string',Addresses(i).Phone)
handles.Index = i;
guidata(hObject, handles)

5 GUI Applications

5-38

return
end

end
% If it's a new name, ask to create a new entry
Answer=questdlg('Do you want to create a new entry?', ...

'Create New Entry', ...
'Yes','Cancel','Yes');

switch Answer
case 'Yes'

Addresses(end+1).Name = Current_Name; % Grow array by 1
Addresses(end).Phone = Current_Phone;
index = length(Addresses);
handles.Addresses = Addresses;
handles.Index = index;
guidata(hObject, handles)
return

case 'Cancel'
% Revert back to the original number

set(handles.Contact_Name,'String',Addresses(handles.Index).Name)

set(handles.Contact_Phone,'String',Addresses(handles.Index).Phon
e)

return
end

The Contact Phone Number Callback
The Contact Phone # text box displays the phone number of the entry listed
in the Contact Name text box. If you type in a new number click one of the
push buttons, the callback opens a question dialog that asks you if you want to
change the existing number or cancel your change.

Like the Contact Name text box, this callback uses the index pointer
(handles.Index) to update the new number in the address book and to revert
to the previously displayed number if the user selects Cancel from the question
dialog. Both the current address book and the index pointer are saved in the
handles structure so that this data is available to other callbacks.

If you create a new entry, you must save the MAT-file with the File –> Save
menu.

An Address Book Reader

5-39

Code Listing
function Contact_Phone_Callback(hObject, eventdata, handles)

Current_Phone = get(handles.Contact_Phone,'string');

% If either one is empty then return

if isempty(Current_Phone)

return

end

% Get the current list of addresses from the handles structure

Addresses = handles.Addresses;

Answer=questdlg('Do you want to change the phone number?', ...

'Change Phone Number', ...

'Yes','Cancel','Yes');

switch Answer

case 'Yes'

% If no name match was found create a new contact

Addresses(handles.Index).Phone = Current_Phone;

handles.Addresses = Addresses;

guidata(hObject, handles)

return

case 'Cancel'

% Revert back to the original number

set(handles.Contact_Phone,'String',Addresses(handles.Index).Phone)

return

end

Paging Through the Address Book — Prev/Next
The Prev and Next buttons page back and forth through the entries in the
address book. Both push buttons use the same callback, Prev_Next_Callback.
You must set the Callback property of both push buttons to call this
subfunction, as the following illustration of the Prev push button Callback
property setting shows.

5 GUI Applications

5-40

Determining Which Button Is Clicked
The callback defines an additional argument, str, that indicates which button,
Prev or Next, was clicked. For the Prev button Callback property (illustrated
above), the Callback string includes 'Prev' as the last argument. The Next
button Callback string includes 'Next' as the last argument. The value of str
is used in case statements to implement each button’s functionality (see the
code listing below).

Paging Forward or Backward
Prev_Next_Callback gets the current index pointer and the addresses from the
handles structure and, depending on which button the user presses, the index
pointer is decremented or incremented and the corresponding address and
phone number are displayed. The final step stores the new value for the index
pointer in the handles structure and saves the updated structure using
guidata.

Code Listing
function Prev_Next_Callback(hObject, eventdata,handles,str)

% Get the index pointer and the addresses

index = handles.Index;

Addresses = handles.Addresses;

% Depending on whether Prev or Next was clicked change the display

switch str

case 'Prev'

% Decrease the index by one

i = index - 1;

% If the index is less then one then set it equal to the index of the

An Address Book Reader

5-41

% last element in the Addresses array

if i < 1

i = length(Addresses);

end

case 'Next'

% Increase the index by one

i = index + 1;

% If the index is greater than the size of the array then point

% to the first item in the Addresses array

if i > length(Addresses)

i = 1;

end

end

% Get the appropriate data for the index in selected

Current_Name = Addresses(i).Name;

Current_Phone = Addresses(i).Phone;

set(handles.Contact_Name,'string',Current_Name)

set(handles.Contact_Phone,'string',Current_Phone)

% Update the index pointer to reflect the new index

handles.Index = i;

guidata(hObject, handles)

Saving Changes to the Address Book from the Menu
When you make changes to an address book, you need to save the current
MAT-file, or save it as a new MAT-file. The File submenus Save and Save As
enable you to do this. These menus, created with the Menu Editor, use the
same callback, Save_Callback.

The callback uses the menu Tag property to identify whether Save or Save As
is the callback object (i.e., the object whose handle is passed in as the first
argument to the callback function). You specify the menu’s Tag property with
the Menu Editor.

Saving the Addresses Structure
The handles structure contains the Addresses structure, which you must save
(handles.Addresses) as well as the name of the currently loaded MAT-file
(handles.LastFile). When the user makes changes to the name or number,
the Contact_Name_Callback or the Contact_Phone_Callback updates
handles.Addresses.

5 GUI Applications

5-42

Saving the MAT-File
If the user selects Save, the save command is called to save the current
MAT-file with the new names and phone numbers.

If the user selects Save As, a dialog is displayed (uiputfile) that enables the
user to select the name of an existing MAT-file or specify a new file. The dialog
returns the selected filename and path. The final steps include

• Using fullfile to create a platform-independent pathname.

• Calling save to save the new data in the MAT-file.

• Updating the handles structure to contain the new MAT-file name.

• Calling guidata to save the handles structure.

Save_Callback Code Listing
function Save_Callback(hObject, eventdata, handles)
% Get the Tag of the menu selected
Tag = get(hObject, 'Tag');
% Get the address array
Addresses = handles.Addresses;
% Based on the item selected, take the appropriate action
switch Tag
case 'Save'

% Save to the default addrbook file
File = handles.LastFile;
save(File,'Addresses')

case 'Save_As'
% Allow the user to select the file name to save to
[filename, pathname] = uiputfile(...

{'*.mat';'*.*'}, ...
'Save as');

% If 'Cancel' was selected then return
if isequal([filename,pathname],[0,0])

return
else

% Construct the full path and save
File = fullfile(pathname,filename);
save(File,'Addresses')
handles.LastFile = File;
guidata(hObject, handles)

An Address Book Reader

5-43

end
end

The Create New Menu
The Create New menu simply clears the Contact Name and Contact Phone
text fields to facilitate adding a new name and number. After making the new
entries, the user must then save the address book with the Save or Save As
menus. This callback sets the text String properties to empty strings:

function New_Callback(hObject, eventdata, handles)
set(handles.Contact_Name,'String','')
set(handles.Contact_Phone,'String','')

The Address Book Resize Function
The address book defines its own resize function. To use this resize function,
you must set the Application Options dialog Resize behavior to
User-specified, which in turn sets the figure’s ResizeFcn property to:

address_book('ResizeFcn',gcbo,[],guidata(gcbo))

Whenever the user resizes the figure, MATLAB calls the ResizeFcn
subfunction in the address book M-file (address_book.m)

Behavior of the Resize Function
The resize function allows users to make the figure wider, to accommodate
long names and numbers, but does not allow the figure to be made narrower
than its original width. Also, users cannot change the height. These
restrictions do not limit the usefulness of the GUI and simplify the resize
function, which must maintain the proper proportions between the figure size
and the components in the GUI.

When the user resizes the figure and releases the mouse, the resize function
executes. At that point, the resized figure’s dimensions are saved. The
following sections describe how the resize function handles the various
possibilities.

Changing the Width
If the new width is greater than the original width, set the figure to the new
width.

5 GUI Applications

5-44

The size of the Contact Name text box changes in proportion to the new figure
width. This is accomplished by:

• Changing the Units of the text box to normalized.

• Resetting the width of the text box to be 78.9% of the figure’s width.

• Returning the Units to characters.

If the new width is less than the original width, use the original width.

Changing the Height
If the user attempts to change the height, use the original height. However,
because the resize function is triggered when the user releases the mouse
button after changing the size, the resize function cannot always determine the
original position of the GUI on screen. Therefore, the resize function applies a
compensation to the vertical position (second element in the figure Position
vector) as follows:

vertical position when mouse released + height when mouse released minus
the original height

When the figure is resized from the bottom, it stays in the same position. When
resized from the top, the figure moves to the location where the mouse button
is released.

Ensuring the Resized Figure Is On Screen
The resize function calls movegui to ensure that the resized figure is on screen
regardless of where the user releases the mouse.

When the GUI is first run, it is displayed at the size and location specified by
the figure Position property. You can set this property with the Property
Inspector when you create the GUI.

Code Listing
function ResizeFcn(hObject, eventdata, handles)

% Get the figure size and position

Figure_Size = get(hObject, 'Position');

% Set the figure's original size in character units

Original_Size = [0 0 94 19.230769230769234];

% If the resized figure is smaller than the

% original figure size then compensate

if (Figure_Size(3)<Original_Size(3)) | (Figure_Size(4) ~= Original_Size(4))

An Address Book Reader

5-45

if Figure_Size(3) < Original_Size(3)

% If the width is too small then reset to origianl width

set(hObject, 'Position',...

[Figure_Size(1) Figure_Size(2) Original_Size(3) Original_Size(4)])

Figure_Size = get(hObject, 'Position');

end

if Figure_Size(4) ~= Original_Size(4)

% Do not allow the height to change

set(hObject, 'Position',...

[Figure_Size(1), Figure_Size(2)+Figure_Size(4)-Original_Size(4),...

Figure_Size(3), Original_Size(4)])

end

end

% Adjust the size of the Contact Name text box

% Set the units of the Contact Name field to 'Normalized'

set(handles.Contact_Name,'units','normalized')

% Get its Position

C_N_pos = get(handles.Contact_Name,'Position');

% Reset it so that it's width remains normalized relative to figure

set(handles.Contact_Name,'Position',...

[C_N_pos(1) C_N_pos(2) 0.789 C_N_pos(4)])

% Return the units to 'Characters'

set(handles.Contact_Name,'units','characters')

% Reposition GUI on screen

movegui(hObject, 'onscreen')

5 GUI Applications

5-46

Index-1

Index

A
activate figure 3-19
ActiveX controls 4-17
aligning GUI components 3-37
Alignment Tool, for GUIs 3-37
application data 4-29
application M-file 4-2
application options 3-28
axes

multiple in GUI 5-2
axes, plotting when hidden 5-27

B
button groups 3-13

adding components 3-14

C
callback

arguments 3-34
callback syntax 3-33
callbacks

adding to GUI M-file in GUIDE 3-55
interrupting 4-35
types 4-33

check boxes 4-10
color of GUI background 3-35
command-line accessibility of GUIs 3-30
context menus

associating with an object 3-71
creating with GUIDE 3-68
menu items 3-69
parent menu 3-68

D
displaying an image 4-15

E
edit text 3-47, 4-10
editable text 4-10
event queue 4-35

G
GUI

help button 5-29
resize function 5-43
resizing 3-29
with multiple axes 5-2

GUI components
copying 3-18
cutting and clearing 3-18
moving 3-17
pasting and duplicating 3-18
selecting 3-17

GUI layout
copying components 3-18
cutting and clearing components 3-18
moving components 3-17
pasting and duplicating components 3-18
selecting components 3-17

GUI M-files
adding callbacks in GUIDE 3-55

GUI programming 4-1
GUIDE

application examples 5-1
application M-file 4-2
application options 3-28
command-line accessibility of GUIs 3-30

Index

Index-2

GUIDE (continued)
creating menus 3-60
demonstration 2-3
editing version 5 GUIs 1-12
generated M-file 3-32
grids and rulers 3-39
GUI background color 3-35
handles structure and global data 4-26
introduction 1-2
layout tools 3-1
programming the GUI 4-1
Property Inspector 3-43
resizing GUIs 3-29
setting properties 3-43

H
handles structure 4-26
help button for GUIs 5-29
hidden figure, accessing 5-27

L
Layout Editor 3-9

controls 1-4
Layout Tools, GUI 3-1
list box

example 5-9
list boxes 3-47, 4-11

M
Menu Editor 3-60
menus

callbacks 3-66
context menus 3-68
creating with GUIDE 3-60

drop-down menus 3-61
menu bar menus 3-61
menu items 3-62, 3-69
parent of context menu 3-68
pop-up 4-12
shortcut menus 3-68
specifying properties 3-61

M-file
generated by GUIDE 3-32

modal GUIs 4-38

O
Object Browser 3-59
opening .fig files 5-14

P
panels 3-12

adding components 3-14
GUI layout example 2-2

pop-up menus 3-50, 4-12
Property Inspector 3-43

R
radio buttons 3-47, 4-9
resize function for GUI 5-43
resizing GUIs 3-29

S
sharing data in GUIs 4-26
single instance 3-35
slider 3-48
sliders 3-12

Index

Index-3

T
toggle buttons 4-8
toolbar menus

creating with GUIDE 3-61

Index

Index-4

	Getting Started with GUIDE
	What Is GUIDE?
	Starting GUIDE
	The Layout Editor
	GUIDE Templates
	Running a GUI
	GUI FIG-Files and M-Files
	Programming the GUI M-file
	Editing Version 5 GUIs with Version 7 GUIDE
	Saving the GUI in Version 7 GUIDE
	Updating Callbacks

	Creating a GUI
	Designing the GUI
	Laying Out the GUI
	View Layout and Code for the Example
	Open a New GUI in the Layout Editor
	Set the GUI Figure Size
	Add the Components
	Align the Components

	Setting Properties for GUI Components
	Name Property
	Title Property
	String Property for Push Buttons and Static Text
	String Property for Pop-up Menus
	Callback Properties
	The Tag Property

	Programming the GUI
	Creating the GUI M-File
	Opening the GUI M-File
	Sharing Data Between Callbacks
	Adding Code to the Opening Function
	Adding Code to the Callbacks
	Using the Object Browser to Identify Callbacks

	Saving and Running a GUI

	Laying Out GUIs and Setting Properties
	Using GUIDE Templates
	Blank GUI
	GUI with Uicontrols
	GUI with Axes and Menu
	Modal Question Dialog

	Using the Layout Editor
	Starting the Layout Editor
	Selecting Components from the Component Palette
	Adding Components to the Layout Area
	Working with Components in the Layout Area
	Running the GUI
	Saving the Layout
	Renaming GUI Files
	Exporting a GUI to a Single M-File
	Displaying the GUI
	Layout Editor Preferences
	Layout Editor Context Menus

	Selecting GUI Options
	Configuring the GUI M-File
	Resize Behavior
	Command-Line Accessibility
	Generate FIG-File and M-File
	Generate Callback Function Prototypes
	GUI Allows Only One Instance to Run (Singleton)
	Using the System Background Colors
	Generate FIG-File Only

	Aligning Components in the Layout Editor
	Aligning Groups of Components — The Alignment Tool
	Grids and Rulers
	Aligning Components to Guide Lines
	Front-to-Back Positioning

	Setting Component Properties — The Property Inspector
	Displaying the Property Inspector
	What Properties Do I Need to Set?
	Some Commonly Used Properties
	Setting Properties for Some Specific Components
	Callback Properties
	Changing Tag and Callback Properties

	Viewing the Object Hierarchy — The Object Browser
	Creating Menus — The Menu Editor
	Defining Menus for the Menu Bar
	Menu Callbacks
	Defining Context Menus

	Setting the Tab Order — The Tab Order Editor

	Programming GUIs
	Understanding the GUI M-File
	Sharing Data with the Handles Structure
	Functions and Callbacks in the M-File
	Opening Function
	Output Function
	Callbacks
	Input and Output Arguments

	Programming Callbacks for GUI Components
	Toggle Button Callback
	Radio Buttons
	Check Boxes
	Edit Text
	Sliders
	List Boxes
	Pop-Up Menus
	Panels
	Button Groups
	Axes
	ActiveX Controls
	Figures

	Managing GUI Data with the Handles Structure
	Example: Passing Data Between Callbacks
	Application Data

	Designing for Cross-Platform Compatibility
	Using the Default System Font
	Using Standard Background Color
	Cross-Platform Compatible Figure Units

	Types of Callbacks
	Callback Properties for All Graphics Objects
	Callback Properties for Figures
	Callbacks for Specific Components
	Which Callback Executes
	Adding a Callback

	Interrupting Executing Callbacks
	Controlling Interruptibility
	The Event Queue
	Event Processing During Callback Execution

	Controlling Figure Window Behavior
	Using Modal Figure Windows

	Example: Using the Modal Dialog to Confirm an Operation
	View Completed Layouts and Their GUI M-Files
	Setting Up the Close Confirmation Dialog
	Setting Up the GUI with the Close Button
	Running the GUI with the Close Button
	How the GUI and Dialog Work

	GUI Applications
	GUI with Multiple Axes
	Techniques Used in the Example
	View Completed Layout and Its GUI M-File
	Design of the GUI
	Plot Push Button Callback

	List Box Directory Reader
	View Layout and GUI M-File
	Implementing the GUI
	Specifying the Directory to List
	Loading the List Box

	Accessing Workspace Variables from a List Box
	Techniques Used in This Example
	View Completed Layout and Its GUI M-File
	Reading Workspace Variables
	Reading the Selections from the List Box

	A GUI to Set Simulink Model Parameters
	Techniques Used in This Example
	View Completed Layout and Its GUI M-File
	How to Use the GUI (Text of GUI Help)
	Running the GUI
	Programming the Slider and Edit Text Components
	Running the Simulation from the GUI
	Removing Results from the List Box
	Plotting the Results Data
	The GUI Help Button
	Closing the GUI
	The List Box Callback and Create Function

	An Address Book Reader
	Techniques Used in This Example
	Managing Shared Data
	View Completed Layout and Its GUI M-File
	Running the GUI
	Loading an Address Book Into the Reader
	The Contact Name Callback
	The Contact Phone Number Callback
	Paging Through the Address Book — Prev/Next
	Saving Changes to the Address Book from the Menu
	The Create New Menu
	The Address Book Resize Function

	Index

