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1.1

Approximation of Functions

To get the value of sin(2.113) or ¢35

It doesn’t look these up in tables and interpolate! The computer ap-
proximates every function from some polynomial that is tailored to give
the values very accurately.

We want the approximation to be efficient in that it obtains the values
with the smallest error in the least number of arithmetic operations.

A second topic, representing a function with a series of sine and cosine
terms. A Fourier series, is usually the best way to represent a peri-
odic function, something that cannot be done with a polynomial or a
Taylor series. A Fourier series can even approximate functions with
discontinuities and discontinuous derivatives.

— Chebyshev Polynomials and Chebyshev Series: Chebyshev
polynomials are orthogonal polynomials that are the basis for fit-
ting nonalgebraic functions with maximum efficiency. They can
be used to modify a Taylor series so that there is greater efficiency.
A series of such polynomials converges more rapidly than a Taylor
series.

— Fourier Series: These are series of sine and cosine terms that
can be used to approximate a function within a given interval
very closely, even functions with discontinuities. Fourier series
are important in many areas, particularly in getting an analytical
solution to partial-differential equations.

Chebyshev Polynomials and Chebyshev Series

If we want to represent a known function as a polynomial, one way to
do it is with a Taylor series. Given a function, f(x), we write

Po(z) = ap+ay(x —a) +as(zx—a)* +az(x —a)*+.. . +a(x—a)"+...

where a; = f@(a)/i! (we remember that f(© is just f(a)). Unless f(z)
is itself a polynomial, the series may have an infinite number of terms.
Terminating the series incurs an error, the truncation error. The error
after the (x — a)" term,
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e A problem with using the Taylor series to get polynomial approxima-
tions to a transcendental function is that the error grows rapidly as
x-values depart from x = a.

e For f(x) = e, the Taylor series is easy to write because the derivatives
are so simple: f(® = ¢ for all orders and we have, for a = 0 (which is
then called a Maclaurin series)

e ~1+1(z—0)+1/2(x—0)*+1/6(z — 0)*

e if we use only terms through 23; the error term shows that the error of
this will grow about proportional to x* as x-values depart from zero.
There is a way to deal with this rapid growth of the errors, and that is
to write the polynomial approximation to f(x) in terms of Chebyshev
polynomials.

1.1.1 Chebyshev Polynomials

e A Maclaurin series can be thought of as representing f(z) as a weighted
sum of polynomials. The kind of polynomials that are used are just
the successive powers of x: 1, z, 22, 23, .. .. Chebyshev polynomials are
not as simple; the first 11 of these are
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Te(x) = 3225 — 48x* 4 1822 — 1

Ty (x) = 642" — 11225 + 562° — Tx

Ty(x) = 12828 — 25625 + 160x* — 322% + 1

To(z) = 25627 — 57627 + 4322° — 12023 + 9z

T,0(x) = 51221° — 12802® + 11202° — 4002* + 5022 — 1
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The members of this series of polynomials can be generated from the
two-term recursion formula

Toi1(x) = 22T, (z) — T,—1(x), To(x) =1, Ti(z) ==z

e Note that the coefficient of 2" in T,,(z) is always 2"~ 1. In Fig. [l we
plot the first four polynomials of Eqn/[Il
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Figure 1: Plot of the first four polynomials of the Chebyshev polynomials.

e They form an orthogonal set,

0 n#m
LT T ’
n(7) m(x)dx: T n=m=>0

-1 Vi-a? /2, n=m#0

e The Chebyshev polynomials are also terms of a Fourier series, because

T, (x) = cosnb
where 0 = arccosxz. Observe that cos0 = 1, cos = cos(arccosz) = .

Because of the relation 7, (z) = cos(nf), the Chebyshev polynomials
will have a succession of maxima and minima of alternating signs, as
Figure [ shows.

All polynomials of degree n that have a coefficient of one on z", the

polynomial
1
g1 in (z)

has a smaller upper bound to its magnitude in the interval [-1, 1]. This
is important because we will be able to write power function approxi-

mations to functions whose maximum errors are given in terms ofthis
upper bound.



e MATLAB has no commands for these polynomials but this M-file will
compute them:

function T=Tch(n)

if n==

disp(’1’)

elseif n==1

disp(’x’)

else

t0="1";

t1="x";

for i=2:n

T=symop (’2*x’,’*’ ,t1,’-’,t0);
t0=t1;

t1=T,;

end

end

>>Tch(5)

>>collect (ans)

ans= 16%x~5-20*%x~3+b*x

1.1.2 Economizing a Power Series

e We begin a search for better power series representations of functions
by using Chebyshev polynomials to economize a Maclaurin series. This
example will give a modification of the Maclaurin series that produces
a fifth-degree polynomial whose errors are only slightly greater than
those of a sixth-degree Maclaurin series. We start with a Maclaurin
series for e”:
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e if we would like to use a truncated series to approximate e* on the
interval [0,1] with a precision of 0.00/, we will have to retain terms
through that in 2%, because the error after the term in x° will be more
than 1/720. Suppose we subtract

() (3)

720/ \ 32

from the truncated series. We note from Eqn. [ that this will exactly
cancel the 2% term and at the same time make adjustments in other
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coeflicients of the Maclaurin series. Because the maximum value of Ty
on the interval [0, 1] is unity, this will change the sum of the truncated

series by only
1 1
— ) ( == ) < 0.00005
(720) (32)

which is small with respect to our required precision of 0.001. Perform-
ing the calculations, we have

T A~ x2 x3 x4 xb 2
e 1+Ji+7T+€+ﬂ+1—20+m
6 4 2

(720) (33)(32m 48x* 4+ 18z — 1)

e ~ 1.000043 + = + 0.49921922 + %3 + 0.0437502* + %

e The resulting fifth-degree polynomial approximates e* on [0, 1| nearly as
well as the sixth-degree Maclaurin series: its maximum error (at z = 1)
is 0.000270, compared to 0.000226 for the Maclaurin polynomial. We
economize in that we get about the same precision with a lower-degree
polynomial.

e By subtracting ﬁ?—g we can economize further, getting a fourth-degree

polynomial that is almost as good as the economized fifth-degree one.

e So that we have found a fourth-degree power series that meets an error
criterion that requires us to use two additional terms of the original
Maclaurin series.

— Because of the relative ease with which they can be developed,
such economized power series are frequently used for approxima-
tions to functions

— are much more efficient than power series of the same degree ob-
tained by truncating a Taylor or Maclaurin series.
e Table [l compares the errors of these power series.
— Observe that even the economized polynomial of degree-4 is more
accurate than a fifth-degree Maclaurin series

— Also notice that near x = 0, the economized polynomials are less
accurate



Maclaurin of degree Economized of degree

X e 6 5 4 5 4

0.0 1.00000 1.00000 1.00000 1.00000 1.00004 1.00004
0.2 1.22140 1.22140 1.22140 1.22140 1.22142 1.22008
04 1.49182 1.49182 1.49182 1.49173 1.49178 1.49133
0.6 1.82212 1.82212 1.82205 1.82140 1.82208 1.82212
0.8 222554 2.22549 2.32513 2.22240 2.22553 2.22603
1.0 2.71828 2.71806 2.71667 2.70833 2.71801 27174
Maximum error 0.00023 0.00162 0.00995 0.00027 0.00078

Table 1: Comparison of economized series with Maclaurin series.

e We can get the economized series with MATLAB by employing our
M-file for the Chebyshev series. We must start with x as a symbolic
variable, then get the Maclaurin series and subtract the proper multiple
of the Chebyshev series:

>> syms x

>> ts=taylor (exp(x),7)
1+x+1/2*%x2+1/6%x"3+1/24%x"4+1/120*%x"5+1/720*x"6

>> cs=Tch(6);

>> es=ts-cs/factorial(6)/2°5
es=23041/23040+x+639/1280%x"2+1/6%x"3+7/160*x~4+1/120*x"5
>> vpa(es,7)



1.1.3 Chebyshev Series

e By rearranging the Chebyshev polynomials, we can express powers of
x in terms of them:
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e By substituting these identities into an infinite Taylor series and col-
lecting terms in T;(z), we create a Chebyshev series. For example, we
can get the first four terms of a Chebyshev series by starting with the
Maclaurin expansion for e*. Such a series converges more rapidly than
does a Taylor series on [—1,1];

2 1’3 1,4

a
T=1 R
e =l+at o+t

Replacing terms by Eqn. B but omitting polynomials beyond T3(x) be-
cause we want only four terms (The number of terms that are employed
determines the accuracy of the computed values), we have;

e’ =1.2661Ty + 1.130277 + 0.271575 + 0.044375 + . ..

To compare the Chebyshev expansion with the Maclaurin series, we
convert back to powers of x, using Eqn. [

e = 0.9946 + 0.9973x + 0.54302° + 0.17722° + . .. (3)

e Table P and Figure Bl compare the error of the Chebyshev expansion,
Eqn. B with the Maclaurin series (1 + z + O.522 + 0.16672%), using
terms through 2% in each case.

— The errors can be considered to be distributed more or less uni-
formly throughout the interval.

— In contrast to this, the Maclaurin expansion, which gives very
small errors near the origin, allows the error to bunch up at the
ends of the interval.



x e* Chebyshev Error Maclaurin Error
-1.0 0.3679 0.3631 0.0048 0.3333 0.0346
—0.8 0.4493 0.4536 —0.0042 0.4346 0.0147
—0.6 0.5488 0.5534 —0.0046 0.5440 0.0048
—04 0.6703 0.6712 —0.0009 0.6693 0.0010
=02 0.8187 0.8154 0.0033 0.8187 0.0001

0 1.0000 0.9946 0.0054 1.0000 0.0000

0.2 1.2214 1.2172 0.0042 1.2213 0.0001

0.4 1.4918 1.4917 0.0001 1.4907 0.0012

0.6 1.8221 1.8267 —0.0046 1.8160 0.0061

0.8 2.2255 2.2307 —0.0051 2.2054 0.0202

1.0 2.7183 2.7121 0.0062 2.6667 0.0516

Table 2: Comparison of Chebyshev series for e* with Maclaurin series.
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Figure 2: Comparison of the error of Chebyshev series for e with the error

of Maclaurin series.
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