
1 Interpolation and Curve Fitting

• Sines, logarithms, and other nonalgebraic functions from tables.

• Those tables had values of the function at uniformly spaced values of
the argument.

• Most often interpolated linearly:
The value for x = 0.125 was computed as at the halfway point between
x = 0.12 and x = 0.13.

• If the function does not vary too rapidly and the tabulated points are
close enough together, this linearly estimated value would be accurate
enough.

• As a conclusion: Data can be interpolated to estimate values.

• Interpolating Polynomials: Describes a straightforward but compu-
tationally inconvenient way to fit a polynomial to a set of data points
so that an interpolated value can be computed. The cost of get-
ting the interpolant with a desired accuracy is facilitated by a variant,
Neville’s method.

• Divided Differences: These provide a more efficient way to construct
an interpolating polynomial, one that allows one to readily change the

degree of the polynomial l. If the data are at evenly spaced x-values,
there is some simplification.

• Spline Curves: Using special polynomials, splines, one can fit polyno-
mials to data more accurately than with an interpolating polynomial.
At the expense of added computational effort, some important prob-
lems that one has with interpolating polynomials is overcome.

• Least-Squares Approximations: are methods by which polynomials
and other functions can be fitted to data that are subject to errors likely

in experiments. These approximations are widely used to analyze

experimental observations.

1.1 Interpolating Polynomials

• We have a table of x and y-values.

• Two entries in this table might be
y = 2.36 at x = 0.41 and
y = 3.11 at x = 0.52.
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• If we desire an estimate for y at x = 0.43, we would use the two table
values for that estimate.

• Why not interpolate as if y(x) was linear between the two x-values?

y(0.43) ≈ 2.36 +
2

11
(3.11− 2.36) = 2.50

where
2

11
=⇒

0.43− 0.41

0.52− 0.41

• We will be most interested in techniques adapted to situations where
the data are far from linear.

• The basic principle is to fit a polynomial curve to the data.

1.1.1 Interpolation versus Curve Fitting

• Given a set of data
yi = f(xi) i = 1, . . . , n
obtained from an experiment or from some calculation.

• In curve fitting, the approximating function passes near the data

points, but (usually) not exactly through them. There is some uncer-

tainty in the data.

• In interpolation, process inherently assumes that the data have
no uncertainty. The interpolation function passes exactly through

each of the known data points.

• Figure 1 shows a plot of some hypothetical experimental data, a curve
fit function and interpolating with piecewise-linear function.

1.1.2 Fitting a Polynomial to Data

• Interpolation involves constructing and then evaluating an interpolat-

ing function.

• interpolant, y = F (x), determined by requiring that it pass through
the known data (xi, yi).

• In its most general form, interpolation involves determining the co-

efficients a1, a2, . . . , an
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Figure 1: A curve fit function passes near the data points. An interpolating
function passes exactly through the data points.

• in the linear combination of n basis functions, Φ(x), that constitute the
interpolant

F (x) = a1Φ1(x) + a2Φ2(x) + . . .+ anΦn(x)

– such that F (x) = yi for i = 1, . . . , n. The basis function may be
polynomial

F (x) = a1 + a2x+ a3x
2 + . . .+ anx

n−1

– or trigonometric

F (x) = a1 + a2e
ix + a3e

i2x + . . .+ ane
i(n−1)x

– or some other suitable set of functions.

• Polynomials are often used for interpolation because they are easy to
evaluate and easy to manipulate analytically.

• Suppose that we have

• First, we need to select the points that determine our polynomial.

• The maximum degree of the polynomial is always one less than the
number of points.

• Suppose we choose the first four points. If the cubic is ax3+bx2+cx+d,
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Table 1: Fitting a polynomial to data.

x f(x)
3.2 22.0
2.7 17.8
1.0 14.2
4.8 38.3
5.6 51.7

• We can write four equations involving the unknown coefficients a, b, c,
and d;

when x = 3.2 ⇒ a(3.2)3 + b(3.2)2 + c(3.2) + d = 22.0
when x = 2.7 ⇒ a(2.7)3 + b(2.7)2 + c(2.7) + d = 17.8
when x = 1.0 ⇒ a(1.0)3 + b(1.0)2 + c(1.0) + d = 14.2
when x = 4.8 ⇒ a(4.8)3 + b(4.8)2 + c(4.8) + d = 38.3

• Solving these equations gives

a = −0.5275
b = 6.4952
c = −16.1177
d = 24.3499

• and our polynomial is

−0.5275x3 + 6.4952x2 − 16.1177x+ 24.3499

• At x = 3.0, the estimated value is 20.212.

• if we want a new polynomial that is also made to fit at the point
(5.6, 51.7) ?

• or if we want to see what difference it would make to use a quadratic
instead of a cubic?

• Study this example in MATLAB; Start ⇒ Toolboxes ⇒ CurveF itting ⇒
Curve F itting Tool.
>> x = [3.22.71.04.85.6];
>> y = [2217.814.238.351.7];
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Table 2: Interpolation of gasoline prices.

year price
1986 133.5
1988 132.2
1990 138.7
1992 141.5
1994 137.6
1996 144.2

• Another example;

• Use the polynomial order 5, why?

P = a1 + a2y + a3y
2 + a4y

3 + a5y
4 + a6y
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• Make a guess about the prices of gasoline at year of 2011.

• Now, try with the shifted dates.

• Make the necessary corrections for the following lines >> years =
year −mean(year);

5



• What differs in the plot and why?

• Study this example in MATLAB; Start ⇒ Toolboxes ⇒ CurveF itting ⇒
Curve F itting Tool.

1.1.3 Lagrangian Polynomials

• Straightforward approach-the Lagrangian polynomial.

• The simplest way to exhibit the existence of a polynomial for interpo-
lation with unevenly spaced data.

– Linear interpolation

– Quadratic interpolation

• Lagrange polynomials have two important advantages over interpolat-
ing polynomials.

1. the construction of the interpolating polynomials does not require
the solution of a system of equations.

2. the evaluation of the Lagrange polynomials is much less suscepti-
ble to roundoff.

• Linear interpolation

P1(x) = c1x+ c2

• put the values
y1 = c1x1 + c2
y2 = c1x2 + c2

• then

c1 =
y2 − y1

x2 − x1

c2 =
y1x2 − y2x1

x2 − x1

• substituting back and rearranging

P1(x) = y1
x− x2

x1 − x2

+ y2
x− x1

x2 − x1
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• redefining as
P1(x) = y1L1(x) + y2L2(x)

• where Ls are the first-degree Lagrange interpolating polynomials.

• Quadratic interpolation

P2(x) = y1L1(x) + y2L2(x) + y3L3(x)

where Ls are not the same with the previous Ls!!!

L1(x) =
(x− x2)(x− x3)

(x1 − x2)(x1 − x3)
,

L2(x) =
(x− x1)(x− x3)

(x2 − x1)(x2 − x3)
,

L3(x) =
(x− x1)(x− x2)

(x3 − x1)(x3 − x2)
.

• In general

Pn−1(x) =

y1L1(x) + y2L2(x) + . . .+ ynLn(x) =

n∑

j=1

yjLj(x)

Lj(x) =
n∏

k=1,k 6=j

x− xk

xj − xk

• Suppose we have a table of data with four pairs of x- and f(x)-values,
with xi indexed by variable i:

i x f(x)
0 x0 f0
1 x1 f1
2 x2 f2
3 x3 f3
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Through these four data pairs we can pass a cubic.

• The Lagrangian form is

P3(x) =
(x− x1)(x− x2)(x− x3)

(x0 − x1)(x0 − x2)(x0 − x3)
f0 +

(x− x0)(x− x2)(x− x3)

(x1 − x0)(x1 − x2)(x1 − x3)
f1

+
(x− x0)(x− x1)(x− x3)

(x2 − x0)(x2 − x1)(x2 − x3)
f2 +

(x− x0)(x− x1)(x− x2)

(x3 − x0)(x3 − x1)(x3 − x2)
f3

• This equation is made up of four terms, each of which is a cubic in x;
hence the sum is a cubic.

P3(x) =
(x− x1)(x− x2)(x− x3)

(x0 − x1)(x0 − x2)(x0 − x3)
f0 +

(x− x0)(x− x2)(x− x3)

(x1 − x0)(x1 − x2)(x1 − x3)
f1

+
(x− x0)(x− x1)(x− x3)

(x2 − x0)(x2 − x1)(x2 − x3)
f2 +

(x− x0)(x− x1)(x− x2)

(x3 − x0)(x3 − x1)(x3 − x2)
f3

• The pattern of each term is to form the numerator as a product of
linear factors of the form (x− xi), omitting one xi in each term.

• The omitted value being used to form the denominator by replacing x

in each of the numerator factors.

• In each term, we multiply by the fi.

• It will have n+ 1 terms when the degree is n.

• Fit a cubic through the first four points of the preceding Table 1 and
use it to find the interpolated value for x = 3.0.

• Carrying out the arithmetic, P3(3.0) = 20.21.

• MATLAB gets interpolating polynomials readily. The cubic fitted to
the first four points;

• Example m-file: Interpolation of gasoline prices with Lagrange Poly-
nomials. (demoGasLag.m lagrint.m)
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• Error of Interpolation; When we fit a polynomial Pn(x) to some
data points, it will pass exactly through those points,

– but between those points Pn(x) will not be precisely the same as
the function f(x) that generated the points (unless the function
is that polynomial).

– How much is Pn(x) different from f(x)?

– How large is the error of Pn(x)?

• It is most important that you never fit a polynomial of a degree higher
than 4 or 5 to a set of points.

• If you need to fit to a set of more than six points, be sure to break up

the set into subsets and fit separate polynomials to these.

• You cannot fit a function that is discontinuous or one whose derivative
is discontinuous with a polynomial.

1.1.4 Neville’s Method

• The trouble with the standard Lagrangian polynomial technique is that
we do not know which degree of polynomial to use.

– If the degree is too low, the interpolating polynomial does not

give good estimates of f(x).

– If the degree is too high, undesirable oscillations in polyno-
mial values can occur.

• Neville’s method can overcome this difficulty.

– It computes the interpolated value with polynomials of successively
higher degree,

– stopping when the successive values are close together.

• The successive approximations are actually computed by linear inter-
polation from the previous values.

• The Lagrange formula for linear interpolation to get f(x) from two
data pairs, (x1, f1) and (x2, f2), is

f(x) =
(x− x2)

(x1 − x2)
f1 +

(x− x1)

(x2 − x1)
f2
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• Neville’s method begins by arranging the given data pairs, (xi, fi).

• Such that the successive values are in order of the closeness of the xi

to x.

• Suppose we are given these data

x f(x)
10.1 0.17537
22.2 0.37784
32.0 0.52992
41.6 0.66393
50.5 0.63608

and we want to interpolate for x = 27.5.

We first rearrange the data pairs in order of closeness to x = 27.5:

i |x− xi| xi fi = Pi0

0 4.5 32.0 0.52992
1 5.3 22.2 0.37784
2 14.1 41.6 0.66393
3 17.4 10.1 0.17537
4 23.0 50.5 0.63608

• Neville’s method begins by renaming the fi as Pi0.

• We build a table

i x Pi0 Pi1 Pi2 Pi3 Pi4

0 32.0 0.52992 0.46009 0.46200 0.46174 0.45754
1 22.2 0.37784 0.45600 0.46071 0.47901
2 41.6 0.66393 0.44524 0.55843
3 10.1 0.17537 0.37379
4 50.5 0.63608

• Thus, the value of P01 is computed by

f(x) =
(27.5 − x1)

(x0 − x1)
∗ 0.52992 +

(27.5 − x0)

(x1 − x0)
∗ 0.37784

substituting all;

P01 =
(27.5 − 32.0) ∗ 0.37784 + (22.2 − 27.5) ∗ 0.52992

22.2− 32.0
= 0.46009
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• Once we have the column of Pi1’s, we compute the next column.

P22 =
(27.5 − 41.6) ∗ 0.37379 + (50.5 − 27.5) ∗ 0.44524

50.5− 41.6
= 0.55843

• The remaining columns are computed similarly.

• The general formula for computing entries into the table is

pi,j =
(x− xi) ∗ Pi+1,j−1 + (xi+j − x) ∗ Pi,j−1

xi+j − xi

• The top line of the table represents Lagrangian interpolates at x =
27.5 using polynomials of degree equal to the second subscript of the
P ′s.

i x Pi0 Pi1 Pi2 Pi3 Pi4

0 32.0 0.52992 0.46009 0.46200 0.46174 0.45754

• The preceding data are for sines of angles in degrees and the correct
value for x = 27.5 is 0.46175.

11


	Interpolation and Curve Fitting
	Interpolating Polynomials
	Interpolation versus Curve Fitting
	Fitting a Polynomial to Data
	Lagrangian Polynomials
	Neville's Method



