1 In Newton's method the approximation x_{n+1} to a root of f(x) = 0 is computed from the approximation x_n using the equation

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

- i Derive the above formula, using a Taylor series of f(x).
- ii For $f(x) = x 3^{-x}$, refine the approximation $x_0 = 0.54$ to the unique root of f(x) by carrying out one iteration of Newton's method.
- 2 Consider the difference approximation

$$f_n' = \frac{-f_{n+2} + 4f_{n+1} - 3f_n}{2h}$$

where f_n means f(x) and f_{n+1} means f(x+h)

- i Use this formula to approximate the derivative of f(x) = cos(x) at x = 0 using step sizes of h = 0.10 and 0.20.
- ii Make an error analysis. Estimate the order of error $(O(h^2))$. **Hints:** The ratio of errors and the difference with the exact value.

3

$$f(x) = 3 * x + \sin(x) - e^x$$

This nonlinear equation is solved by using three methods, namely *Bisection*, *Newton's*, *Muller's* methods. Then, the following tables are obtained.

iteration	$(x)_{1}$		()	()
			$(x)_{2}$	$(x)_3$
1 0.5	500000000000000	0 0.3333	3333333333	0.500000000000000
2 0.2	250000000000000	0 0.3601	7071357763	0.3549138904901
3 0.3	3750000000000	0 0.3604	2168047602	0.3604646779277
4 0.3	312500000000	0 0.3604	2170296032	0.3604216976632
5 0.3	343750000000	0 0.3604	2170296032	0.3604217029603
5 0.3 iteration	3437500000000000000000000000000000000000	$\frac{00 \ 0.3604}{(f(x))_2}$	$(f(x))_3$	0.3604217029603
5 0.3 iteration 1 1 3.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c} 2170296032 \\ \hline (f(x))_3 \\ \hline 3.3070e-01 \end{array} $	0.3604217029603
5 0.3 iteration 1 1 3. 2 -2.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c} 2170296032\\\hline (f(x))_3\\\hline 3.3070\text{e-}01\\\hline -1.3807\text{e-}02\end{array}$	
5 0.3 iteration 1 1 3. 2 -2. 3 3.	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c} 2170296032 \\\hline (f(x))_3 \\\hline 3.3070 \text{e-}01 \\\hline -1.3807 \text{e-}02 \\\hline 1.0751 \text{e-}04 \end{array}$	
5 0.3 iteration 1 1 3. 2 -2. 3 3. 4 -1.	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c} 2170296032\\\hline (f(x))_3\\\hline 3.3070e-01\\\hline -1.3807e-02\\\hline 1.0751e-04\\\hline -1.3252e-08\end{array}$	0.3604217029603
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	375000000000000000000000000000000000000	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2168047602 2170296032	$\begin{array}{c} 0.3604646779 \\ 0.3604216976 \end{array}$

(use serence	ine necesion		, see the tax	ie above);		
iteration	$Error_1$	$Error_2$	$Error_3$	$ErrorRatio_1$	$ErrorRatio_2$	$ErrorRatio_3$
1						
2						
3						
4						
5						

i If the exact value is given as 0.36042170296032, fill the following tables (use scientific notation as %12.4e, see the table above);

- ii Analyze the obtained tables. Is the convergence sustained for the each methods? For the sustained ones; at which iteration and why?
- iii What can you say about the speed of convergences for each method?
- iv By using your answers for the previous items, fill the following table. You should explain your decision.

	I J		
	$Method_1$	$Method_2$	$Method_3$
Name			

- v Which method is the best one? Why?
- 4 Solve this system by Gaussian elimination with pivoting

$$\begin{bmatrix} 1 & -2 & 4 & 6 \\ 8 & -3 & 2 & 2 \\ -1 & 10 & 2 & 4 \end{bmatrix}$$

- i How many row interchanges are needed?
- ii Repeat without any row interchanges. Do you get the same results?
- iii You could have saved the row multipliers and obtained a LU equivalent of the coefficient matrix. Use this LU to solve but with right-hand sides of $[-3, 7, -2]^T$
- iv Solve the second item again but use three significant digits of precision.
- 5 Consider the matrix

$$A = \begin{bmatrix} 3 & -1 & 2\\ 1 & 1 & 3\\ -3 & 0 & 5 \end{bmatrix}$$

i Use the Gaussian elimination method to triangularize this matrix and from that gets its determinant.

- ii Get the inverse of the matrix through Gaussian elimination.
- iii Get the inverse of the matrix through Gauss-Jordan method.
- 6 Find the power fit $y = Ax^2$ for the following data,

x_k	y_k
2.0	5.1
2.3	7.5
2.6	10.6
2.9	14.4
3.2	10.0

7 For the given set of data, find the least-squares curve, $f(x) = Ce^{Ax}$ by using the change of variables X = x V = ln/a

 $f(x) = Ce^{Ax}$, by using the change of variables X = x, Y = ln(y), and $C = e^{B}$, to linearize the data points.

x_k	y_k
1	0.6
2	1.9
3	4.3
4	7.6
5	12.6

8 Write the expression to economize the Maclaurin series for e^{2x} with the precision 0.008 by using Chebyshev polynomials. Do not perform the calculation.

9 Find the Fourier series representation of the given function.

$$f(x) = \begin{cases} -1 & for -\pi < x < 0\\ 1 & for \ 0 < x < \pi \end{cases}$$

10 Find the Fourier series representation of the given function.

$$f(x) = \begin{cases} -1 & \text{for } \pi/2 < x < \pi \\ 1 & \text{for } -\pi/2 < x < \pi/2 \\ -1 & \text{for } -\pi < x < -\pi/2 \end{cases}$$

11 Consider the following table of data

x_i	f_i
0.0000	0.0000
0.2000	0.5879
0.4000	1.0637
0.6000	1.3927
0.8000	1.5573
1.0000	1.5575
1.2000	1.4091

- i Approximate $\int_0^{1.2} f(x) dx$ using the *Trapezoidal Rule* and a step size of h = 0.6.
- ii Approximate $\int_0^{1.2} f(x) dx$ using the *Trapezoidal Rule* and a step size of h = 0.2.
- iii Estimate the *error* in your answer to previous item. **Hint:** Use the procedure to estimate the proportionality factor, C.
- **12** Consider the function $f(x) = x^2$;
 - i Fill the following table within the five digit accuracy

x_i	f_i
0.00000	0.00000
1.20000	

- ii Approximate $\int_0^{1.2} f(x) dx$ using the *Trapezoidal Rule* and a step size of h = 0.2.
- iii Approximate $\int_0^{1.2} f(x) dx$ using the *Trapezoidal Rule* and a step size of h = 0.4.
- iv Analyze and compare your results. Estimate the *error* in your answers.