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Interpolation and Curve Fitting II

• Divided Differences: These provide a more efficient way
to construct an interpolating polynomial, one that allows
one to readily change the degree of the polynomiall. If the
data are at evenly spaced x-values, there is some
simplification.

• Spline Curves: Using special polynomials, splines, one
can fit polynomials to data more accurately than with an
interpolating polynomial. At the expense of
added computational effort, some important problems that
one has with interpolating polynomials is overcome.

• Least-Squares Approximations: are methods by which
polynomials and other functions can be fitted to data that
are subject to errors likely in experiments. These
approximations are widely used to analyze experimental
observations
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Divided Differences I

• There are two disadvantages to using the Lagrangian
polynomial or Neville’s method for interpolation.

1 It involves more arithmetic operations than does the
divided-difference method.

2 More importantly, if we desire to add or subtract a point from
the set used to construct the polynomial, we essentially
have to start over in the computations.

• Both the Lagrangian polynomials and Neville’s method
also must repeat all of the arithmetic if we must interpolate
at a new x -value.

• The divided-difference method avoids all of this
computation.

• Actually, we will not get a polynomial different from that
obtained by Lagrange’s technique.
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Divided Differences II

• Every nth-degree polynomial that passes through the
same n + 1 points is identical.

• Only the way that the polynomial is expressed is different.

• The function, f (x), is known at several values for x :

x0 f0
x1 f1
x2 f2
x3 f3

• We do not assume that the x ’s are evenly spaced or even
that the values are arranged in any particular order.

• Consider the nth-degree polynomial written as:

Pn(x) = a0+(x−x0)a1+(x−x0)(x−x1)a2+(x−x0)(x−x1) . . . (x−xn−1)an

• If we chose the ai ’s so that Pn(x) = f (x) at the n + 1
known points, then Pn(x) is an interpolating polynomial.
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Divided Differences III

• The ai ’s are readily determined by using what are called
the divided differences of the tabulated values .

• A special standard notation for divided differences is

f [x0, x1] =
f1 − f0
x1 − x0

called the first divided difference between x0 and x1.
• And, f [x0] = f0 = f (x0) (zero-order difference).

f [xs] = fs

• In general,

f [xs, xt ] =
ft − fs
xt − xs

• Second- and higher-order differences are defined in terms
of lower-order differences.

f [x0, x1, x2] =
f [x1, x2]− f [x0, x1]

x2 − x0
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Divided Differences IV

• For n-terms,

f [x0, x1, . . . , xn] =
f [x1, x2, . . . , fn]− f [x0, x1, . . . , fn−1]

xn − x0

• Using the standard notation, a divided-difference table is
shown in symbolic form in Table 1.

xi fi f [xi , xi+1] f [xi , xi+1, xi+2] f [xi , xi+1, xi+2, xi+3]
x0 f0 f [x0, x1] f [x0, x1, x2] f [x0, x1, x2, x3]
x1 f1 f [x1, x2] f [x1, x2, x3] f [x1, x2, x3, x4]
x2 f2 f [x2, x3] f [x2, x3, x4]
x3 f3 f [x3, x4]

Table: Divided-difference table in symbolic form.
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Divided Differences V

xi fi f [xi , xi+1] f [xi , xi+1, xi+2] f [xi , . . . , xi+3] f [xi , . . . , xi+4]
3.2 22.0 8.400 2.856 -0.528 0.256
2.7 17.8 2.118 2.012 0.0865
1.0 14.2 6.342 2.263
4.8 38.3 16.750
5.6 51.7

Table: Divided-difference table in numerical values.

• Table 2 shows specific numerical values.

f [x0, x1] =
f1 − f0
x1 − x0

=
17.8 − 22.0

2.7 − 3.2
= 8.4

f [x1, x2] =
f2 − f1
x2 − x1

=
14.2 − 17.8
1.0 − 2.7

= 2.1176

f [x0, x1, x2] =
f [x1, x2]− f [x0, x1]

x2 − x0
=

2.1176 − 8.4
1.0 − 3.2

= 2.8556

and the others..



Interpolation and Curve
Fitting II

Dr. Cem Özdo ğan
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Divided Differences VI

x = x0 : P0(x0) = a0

x = x1 : P1(x1) = a0 + (x1 − x0)a1

x = x2 : P2(x2) = a0 + (x2 − x0)a1 + (x2 − x0)(x2 − x1)a2

...
...

x = xn : Pn(xn) = a0 + (xn − x0)a1 + (xn − x0)(xn − x1)a2 + . . .

+(xn − x0) . . . (xn − xn−1)an

• If Pn(x) is to be an interpolating polynomial, it must match
the table for all n + 1 entries:

Pn(xi) = fi for i = 0, 1, 2, . . . , n.

• Each Pn(xi) will equal fi , if ai = f [x0, x1, . . . , xi ]. We then
can write:

Pn(x) = f [x0]+ (x −x0)f [x0, x1]+ (x −x0)(x −x1)f [x0, x1, x2]

+(x − x0)(x − x1)(x − x2)f [x0, . . . , x3]

+(x − x0)(x − x1) . . . (x − xn−1)f [x0, . . . , xn]
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Divided Differences VII

• Write interpolating polynomial of degree-3 that fits the data
of Table 2 at all points x0 = 3.2 to x3 = 4.8.

P3(x) = 22.0 + 8.400(x − 3.2) + 2.856(x − 3.2)(x − 2.7)

−0.528(x − 3.2)(x − 2.7)(x − 1.0)

• What is the fourth-degree polynomial that fits at all five
points?

• We only have to add one more term to P3(x)

P4(x) = P3(x)+0.2568(x −3.2)(x −2.7)(x −1.0)(x −4.8)

• If we compute the interpolated value at x = 3.0, we get the
same result: P3(3.0) = 20.2120.

• This is not surprising, because all third-degree polynomials
that pass through the same four points are identical.

• They may look different but they can all be reduced to
the same form.
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Divided Differences VIII

• Example m-file: Constructs a table of divided-difference
coefficients. Diagonal entries are coefficients of the
polynomial. (divDiffTable.m)

http://siber.cankaya.edu.tr/NumericalComputations/mfiles/chapter3/divDiffTable.m
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Divided Differences IX

• Divided differences for a polynomial
• It is of interest to look at the divided differences for

f (x) = Pn(x).

• Suppose that f (x) is the cubic

f (x) = 2x3 − x2 + x − 1.

• Here is its divided-difference table:

xi f [xi ] f [xi , xi+1] f [xi , xi+1 f [xi , . . . f [xi , . . . f [xi , . . .

, xi+2] , xi+3] , xi+4] , xi+5]
0.30 -0.736 2.480 3.000 2.000 0.000 0.000
1.00 1.000 3.680 3.600 2.000 0.000
0.70 -0.104 2.240 5.400 2.000
0.60 -0.328 8.720 8.200
1.90 11.008 21.020
2.10 15.212

• Observe that the third divided differences are all the same.

• It then follows that all higher divided differences will be
zero.
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Divided Differences X

P3(x) = f [x0] + (x − x0)f [x0, x1] + (x − x0)(x − x1)f [x0, x1, x2]

+(x − x0)(x − x1)(x − x2)f [x0, x1, x2, x3]

which is same with the starting polynomial.
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Spline Curves I

Figure: Fitting with different degrees of the polynomial.
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Spline Curves II

• There are times when fitting an interpolating polynomial to
data points is very difficult.

• Figure 1a is plot of f (x) = cos10(x) on the interval [−2, 2].

• It is a nice, smooth curve but has a pronounced maximum
at x = 0 and is near to the x -axis for |x | > 1.

• The curves of Figure 1b,c, d, and e are for polynomials of
degrees −2,−4,−6, and −8 that match the function at
evenly spaced points.

• None of the polynomials is a good representation of the
function.
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Spline Curves III

Figure: Fitting with quadratic in subinterval.

• One might think that a solution to the problem would be
to break up the interval [−2, 2] into subintervals

• and fit separate polynomials to the function in these
smaller intervals.

• Figure 2 shows a much better fit if we use a
quadratic between x = −0.65 and x = 0.65, with P(x) = 0
outside that interval.

• That is better but there are discontinuities in the slope
where the separate polynomials join.

• This solution is known as spline curves .
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Spline Curves IV

• Suppose that we have a set of n + 1 points (which do not
have to be evenly spaced):

(xi , yi), with i = 0, 1, 2, . . . , n.

• A spline fits a set of nth-degree polynomials, gi(x),
between each pair of points, from xi to xi+1.

• The points at which the splines join are called knots.

Figure: Linear spline.

• If the polynomials are all of degree-1, we have a linear
spline and the curve would appear as in the Fig. 3.

• The slopes are discontinuous where the segments join.
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The Equation for a Cubic Spline I

Figure: Cubic spline.

• We will create a succession of cubic splines over
successive intervals of the data (See Fig. 4).

• Each spline must join with its neighbouring cubic
polynomials at the knots where they join with the same
slope and curvature .

• We write the equation for a cubic polynomial, gi (x), in the
ith interval, between points (xi , yi), (xi+1, yi+1).

• It looks like the solid curve shown here.
• The dashed curves are other cubic spline polynomials. It

has this equation:

gi(x) = ai(x − xi)
3 + bi(x − xi)

2 + ci(x − xi) + di



Interpolation and Curve
Fitting II

Dr. Cem Özdo ğan
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The Equation for a Cubic Spline II

• Thus, the cubic spline function we want is of the form

g(x) = gi(x) on the interval[xi , xi+1], for i = 0, 1, . . . , n − 1

• and meets these conditions:
•

gi(xi) = yi , i = 0, 1, . . . , n − 1 and gn−1(xn) = yn (1)

•

gi(xi+1) = gi+1(xi+1), i = 0,1, . . . , n − 2 (2)

•

g
′

i (xi+1) = g
′

i+1(xi+1), i = 0, 1, . . . , n − 2 (3)

•

g
′′

i (xi+1) = g
′′

i+1(xi+1), i = 0,1, . . . , n − 2 (4)

• Equations say that the cubic spline fits to each of the
points Eq. 1, is continuous Eq. 2, and is continuous in
slope and curvature Eq. 3 and Eq. 4, throughout the
region spanned by the points.
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Least-Squares Approximations I
• Until now, we have assumed that the data are accurate,
• but when these values are derived from an experiment ,

there is some error in the measurements .

Figure: Resistance vs Temperature
graph for the Least-Squares
Approximation.

• Some students are
assigned to find the effect
of temperature on the
resistance of a metal wire.

• They have recorded the
temperature and resistance
values in a table and have
plotted their findings, as
seen in Fig. 5.

• The graph suggest a
linear relationship .

R = aT + b

• Values for the parameters, a and b, can be obtained from
the plot.
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Least-Squares Approximations II

• If someone else were given the data and asked to draw
the line,

• it is not likely that they would draw exactly the same line
and they would get different values for a and b.

• In analyzing the data, we will assume that the temperature
values are accurate

• and that the errors are only in the resistance numbers; we
then will use the vertical distances.
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Least-Squares Approximations III

• A way of fitting a line to experimental data that is to
minimize the deviations of the points from the line.

• The usual method for doing this is called the
least-squares method .

• The deviations are determined by the distances between
the points and the line .

Figure: Minimizing the deviations
by making the sum a minimum.

• Consider the case of only two
points (See Fig. 6).

• Obviously, the best line
passes through each point,

• but any line that passes
through the midpoint of the
segment connecting them has
a sum of errors equal to zero.
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Least-Squares Approximations IV

• We might first suppose we could minimize the deviations
by making their sum a minimum, but this is not an
adequate criterion .

• We might accept the criterion that we make the magnitude
of the maximum error a minimum (the so-called minimax
criterion).

• The usual criterion is to minimize the sum of the squares
of the errors, the least-squares principle.

• In addition to giving a unique result for a given set of data,
the least-squares method is also in accord with the
maximum-likelihood principle of statistics.

• If the measurement errors have a so-called normal
distribution

• and if the standard deviation is constant for all the data,

• the line determined by minimizing the sum of squares can
be shown to have values of slope and intercept that have
maximum likelihood of occurrence.
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Least-Squares Approximations V

• Let Yi represent an experimental value, and let yi be a
value from the equation

yi = axi + b

where xi is a particular value of the variable assumed to
be free of error.

• We wish to determine the best values for a and b so that
the y ’s predict the function values that correspond to
x -values.

• Let
ei = Yi − yi

• The least-squares criterion requires that S be a minimum.

S = e2
1 + e2

2 + . . .+ e2
n =

∑N
i=1 e2

i

=
∑N

i=1(Yi − axi − b)2

• N is the number of (x ,Y )-pairs.
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Least-Squares Approximations VI

• We reach the minimum by proper choice of the parameters
a and b, so they are the variables of the problem.

• At a minimum for S, the two partial derivatives will be zero.

∂S/∂a & ∂S/∂b

• Remembering that the xi and Yi are data points unaffected
by our choice our values for a and b, we have

∂S
∂a = 0 =

∑N
i=1 2(Yi − axi − b)(−xi)

∂S
∂b = 0 =

∑N
i=1 2(Yi − axi − b)(−1)

• Dividing each of these equations by −2 and expanding the
summation, we get the so-called normal equations

a
∑

x2
i + b

∑
xi =

∑
xiYi

a
∑

xi + bN =
∑

Yi

• All the summations are from i = 1 to i = N.
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Divided Differences

Spline Curves
The Equation for a Cubic
Spline

Least-Squares
Approximations

8.26

Least-Squares Approximations VII

• Solving these equations simultaneously gives the values
for slope and intercept a and b.

• For the data in Fig. 5 we find that

N = 5,
∑

Ti = 273.1,
∑

T 2
i = 18607.27,

∑
Ri = 4438,

∑
TiRi = 254932.5

• Our normal equations are then

18607.27a+ 273.1b = 254932.5
273.1a + 5b = 4438

• From these we find a = 3.395, b = 702.2, and

R = 702.2 + 3.395T
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Least-Squares Approximations VIII

• MATLAB gets a least-squares polynomial with its polyfit
command.

• When the numbers of points (the size of x ) is greater than
the degree plus one, the polynomial is the least squares fit.
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