
1 Introduction to MATLAB

• MATLAB (short for Matrix Laboratory) is a package designed for both
practical computations and theoretical investigations of numerical meth-
ods and computation. (As its name probably indicates, its original forte
was matrix computations, however the current capabilities of MATLAB
are far greater.) MATLAB is actually based on a complex suite of C
programs that implement certain ”primitive” subroutine operations,
plus an interface driver routine which converts input ”English-like”
and mathematical expressions into the correct subroutine calls.
On most systems (including the PC’s in the laboratory we shall use),
MATLAB is started by ”double-clicking” on the appropriate icon. Af-
ter a brief delay, during which the program is loaded and a graphic
displaying a surface plot flashes on the screen, the MATLAB welcome
and the command prompt (>>) will appear. From here on, the user
is free to create virtually any allowable algebraic, functional, or matrix
operation or calculation by simply typing in the appropriate command.

>>(2+3*pi)/2

>>3*cos(sqrt(4.7))

>>format long

>>3*cos(sqrt(4.7))

• Assignment Statements

>>a=3-floor(exp(2.9))

>>b=sin(a);

>>2*b-2

• Defining Functions
Construct an m-file in the m-file Editor/Debugger (by selecting New
under File). Once defined, a user-defined function is called similarly
as built-in functions. Ex. Place the function fun(x) = 1 + x− x2/4 in
the m-file fun.m. In the Editor/Debugger:

function y=fun(x)

y=1+x-x.^2/4; %(Why . ?)

Once this function is saved as an m-file named fun.m,

>>cos(fun(3))

>>feval("fun",4)

1

Functions can be defined recursively! E.g. in fact.m: function y =
fact(n)

y = 1;

if n > 1

y = n*fact(n-1);

end

• Matrices. All variables in MATLAB are treated as matrices. Matrices
can be entered directly:

>>A=[1 2 3; 4 5 6; 7 8 9]

• Matrices can be generated by other functions. Matrix Operations.

>>Z=zeros(3,5); %(a 3 x 5 matrix of zeroes)

>>X=ones(3,5); %(a 3 x 5 matrix of ones)

>>Y=0:0.5:2

>>cos(Y)

>>A(2,3)

>>A(1:2,2:3)

>>A([1 3],[1 3]) %(another submatrix)

>>A(2,2)=tan(7.8);

>>B=[1 2;3 4];

>>C=B’

>>C %(C is the transpose of B)

>>3*(B*C)^3 %3(BC)3

• Array Operations

>>A=[1 2; 3 4];

>>A^2 %(matrix power A2)

>>A.^2 %(squares each entry of A)

>>cos(A./2) %cos (aij/2)

For any matrix x, compare the difference between the results of y =
1 + x − x.2/4 and y = 1 + x − x2/4

• Graphics
2- and 3-D plots of curves and surfaces. Use plot for 2-D functions.
For y = cosx and y = cos2x over [0, π]:

2

>>x=0:0.1:pi; %(step-size = 0.1)

>>y=cos(x);

>>z=cos(x).^2;

>>plot(x,y,x,z,’o’) %(o’s at (x_k, z_k))

fplot(’name’, [a,b],n) plots function name (in name.m) with n points
(default 25) in [a, b].

>>fplot(’tanh’,[-2,2]) %(tanh x, x [-2, 2])

plot and plot3 for parametric curves in 2- and 3-D space.
Ex. Ellipse c(t) = (2cost, 3sint), t ∈ [0, 2π]:

>>t=0:0.2:2*pi;

>>plot(2*cos(t),3*sin(t))

Ex. Curve c(t) = (2cost, t2, 1/t), t ∈ [0.1, 4π]:

>>t=0.1:0.1:4*pi;

>>plot3(2*cos(t),t.^2,1./t)

3-D surface plots, specify a rectangular subset of the domain of a func-
tion with meshgrid, mesh or surf.

>>x=-pi:0.1:pi;

>>y=x;

>>[x,y]=meshgrid(x,y);

>>z=sin(cos(x+y));

>>mesh(z)

• Loops and Conditionals
Relational Operators
== Equal to
∼= Not equal to
< Less than
> Greater than
<= Less than or equal to
>= Greater than or equal to
Logical Operators
∼ Not (complement)
& And (True if both operands true)

3

| Or (True if either/both operands true)
Boolean Values
1 True
0 false
Ex.

for i=1:5 %(Pascal’s Triangle)

A(i,1)=1; A(1,i)=1;

end

for i=2:5

for j=2:5

A(i,j)=A(i,j-l)+A(i-l,j);

end

end

A

Ex.

for k=1:100

x=sqrt(k);

if ((k>10)&(x-floor(x)==0))

break

end

end

k

Ex.

n=10; k=0;

while k<=n

x=k/3;

disp([x x-2 x-3])

k=k+l;

end

• Programs: An effcient way to construct programs is to use user-defined
functions, saved as m-files using the Editor/Debugger. These programs
allow the user to specify the input and output parameters. They are
easily called as subroutines in other programs. The following example
mode out Pascal’s triangle with a prime number. Ex.

4

function P=pasc(n,m)

%Input -- n is the number of rows

% -- m is the prime number

%Output -- P is Pascal’s triangle

for j=l:n

P(j,1)=1; P(1,j)=1;

end

for k=2:n

for j=2:n

P(k,j)=rem(P(k,j-1),m)+rem(P(k-l,j),m);

end

end

for k=2:n

for j=2:n

P(k,j)=P(k,j-1)+P(k-l,j);

end

end

In the MATLAB Command Window, try

>>P=pasc(5,3)

to see the first five rows of Pascal’s triangle mod 3. Or try

>>P=pasc(175,3); P

>>spy(P)

• Help
Information about specific MATLAB commands may obtained with
the help command. Simply typing help by itself actually produces
a listing of the available MATLAB ”toolboxes” (groupings of related
commands and functions), arranged by the general type of problem
they are designed to solve, while typing help, followed by the name
of a specific command. If you have any question about MATLAB
commands, ask to MATLAB as

>>help

>>help general

>>help ops

>>help spy

>>help det

>>help sym/det.m

5

• Give the command help chop and examine the output. Next, give, in
sequence, the commands

chop(27.321592 , 5)

chop(27.321592 , 4)

chop(27.321592 , 3)

Are the answers what you expected?

• Very little of MATLAB is actually written in C. Most MATLAB tool-
box commands and functions are really just text files containing se-
quences of other MATLAB commands and functions. Such files are
commonly called m-files, and are clearly identified because their Win-
dows file name ends in .m. The commands and functions stored in
an m-file are then executed whenever the user appropriately enters the
corresponding file name. (Having commands and functions written in
the more easily-readable MATLAB syntax, rather than in C, will signif-
icantly simplify our inspection and analysis of MATLAB algorithms.)

• As we have already briefly reviewed in this laboratory, and as we shall
see even more clearly in the rest of this course, MATLAB provides pow-
erful capabilites for theoretical and computational numerical analysis.
However, one drawback of MATLAB is that, by and large, it can only
perform numeric computation, i.e. every MATLAB command causes
a number of floating point computations to be made and the resulting
number(s) displayed. Another area of computation that is beginning to
come into its own is symbolic computation, which involves the manip-
ulation of algebraic expressions, and not just numbers. The difference
between these two types of computation is that, for example, a numeric
computation package will only be able to tell you that

∫
1

0

xe−xdx = 0.26424 . . .

while a symbolic computation program (i.e., Mathematica, MAPLE)
will also tell you that

∫
1

0

xe−xdx = 1 − 2e−1

6

