
1 Preliminaries

• How a computer can be used

– to solve problems that may not be solvable by hand

– to solve problems (that you may have solved before) in a different
way

• Many of these simplified examples can be solved analytically (by hand)

x3 − x2 − 3x + 3 = 0, with solution
√

3

• But most of the examples can not be simplified and can not be solved
analytically

• mathematical relationships =⇒ simulate some real word situations

1.1 Analysis vs Numerical Analysis

• In mathematics, solve a problem through equations; algebra, calcu-
lus, differential equations (DE), Partial DE, . . .

• In numerical analysis; four operations (add, substract, multiply, divi-
sion) and Comparation.

– These operations are exactly those that computers can do

∫ π

0

√
1 + cos2xdx

length of one arch of the curve y-sinx; no solution with ” a sub-
stitution” or ”integration by parts”
numerical analysis can compute the length of this curve by stan-
dardized methods that apply to essentially any integrand

• Another difference between a numerical results and analytical answer
is that the former is always an approximation

– this can usually be as accurate as needed (level of accuracy)

1

1.2 Computers and Numerical Analysis

• Numerical Methods require repetitive arithmetic operations ⇒ a com-
puter to carry out

– also, a human would make so many mistakes

• A computer program must be written so the the computer can do
numerical analysis

– FORTRAN, Pascal, C, C++, Java, . . .

– IMSL (International Mathematical and Statistical Library)

– LAPACK (Linear Algebra Package)

– Distributed and Parallel Computing; any idle computers connected
over network

– CAS (Computer Algebra System)

∗ Mathematica

∗ MATLAB

∗ Maple (For all above: if an analytical answer can not be given,
answer by numerical methods)

∗ This kind of programs mimics the way humans solve mathe-
matical problems

∗ ability to perform symbolically

∗ ability to carry out numerical procedures with extreme preci-
sion

∗ good for small problems and learning environment

1.3 An Illustrative Example

What is the longest ladder (L1 + L2)? (see the Fig. 1)

L1 =
w1

Sinb
, L2 =

w2

Sinc
, b = π − a− c, L = L1 + L2 =

w1

sin(π − a− c)
+

w2

sinc

The maximum length of the ladder⇒ dL
dc
cc=C = 0 ⇒ calculus way

MATLAB way is as the following: (see the Fig. 2)

a=123*2*pi*/360

L=inline(’9/sin(pi-2.1468-c)+7/sin(c)’)

fplot(L,[0.4,0.5]); grid on

fminbnd(L,0.4,0.5)

L(0.4677)

fminbnd(L,0.4,0.5,optimset(’Display’,’iter’))

2

Figure 1: An illustrating example: The ladder in the mine.

0.4 0.41 0.42 0.43 0.44 0.45 0.46 0.47 0.48 0.49 0.5
33.3

33.4

33.5

33.6

33.7

33.8

33.9

34

34.1

Figure 2: An illustrating example: The ladder in the mine. Solution with
MATLAB

3

1.4 Kinds of Errors in Numerical Procedures

Errors can occur in doing numerical procedures

• Error in original Data

• Blunders: Sometimes a test run with known results is worthwhile, but
is no guarantee of freedom from foolish error.

• Truncation Error: i.e., approximate ex by the cubic power

P3(x) = 1 +
x

1!
+

x2

2!
+

x3

3!
; ex = P3(x) +

∞∑
n=4

xn

n!

approximating ex with the cubic gives an inexact answer. The error is
due to truncating the series.
When to cut series expansion =⇒ be satisfied with an approximation
to the exact analytical answer

• Propagated Error:

– more subtle

– by propagated we mean an error in the succeeding steps of a pro-
cess due to an Occurrence of an earlier error

– of critical importance

– stable numerical methods; errors made at early points die out as
the method continues

– unstable numerical method; does not die out

• Round-off Error:

– All computing devices represents numbers, except for integers and
some fractions, with some imprecision

– floating-point numbers of fixed word length; the true values are
usually not expressed exactly by such representations

– if the number are rounded when stored as floating-point numbers,
the round-off error is less than if the trailing digits were simply
chopped off

• Absolute vs Relative Error:

– accuracy −→ great importance

4

Figure 3: Level of precision.

– absolute error = |true value− approximate error|
A given size of error is usually more serious when the magnitude
of the true value is small

– relative error = absolute error
|true value|

• Floating-Point Arithmetic: Performing an arithmetic operation ⇒
no exact answers unless only integers or exact powers of 2 are involved

– floating-point (real numbers)→ not integers

– resembles scientific notation

Table 1: Floating→ Normalized.
floating normalized (shifting the decimal point)
13.524 .13524 ∗ 102 (.13524E2)
-0.0442 −.442E − 1

– IEEE standard → storing floating-point numbers (see the Table
1.4)

∗ the sign ±
∗ the fraction part (called the mantissa)

∗ the exponent part

– There are three level of precision (see the Fig. 3)

– Rather than use one of the bits for the sign of the exponent, ex-
ponents are biased. For single precision:
28=256, 0 (255)=⇒ -127 (128). An exponent of -127 (128) stored
as 0 (255).
0−→00000000 = 0
255−→11111111=255

5

So biased−→ 2128 = 3.40282E + 38, mantissa gets 1 as maximum
Largest: 3.40282E+38; Smallest: 2.93873E-39
For double and extended precision the bias values are 1023 and
16383, respectively.

– Certain mathematical operations are undefined,
0
0
, 0 ∗∞,

√
−1 =⇒ NaN

• EPS: short for epsilon−→used for represent the smallest machine value
that can be added to 1.0 that gives a result distinguishable from 1.0 In
MATLAB:

>> eps

ans=2.2204E=016

eps −→ ε −→ (1 + ε) + ε = 1 but 1 + (ε + ε) > 1

• Round-off Error vs Truncation Error: Round-off occurs, even
when the procedure is exact, due to the imperfect precision of the
computer
Analytically df

dx
⇒ f

′

(x) = limh→0
f(x+h)−f(x)

(x+h)−x
: procedure

approximate value for f
′

(x) wit a small value for h .
h −→ smaller, the result is closer to the true value−→truncation error
is reduced
but at some point (depending of the precision of the computer) round-
off errors will dominate−→less exact=⇒There is a point where the

computational error is least

• Well-posed and well-conditioned problems: The accuracy de-
pends not only on the computer’s accuracy

– A problem is well-posed if a solution; exists, unique, depends on
varying parameters

∗ A nonlinear problem−→linear problem

∗ infinite−→large but finite

∗ complicated−→simplified

– A well-conditioned problem is not sensitive to changes in the val-
ues of the parameters (small changes to input do not cause to
large changes in the output)

– Modelling and simulation; the model may be not a really good
one

6

Figure 4: Computer numbers with six bit representation.

– if the problem is well-conditioned, the model still gives useful re-
sults in spite of small inaccuracies in the parameters

• Forward and Backward Error Analysis:
y = f(x)
ycalc = f(xcalc) : computed value

Efwd = ycalc − yexact where yexact is the value we would get if the com-
putational error were absent
Ebackwd = xcalc − x, ycalc = f(xcalc)
Example:
y = x2, x = 2.37 used only two digits
ycalc = 5.6 while yexact = 5.6169
Efwd = −0.0169, relative error →0.3%√

5.6 = 2.3664⇒ Ebackfwd = −0.0036, relative error →0.15%

• Examples of Computer Numbers:
Say we have six bit representation (not single, double) (see the Fig. 4)

– 1 bit→ sign

– 3(+1) bits→ mantissa

– 2 bits→ exponent

For positive range 9
32
←→ 15

4

For negative range −15
4
←→ −9

32
; even discontinuity at point zero since

it is not in the ranges.
Very simple computer arithmetic system ⇒ the gaps between stored

values are very apparent. Many values can not be stored exactly. i.e.,
0.601, it will be stored as if it were 0.6250 because it is closer to 10

16
, an

error of 4% In IEEE system, gaps are much smaller but they are still
present. (see the Fig. 5)

• Anomalies with Floating-Point Arithmetic:
For some combinations of values, these statements are not true

7

Figure 5: Upper: number line in the hypothetical system, Lower: IEEE
standard.

– (x + y) + z = x + (y + z)
(x ∗ y) ∗ z = x ∗ (y ∗ z)
x ∗ (y + z) = (x ∗ y) + (x ∗ z)

– adding 0.0001 one thousand times should equal 1.0 exactly but
this is not true with single precision

– z = (x+y)2−2xy−y2

x2 , problem with single precision

1.5 Parallel and Distributed Computing

• Tremendously large problems and the solution may be needed almost
instantaneously. (real time)

• Computer systems (mostly) run their instructions in sequence

• Super computers −→ billions of operations per second −→ not fast
enough

• First technique; pipelining: performing a second instruction within
the CPU before the previous instruction is completed. Pipelining per-
mits a speed up by a factor of two or more.

• Second technique; build vector processing operations in the CPU.
To solve sets of equations involve may multiplications of a vector by
another vector. Improvement by a factor of 5 or 10, not by the factor
of 10,000. (Eventhough the cost increases considerably)

8

Figure 6: Left: Adding eight numbers sequentially. Right: Adding eight
numbers with parallel processors.

• Third technique (current trend); parallel processing: Put several
machines to work on a single problem, dividing the steps of the solution
process into many steps that can be performed simultaneously

– Massively parallel computers; employ a massive number of low
cost processors (1000 Pentium Pros−→1.3 Teraflops)

– Beowulf class; PCs joined (cluster) to work together to create a
modestly priced supercomputer

• Fourth technique; distributed computing: to connect many different
computers, which can work separately on their own tasks as well as
in conjunction with each other. Asynchronous operations (interrupts
constantly occur through the system to coordinate the actions)

– data can flow from one computer to another

– OS, software, and connecting the computers are major challenges

1.5.1 Speed -up and Efficiency

See the Fig. 6.

• Sp(n) = T1(n)
Tp(n)

, 7
3
; speed-up

• Ep(n) = Sp(n)
p

,
7/3
4

; efficiency

1.6 Measuring the Efficiency of Numerical Procedures

• One comparison is of the number of mathematical operations that are
needed to get the answer with a given accuracy. An equation
f(n) = n(n+1)

2
= n2

2
+ n

2
As n gets large, the first term dominates and

9

we say that f(n) if ”of order n2”; f(n) = O(n2).
n −→ double

number of multiplications −→ four times

• say x values differ by h (commonly used variable for such spacing). The
error in the answer is proportional to the third power of h;
Error = M

6
h3; the error is of the order h3;Error = O(h3)

1.6.1 Taylor Series

The expression for the order of error given above is found by comparison of
the procedure with a Taylor series.

• A Taylor series is a power series that can approximate a func-
tion, f(x), for values near to x=a.

• Its coefficients use the derivatives of f at x = a

• f(x) = f(a) + f
′

(a)
1!

(x− a) + f
′′

(a)
2!

(x− a)2 + f
′′′

(a)
3!

(x− a)3 + . . .

• The Taylor series says that if we know the values for all derivatives of
f(x) at x = a, we can approximate the function as closely as we desire.

• Error of TS = fn+1(ξ)
(n+1)!

: The error term for a truncated Taylor series

after the nth term

• where ξ is a value between x and (x + a). Since the value of ξ is not
known, there is still uncertainty in the exact value of the error.

1.6.2 Polynomials

• A truncated Taylor series is just a polynomial, and a computer can
handle

• only maths needed are addition and multiplication

• Any continuous function can be approximated uniformly over a finite
interval by a polynomial

• Chebyshev polynomial; better then Taylor series in approximating func-
tions

• Legendre polynomial; good way to integrate a function numerically

10

• use nested form P (x) = ((a3x + a2)x
2 + a1x) + a0 instead of P (x) =

a0 + a1x + a2x
2 + a3x

3

• since the former has four multiplications and three additions instead of
six multiplications and three additions

11

	Preliminaries
	Analysis vs Numerical Analysis
	Computers and Numerical Analysis
	An Illustrative Example
	Kinds of Errors in Numerical Procedures
	Parallel and Distributed Computing
	Speed -up and Efficiency

	Measuring the Efficiency of Numerical Procedures
	Taylor Series
	Polynomials

