Çankaya University
Mcs 331 Numerical Methods Midterm Examination Dec 01, 2014 13.20 - 15.10 Good Luck! |
|
|
>> log(1/0.0001)/log(2) ans = 13.287712379549451
>> x0=1.0; >> x1=0.0; >> syms x; fx='sqrt(x)-cos(x)'; >> subs(fx,x0) ans = 0.45969769413186 >> subs(fx,x1) ans = -1 >> x2=x1-subs(fx,x1)*((x0-x1)/(subs(fx,x0)-subs(fx,x1))) x2 = 0.68507335732605 >> x0=x1 x0 = 0 >> x1=x2 x1 = 0.68507335732605 >> x2=x1-subs(fx,x1)*((x0-x1)/(subs(fx,x0)-subs(fx,x1))) x2 = 0.65039498012836 >> solve('sqrt(x)-cos(x)') ans = .64171437087288265839856530031652
>> format long >> x=-pi:0.1:pi >> fzero('sin(x)-4*x+2',[0 1]) ans = 0.651618523135209 >> x=0; >> sin(x)-4*x+2 ans = 2 >> x=1; >> sin(x)-4*x+2 ans = -1.158529015192103 write the function function fx=func(x) fx=sin(x)-4*x+2; save as func.m write the function function fx=funcdiff(x) fx=cos(x)-4; save as funcdiff.mThe best choice for is usually the value producing the smallest residual, i.e. in this case
>> x0=0;x0-(func(x0)/funcdiff(x0)) ans = 0.6667 (0.666666666666667) >> x0=0.6667;x0-(func(x0)/funcdiff(x0)) ans = 0.6516 (0.651640263601115) >> x0=0.6516;x0-(func(x0)/funcdiff(x0)) ans = 0.6516 (0.651618523167672)or start with
>> x0=1;x0-(func(x0)/funcdiff(x0)) ans = 0.6651 (0.665135766874333) >> x0=0.6651;x0-(func(x0)/funcdiff(x0)) ans = 0.6516 (0.651635876939131) >> x0=0.6516;x0-(func(x0)/funcdiff(x0)) ans = 0.6516 (0.651618523167672)Answer:
%********************************************** %i) Ax=b >> A=[1 3 1 1; 2 5 2 2; -1 -3 -3 5; 1 3 2 2] >> b=[6 2 4 3] >> format short >> GEPivShow(A,b') Begin forward elmination with Augmented system: 1 3 1 1 6 2 5 2 2 2 -1 -3 -3 5 4 1 3 2 2 3 Swap rows 1 and 2; new pivot = 2 After elimination in column 1 with pivot = 2.000000 2.0000 5.0000 2.0000 2.0000 2.0000 0 0.5000 0 0 5.0000 0 -0.5000 -2.0000 6.0000 5.0000 0 0.5000 1.0000 1.0000 2.0000 After elimination in column 2 with pivot = 0.500000 2.0000 5.0000 2.0000 2.0000 2.0000 0 0.5000 0 0 5.0000 0 0 -2.0000 6.0000 10.0000 0 0 1.0000 1.0000 -3.0000 After elimination in column 3 with pivot = -2.000000 2.0000 5.0000 2.0000 2.0000 2.0000 0 0.5000 0 0 5.0000 0 0 -2.0000 6.0000 10.0000 0 0 0 4.0000 2.0000 ans = -21.0000 10.0000 -3.5000 0.5000 %********************************************** % ii) Determinant >> det(A) ans = 8 >> 2.0000*0.5000*-2.0000*4.0000 %product of the diagonal of U ans = 8 %********************************************** % iii) For LU-decomposition >> [L,U,pv]=luPiv(A) L = 1.0000 0 0 0 0.5000 1.0000 0 0 -0.5000 -1.0000 1.0000 0 0.5000 1.0000 -0.5000 1.0000 U = 2.0000 5.0000 2.0000 2.0000 0 0.5000 0 0 0 0 -2.0000 6.0000 0 0 0 4.0000 pv = 2 1 3 4 % one time pivoting %********************************************** % iv) for not pivoting case; >> GEshow(A,b') Begin forward elmination with Augmented system: 1 3 1 1 6 2 5 2 2 2 -1 -3 -3 5 4 1 3 2 2 3 After elimination in column 1 with pivot = 1.000000 1 3 1 1 6 0 -1 0 0 -10 0 0 -2 6 10 0 0 1 1 -3 After elimination in column 2 with pivot = -1.000000 1 3 1 1 6 0 -1 0 0 -10 0 0 -2 6 10 0 0 1 1 -3 After elimination in column 3 with pivot = -2.000000 1 3 1 1 6 0 -1 0 0 -10 0 0 -2 6 10 0 0 0 4 2 ans = -21.0000 10.0000 -3.5000 0.5000 % Solutions are the same. They are same because the system is % not ill-conditioned. % solution is completed %**********************************************
%********************************************** %Switching rows 2 &3 first >> A=[7 -3 4; 2 5 3; -3 2 6] >> B=[6 -5 2] >> jacobi(A,B',P',0.01,20) k = 1 P = 0.857142857142857 -1.000000000000000 0.333333333333333 k = 2 P = 0.238095238095238 -1.542857142857143 1.095238095238095 k = 3 P = -0.429931972789116 -1.752380952380953 0.966666666666667 k = 4 P = -0.446258503401361 -1.408027210884354 0.702494331065760 k = 5 P = -0.147722708130871 -1.242993197278911 0.579546485260771 k = 6 P = -0.006737933268545 -1.288638807904114 0.673803045027535 k = 7 P = -0.080161229117497 -1.401586653709102 0.759510636000432 k = 8 P = -0.177543215018434 -1.423641889953260 0.760448270010952 k = 9 P = -0.187531249986227 -1.385251675999198 0.719109022475203 k = 10 P = -0.147455873985486 -1.356452913490631 0.701318267006619 k = 11 P = -0.124947401214053 -1.361808610609777 0.711756367504134 k = 12 P = -0.133207328835124 -1.377074860016859 0.724795836262899 k = 13 P = -0.147201132157454 -1.381594570223690 0.725754622254725 k = 14 P = -0.149686028527138 -1.376572320489853 0.720264290662503 k = 15 P = -0.144396303445653 -1.372284162986646 0.717347759233048 k = 16 P = -0.140891932270305 -1.372650134161568 0.718563235939389 k = 17 P = -0.141743335177466 -1.374781168655511 0.720437411918703 k = 18 P = -0.143727593377335 -1.375565113080236 0.720722055296438 k = 19 P = -0.144226222918065 -1.374942195826928 0.719991241004744 >> gseid(A,B',P',0.001,20) k = 1 P = 0.857142857142857 -1.342857142857143 1.209523809523809 k = 2 P = -0.409523809523810 -1.561904761904762 0.649206349206349 k = 3 P = -0.183219954648526 -1.316235827664399 0.680468631897203 k = 4 P = -0.095797430083144 -1.369962207105064 0.742088687326783 k = 5 P = -0.154034481517475 -1.383639419789080 0.717529232504289 k = 6 P = -0.145862169912057 -1.372172671537751 0.717793138889889 k = 7 P = -0.141098652881830 -1.374236422181201 0.720862814286152 k = 8 P = -0.143737217669745 -1.375022801503793 0.719805658333059 k = 9 P = -0.143470148263374 -1.374495335694486 0.719763371099808 % Gauss-Seidel iterates much faster