The Inverse of a Matrix and Matrix Pathology


\begin{displaymath}
A=\left[
\begin{array}{rrr}
1 & -1 & 2 \\
3 & 0 & 1 \\
1 & 0 & 2 \\
\end{array} \right],
\end{displaymath}


\begin{displaymath}
\left[
\begin{array}{rrrrrr}
1 & -1 & 2 & 1 &0 & 0\\
3 & 0 & 1 & 0 &1 & 0\\
1 & 0 & 2 & 0 &0 & 1\\
\end{array} \right],
\end{displaymath}


\begin{displaymath}
\begin{array}{r}
\\
R_2-(3/1)R_1 \rightarrow \\
R_3-(1/1)R_1 \rightarrow \\
\end{array}\end{displaymath}


\begin{displaymath}
\left[
\begin{array}{rrrrrr}
1 & -1 & 2 & 1 &0 & 0\\
0 & 3 &-5 &-3 &1 & 0\\
0 & 1 & 0 &-1&0 & 1\\
\end{array} \right],
\end{displaymath}


\begin{displaymath}
\left[
\begin{array}{rrrrrr}
1 & -1 & 2 & 1 &0 & 0\\
0 & 1 & 0 &-1&0 & 1\\
0 & 3 &-5 &-3 &1 & 0\\
\end{array}\right],
\end{displaymath}


\begin{displaymath}
\begin{array}{r}
\\
\\
R_3-(3/1)R_2 \rightarrow \\
\end{array}\end{displaymath}



Subsections
Cem Ozdogan 2010-11-17