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Numerical Differentiation and Integration I

• If we are working with experimental data that are displayed
in a table of [x , f (x)] pairs emulation of calculus is
impossible .

• We must approximate the function behind the data in
some way.

• Differentiation with a Computer:
• Employs the interpolating polynomials to derive formulas for

getting derivatives.
• These can be applied to functions known explicitly as well

as those whose values are found in a table.

• Numerical Integration-The Trapezoidal Rule:
• Approximates, the integrand function with a linear

interpolating polynomial to derive a very simple but
important formula for numerically integrating functions
between given limits.



Numerical
Differentiation and

Integration

Dr. Cem Özdo ğan
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Numerical Differentiation and Integration II

• We continue to exploit the useful properties of polynomials
to develop methods for a computer to do integrations and
to find derivatives .

• When the function is explicitly known, we can emulate the
methods of calculus.

• But doing so in getting derivatives requires the subtraction
of quantities that are nearly equal and that runs into
round-off error.

• However, integration involves only addition, so round-off is
not problem.

• We cannot often find the true answer numerically because
the analytical value is the limit of the sum of an infinite
number of terms.

• We must be satisfied with approximations for both
derivatives and integrals but, for most applications, the
numerical answer is adequate .
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Differentiation with a Computer I

• The derivative of a function, f (x) at x = a, is defined as

df
dx

|x=a = lim∆x→0
f (a +∆x)− f (a)

∆x

• This is called a forward-difference approximation.

• The limit could be approached from the opposite direction,
giving a backward-difference approximation.

• Forward-difference approximation. A computer can
calculate an approximation to the derivative, if a very small
value is used for ∆x .

df
dx

|x=a =
f (a +∆x)− f (a)

∆x

• Recalculating with smaller and smaller values of x starting
from an initial value.

• What happens if the value is not small enough?
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Differentiation with a Computer II

• We should expect to find an optimal value for x .

• Because round-off errors in the numerator will become
great as x approaches zero.

• When we try this for

f (x) = ex sin(x)

at x = 1.9. The analytical answer is 4.1653826.

• Starting with ∆x = 0.05 and halving ∆x each time. Table
1 gives the results.

• We find that the errors of the approximation decrease as
∆x is reduced until about ∆x = 0.05/128.
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Differentiation with a Computer III

Table: Forward-difference approximations for f (x) = exsin(x).
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Numerical
Differentiation and
Integration with a
Computer
Differentiation with a
Computer

Numerical Integration - The
Trapezoidal Rule

The Trapezoidal Rule

The Composite
Trapezoidal Rule

12.8

Differentiation with a Computer IV

• Notice that each successive error is about 1/2 of the
previous error as ∆x is halved until ∆x gets quite small, at
which time round off affects the ratio .

• At values for ∆x smaller than 0.05/128, the error of the
approximation increases due to round off.

• In effect, the best value for ∆x is when the effects of
round-off and truncation errors are balanced .

• If a backward-difference approximation is used; similar
results are obtained.

• Backward-difference approximation.

df
dx

|x=a =
f (a) − f (a −∆x)

∆x
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Differentiation with a Computer V

With MATLAB. Analytical answer to the function of Table 1.
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Differentiation with a Computer VI

With MATLAB. Numerical answer to the function of Table 1.
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Numerical
Differentiation and
Integration with a
Computer
Differentiation with a
Computer

Numerical Integration - The
Trapezoidal Rule

The Trapezoidal Rule

The Composite
Trapezoidal Rule

12.11

Differentiation with a Computer VII

• It is not by chance that the errors are about halved each
time .

• Look at this Taylor series where we have used h for ∆x :

f (x + h) = f (x) + f ′(x) ∗ h + f ′′(ξ) ∗ h2/2

• Where the last term is the error term. The value of ξ is at
some point between x and x + h.

• If we solve this equation for f ′(x), we get

f ′(x) =
f (x + h) − f (x)

h
− f ′′(ξ) ∗

h
2

(1)

• Which shows that the errors should be about proportional
to h, precisely what Table 1 shows.

• If we repeat this but begin with the Taylor series for
f (x − h), it turns out that

f ′(x) =
f (x)− f (x − h)

h
+ f ′′(ζ) ∗

h
2

(2)

• Where ζ is between x and x − h.
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Differentiation with a Computer VIII

• The two error terms of Eqs. 1 and 2 are not identical
though both are O(h).

• If we add Eqs. 1 and 2, then divide by 2, we get the
central-difference approximation to the derivative:

f ′(x) =
f (x + h)− f (x − h)

2h
− f ′′′(ξ) ∗

h2

6
(3)

• We had to extend the two Taylor series by an additional
term to get the error because the f ′′(x) terms cancel .

• This shows that using a central-difference approximation is
a much preferred way to estimate the derivative.

• Even though we use the same number of computations of
the function at each step,

• we approach the answer much more rapidly .
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Differentiation with a Computer IX

With MATLAB,
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Differentiation with a Computer X

Table 2 illustrates this, showing that errors decrease about
four fold when ∆x is halved (as Eq. 3 predicts) and that a more
accurate value is obtained.

Table: Central-difference approximations for f (x) = exsin(x).
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Numerical Integration - The Trapezoidal Rule I

• Given the function, f (x), the antiderivative is a function
F (x) such that F ′(x) = f (x).

• The definite integral

∫ b

a
f (x)dx = F (b)− F (a)

can be evaluated from the antiderivative.

• Still, there are functions that do not have an antiderivative
expressible in terms of ordinary functions.

• Is there any way that the definite integral can be found
when the antiderivative is unknown?
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Numerical Integration - The Trapezoidal Rule II

• We can do it numerically by using the composite
trapezoidal rule
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Numerical Integration - The Trapezoidal Rule III

• The definite integral is the area between the curve of f (x)
and the x -axis.

• That is the principle behind all numerical integration;

• We divide the distance from x = a to x = b into vertical
strips and add the areas of these strips.

• The strips are often made equal in widths but that is not
always required.



Numerical
Differentiation and

Integration

Dr. Cem Özdo ğan
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The Trapezoidal Rule I

Figure: The trapezoidal rule.
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The Trapezoidal Rule II

• Approximate the curve with a sequence of straight lines.
• In effect, we slope the top of the strips to match with the

curve as best we can.
• We are approximating the curve with interpolating

polynomials of degree-1.
• The gives us the trapezoidal rule. Figure 1 illustrates this.
• It is clear that the area of the strip from xi to xi+1 gives an

approximation to the area under the curve:
∫ xi+1

xi

f (x)dx ≈
fi + fi+1

2
(xi+1 − xi)

• We will usually write h = (xi+1 − xi) for the width of the
interval.

• Error term for the trapezoidal integration is

Error = −(1/12)h3f ′′(ξ) = O(h3)

• What happens, if we are getting the integral of a known
function over a larger span of x -values, say, from x = a to
x = b?
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The Composite Trapezoidal Rule I
• We subdivide [a,b] into n smaller intervals with ∆x = h,

apply the rule to each subinterval, and add.
• This gives the composite trapezoidal rule ;

∫ b

a
≈

n−1∑
i=0

h
2
(fi + fi+1) =

h
2
(f0 + 2f1 + 2f2 + . . .+ 2fn−1 + fn)

• The error is not the local error O(h3) but the global error,
the sum of n local errors;

Global error = (−1/12)h3[f ′′(ξ1) + f ′′(ξ2) + . . .+ f ′′(ξn)]

• In this equation, each of the ξi is somewhere within each
subinterval.

• If f ′′(x) is continuous in [a, b], there is some point within
[a,b] at which the sum of the f ′′(ξi) is equal to nf ′′(ξ),
where ξ in [a, b].

• We then see that, because nh = (b − a),

Global error = (−1/12)h3nf ′′(ξ) =
−(b − a)

12
h2f ′′(ξ) = O(h2)
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The Composite Trapezoidal Rule II

• Example: Given the values for x and f (x) in Table3.

Table: Example for the trapezoidal rule.

• Use the trapezoidal rule to estimate the integral from
x = 1.8 to x = 3.4.

• Applying the trapezoidal rule:
∫ 3.4

1.8 f (x)dx ≈
0.2
2 [6.050 + 2(7.389) + 2(9.025) + 2(11.023)

+2(13.464) + 2(16.445) + 2(20.086) + 2(24.533)
+29.964] = 23.9944
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The Composite Trapezoidal Rule III

• The data in Table 3 are for f (x) = ex and the true value is
e3.4 − e1.8 = 23.9144.

• The trapezoidal rule value is off by 0.08; there are three
digits of accuracy.

• How does this compare to the estimated error?

Error = −
1

12 h3nf ′′(ξ), 1.8 ≤ ξ ≤ 3.4

= − 1
12 (0.2)

3(8) ∗
{

e1.8 (max)
e3.4 (min)

}

=

{

−0.0323 (max)
−0.1598 (min)

}

Alternatively,

Error = −
1

12 (0.2)
2(3.4 − 1.8) ∗

{

e1.8 (max)
e3.4 (min)

}

=

{

−0.0323 (max)
−0.1598 (min)

}

• The actual error was −0.080. It is reasonable since the
value is in the error bounds.
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Last Words

Thanks for attending and
listening.
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