Lecture 9 Interpolation and Curve Fitting III Nonlinear Data, Curve Fitting

Ceng375 Numerical Computations at December 21, 2010

Interpolation and Curv Fitting III

Dr. Cem Özdogan ˘

[Nonlinear Data, Curve](#page-2-0) **Fitting**

[Least-Squares](#page-6-0) Polynomials

[Use of Orthogonal](#page-17-0) Polynomials

Dr. Cem Özdoğan Computer Engineering Department Çankaya University

Contents

Interpolation and Curv Fitting III

Dr. Cem Özdogan ˘

[Nonlinear Data, Curve](#page-2-0) Fitting

[Least-Squares](#page-6-0) **Polynomials**

[Use of Orthogonal](#page-17-0) Polynomials

1 [Nonlinear Data, Curve Fitting](#page-2-0)

2 [Least-Squares Polynomials](#page-6-0) [Use of Orthogonal Polynomials](#page-17-0)

Nonlinear Data, Curve Fitting I

- In many cases, data from experimental tests are **not linear**,
- so we need to fit to them some function other than a first-degree polynomial.
- Popular forms are the exponential form

$$
y = ax^b
$$

or

$$
y = ae^{bx}
$$

- We can develop normal equations to the preceding development for a least-squares line by setting the partial derivatives equal to zero.
- • Such *nonlinear* simultaneous equations are much more difficult to solve than *linear* equations.

Interpolation and Curv Fitting III

Dr. Cem Özdogan ˘

[Nonlinear Data, Curve](#page-2-0) Fitting

[Least-Squares](#page-6-0) **Polynomials**

Nonlinear Data, Curve Fitting II

• Thus, the exponential forms are usually **linearized by taking logarithms** before determining the parameters,

For the case $y = ax^b \implies$ lny = lna + blnx

For the case $y = ae^{bx} \implies$ lny = lna + bx

- We now fit the new variable, $z = \ln y$, as a linear function of lnx or x as described earlier (normal equations).
- Here we do not minimize the sum of squares of the deviations of Y from the curve, but rather the deviations of lnY.
- In effect, this amounts to minimizing the squares of the percentage errors, which itself may be a desirable feature.
- An added advantage of the linearized forms is that plots of the data on either log-log or semilog graph paper show at a glance whether these forms are suitable, by whether a straight line represents the data when so plotted.

Interpolation and Curv Fitting III

Dr. Cem Özdogan ˘

[Nonlinear Data, Curve](#page-2-0) Fitting

[Least-Squares](#page-6-0) **Polynomials**

Nonlinear Data, Curve Fitting III

- In cases when such linearization of the function is not desirable,
- or when no method of linearization can be discovered, graphical methods are frequently used;
- one plots the experimental values and sketches in a curve that seems to fit well.
- Transformation of the variables to give near **linearity**,
- such as by plotting against $1/x$, $1/(ax + b)$, $1/x²$,
- and other polynomial forms of the argument may give curves with gentle enough changes in slope to allow a smooth curve to be drawn.

Dr. Cem Özdogan ˘

[Nonlinear Data, Curve](#page-2-0) Fitting

[Least-Squares](#page-6-0) **Polynomials**

Nonlinear Data, Curve Fitting IV

• S-shaped curves are not easy to linearize; the relation

$$
y=ab^{c^x}
$$

is sometimes employed.

- The constants a, b, and c are determined by special procedures.
- Another relation that fits data to an S-shaped curve is

$$
\frac{1}{y} = a + b e^{-x}
$$

Dr. Cem Özdogan ˘

[Nonlinear Data, Curve](#page-2-0) Fitting

[Least-Squares](#page-6-0) **Polynomials**

Least-Squares Polynomials I

- Fitting polynomials to data that do not plot linearly is common.
- It will turn out that the normal equations are linear for this situation (an added advantage).
- n **as the degree of the polynomial**
- **N as the number of data pairs.**
- If $N = n + 1$, the polynomial passes exactly through each point and the methods discussed earlier apply,
- so we will always have $N > n + 1$.
- We assume the functional relationship

$$
y = a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n \tag{1}
$$

• With errors defined by

$$
e_i = Y_i - y_i = Y_i - a_0 - a_1x_i - a_2x_i^2 - \ldots - a_nx_i^n
$$

Dr. Cem Özdogan ˘

[Nonlinear Data, Curve](#page-2-0) **Fitting**

[Least-Squares](#page-6-0) Polynomials

Least-Squares Polynomials II

- \bullet We again use Y_i to represent the observed (experimental) value corresponding to $\boldsymbol{x_i}$ (it is assumed that $\boldsymbol{x_i}$ free of error for the sake of simplicity).
- We minimize the sum of squares;

$$
S = \sum_{i=1}^{N} e_i^2 = \sum_{i=1}^{N} (Y_i - a_0 - a_1x_i - a_2x_i^2 - \ldots - a_nx_i^n)^2
$$

- At the minimum, all the partial derivatives $\partial S/\partial a_0$, $\partial S/\partial a_n$ vanish.
- Writing the equations for these gives $n + 1$ equations:

$$
\frac{\partial S}{\partial a_0} = 0 = \sum_{i=1}^N 2(Y_i - a_0 - a_1x_i - a_2x_i^2 - \dots - a_ix_i^n)(-1) \n\frac{\partial S}{\partial a_1} = 0 = \sum_{i=1}^N 2(Y_i - a_0 - a_1x_i - a_2x_i^2 - \dots - a_ix_i^n)(-x_i) \n\vdots \n\frac{\partial S}{\partial a_n} = 0 = \sum_{i=1}^N 2(Y_i - a_0 - a_1x_i - a_2x_i^2 - \dots - a_ix_i^n)(-x_i^n)
$$

Interpolation and Curv Fitting III

Dr. Cem Özdogan ˘

[Nonlinear Data, Curve](#page-2-0) **Fitting**

[Least-Squares](#page-6-0) Polynomials

Least-Squares Polynomials III

• Dividing each by -2 and rearranging gives the $n + 1$ normal equations to be solved simultaneously:

$$
a_0N + a_1\sum x_i + a_2\sum x_i^2 + \ldots + a_n\sum x_i^n = \sum Y_i
$$

\n
$$
a_0\sum x_i + a_1\sum x_i^2 + a_2\sum x_i^3 + \ldots + a_n\sum x_i^{n+1} = \sum x_iY_i
$$

\n
$$
a_0\sum x_i^2 + a_1\sum x_i^3 + a_2\sum x_i^4 + \ldots + a_n\sum x_i^{n+2} = \sum x_i^2Y_i
$$

\n
$$
\vdots
$$

$$
a_0\sum x_i^n+a_1\sum x_i^{n+1}+a_2\sum x_i^{n+2}+\ldots+a_n\sum x_i^{2n}=\sum x_i
$$

Interpolation and Curv Fitting III

Dr. Cem Özdogan ˘

[Nonlinear Data, Curve](#page-2-0) Fitting

[Least-Squares](#page-6-0) Polynomials

 Y_i

 $iⁿ Y$ (2)

[Use of Orthogonal](#page-17-0) Polynomials

• Putting these equations in matrix form shows the coefficient matrix (B).

$$
\begin{bmatrix}\n\begin{array}{c}\n8 \\
\sum x_i \\
\sum x_i^2 \\
\sum x_i^3 \\
\vdots \\
\sum x_i^n\n\end{array} & \begin{array}{c}\n\sum x_i^2 \\
\sum x_i^3 \\
\sum x_i^4 \\
\sum x_i^5 \\
\vdots \\
\sum x_i^{n+2}\n\end{array} & \begin{array}{c}\n\sum x_i^3 \\
\sum x_i^4 \\
\sum x_i^5 \\
\vdots \\
\sum x_i^{2n+1}\n\end{array} & \begin{array}{c}\n\sum x_i^7 \\
\sum x_i^{1+1} \\
\sum x_i^{2n+2} \\
\vdots \\
\sum x_i^{2n}\n\end{array} & \begin{bmatrix}\n\sum x_i \\
\sum x_i \\
\sum x_i^{2n} \\
\vdots \\
\sum x_i^{2n}\n\end{bmatrix} = \begin{bmatrix}\n\sum x_i \\
\sum x_i \\
\sum x_i^{2n} \\
\vdots \\
\sum x_i^{2n} \\
\sum x_i^{2n} \\
\sum x_i^{2n} \\
\vdots \\
\sum x_i^{2n} \\
\sum x_i^{2n} \\
\end{bmatrix} \quad (3)
$$

All the summations in Eqs. [2](#page-8-0) and [3](#page-8-1) run from 1 to N.

Least-Squares Polynomials IV

- Equation [3](#page-8-1) represents a linear system.
- However, you need to know that if this system is ill-conditioned and round-off errors can distort the solution: the a's of Eq. [1.](#page-6-1)
- Up to degree-3 or -4, the problem is not too great.
- Special methods that use **orthogonal** polynomials are a remedy.
- Degrees higher than 4 are used very infrequently.
- It is often better to fit a series of lower-degree polynomials to subsets of the data.
- Matrix B of Eq. [3](#page-8-1) is called the **normal matrix** for the least-squares problem.

Dr. Cem Özdogan ˘

[Nonlinear Data, Curve](#page-2-0) Fitting

[Least-Squares](#page-6-0) Polynomials

Least-Squares Polynomials V

- There is another matrix that corresponds to this, called the **design matrix**.
- It is of the form:

$$
A = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ x_1 & x_2 & x_3 & \dots & x_N \\ x_1^2 & x_2^2 & x_3^2 & \dots & x_N^2 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ x_1^n & x_2^n & x_3^n & \dots & x_N^n \end{bmatrix}
$$

Interpolation and Curv Fitting III

Polynomials

- AA^T is just the coefficient matrix of Eq. [3.](#page-8-1)
- \bullet It is easy to see that Ay , where y is the column vector of y-values, gives the right-hand side of Eq. [3.](#page-8-1)

$$
\begin{bmatrix}\n1 & 1 & 1 & 1 & 1 \\
x_1 & x_2 & x_3 & \dots & x_N \\
x_1^2 & x_2^2 & x_3^2 & \dots & x_N^2 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
x_1^n & x_2^n & x_3^n & \dots & x_N^n\n\end{bmatrix}\n\begin{bmatrix}\ny_1 \\
y_2 \\
y_3 \\
\vdots \\
y_n\n\end{bmatrix}\n=\n\begin{bmatrix}\n\sum Y_i \\
\sum x_i Y_i \\
\sum x_i^2 Y_i \\
\vdots \\
\sum x_i^n Y_i\n\end{bmatrix}
$$
\n(4)

Least-Squares Polynomials VI

• We can rewrite Eq. [3](#page-8-1) in matrix form, as

$$
AA^T a = Ba = Ay
$$

1 $AA^T = B$. To find the solution (with MATLAB) $>> a = Ay \A * transpose(A)$

Interpolation and Curv Fitting III

Dr. Cem Özdogan ˘

[Nonlinear Data, Curve](#page-2-0)

Fitting [Least-Squares](#page-6-0) Polynomials [Use of Orthogonal](#page-17-0) Polynomials A $\begin{bmatrix} 1 & 1 & 1 & \dots & 1 \end{bmatrix}$ 1 1 1 . . . 1 x_1 x_2 x_3 ... x_N x_1^2 x_2^2 x_3^2 ... x_N^2
: : : : : x_1^n x_2^n x_3^n ... x_n^n 1 ∗ A T $\begin{bmatrix} 1 & x_1 & x_1^2 & \dots & x_1^n \end{bmatrix}$ 1 x_1 x_2^2 ... x_1^n

1 x_2 x_2^2 ... x_2^n

1 x_3 x_3^2 ... x_3^n

: : : : : 1 x_N x_N^2 ... x_N^n 1 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ = $\sqrt{ }$ $\overline{1}$ $\overline{1}$ $\overline{1}$ $\overline{1}$ $\overline{1}$ $\overline{1}$ $N \qquad \sum x_i \qquad \sum x_i^2 \qquad \sum x_i^3 \quad \ldots \quad \sum x_i^n$ $\sum x_i^2 \sum x_i^2 \sum x_i^3 \sum x_i^4 \dots \sum x_i^{n+1}$ $\sum_{i} x_i^{\lambda_i}$ $\sum_{i} x_i^{\lambda_i}$ $\sum_{i} x_i^{\lambda_i}$ $\sum_{i} x_i^{\lambda_i}$... $\sum_{i} x_i^{n+2}$ $\sum x_i^n$ $\sum x_i^{n+1}$ $\sum x_i^{n+2}$ $\sum x_i^{n+3}$... $\sum x_i^{2n}$ 1 \mathbf{I} $\overline{1}$ $\overline{1}$ $\overline{1}$ $\overline{1}$ $\overline{1}$ \overbrace{R} B

Least-Squares Polynomials VII

$$
2 A^T a = y
$$

A T z }| { 1 x¹ x 2 1 . . . x n 1 1 x² x 2 2 . . . x n 2 1 x³ x 2 3 . . . x n 3 1 x^N x 2 N . . . x n N ∗ a z }| { a0 a1 a2 . . . an = y z }| { y1 y2 y3 . . . yN • That is

$$
a_0 + a_1x_1 + a_2x_1^2 + \ldots + a_nx_1^n = y_1
$$

\n
$$
a_0 + a_1x_2 + a_2x_2^2 + \ldots + a_nx_2^n = y_2
$$

\n
$$
a_0 + a_1x_3 + a_2x_3^2 + \ldots + a_nx_3^n = y_3
$$

\n
$$
\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots
$$

\n
$$
a_0 + a_1x_0 + a_2x_0^2 + \ldots + a_nx_0^n = y_0
$$

• Least-squares polynomials with all x-values (from given xy-pair data) are inserted.

Dr. Cem Özdogan ˘

[Nonlinear Data, Curve](#page-2-0) Fitting

[Least-Squares](#page-6-0) Polynomials

Least-Squares Polynomials VIII

• It is illustrated the use of Eqs. [2](#page-8-0) to fit a quadratic to the data of Table [1.](#page-13-0)

Table: Data to illustrate curve fitting.

• To set up the normal equations, we need the sums tabulated in Table [1.](#page-13-0) The equations to be solved are:

> $11a_0 + 6.01a_1 + 4.6545a_2 = 5.905$ $6.01a₀ + 4.6545a₁ + 4.1150a₂ = 2.1839$ $4.6545a₀ + 4.1150a₁ + 3.9161a₂ = 1.3357$

Interpolation and Curv Fitting III

Dr. Cem Özdogan ˘

[Nonlinear Data, Curve](#page-2-0) **Fitting**

[Least-Squares](#page-6-0) Polynomials

Least-Squares Polynomials IX

• The result is $a_0 = 0.998$, $a_2 = -1.018$, $a_3 = 0.225$, so the least- squares method gives

 $y = 0.998 - 1.018x + 0.225x^2$

- which we compare to $y = 1 x + 0.2x^2$.
- Errors in the data cause the equations to differ.

• The data are actually a perturbation of the relation $y = 1 - x + 0.2x^2$.

Interpolation and Curv Fitting III

Dr. Cem Özdogan ˘

[Nonlinear Data, Curve](#page-2-0) **Fitting**

[Least-Squares](#page-6-0) Polynomials

Least-Squares Polynomials X

• **Example:** The following data:

R/C: 0.73, 0.78, 0.81, 0.86, 0.875, 0.89, 0.95, 1.02, 1.03, 1.055, 1.135, 1.14, 1.245, 1.32, 1.385, 1.43, 1.445, 1.535, 1.57, 1.63, 1.755.

Vθ/V∞**:** 0.0788, 0.0788, 0.064, 0.0788, 0.0681, 0.0703, 0.0703, 0.0681, 0.0681, 0.079, 0.0575, 0.0681, 0.0575, 0.0511, 0.0575, 0.049, 0.0532, 0.0511, 0.049, 0.0532,0.0426.

- Let $x = R/C$ and $y = V_{\theta}/V_{\infty}$,
- We would like our curve to be of the form

$$
g(x)=\frac{A}{x}(1-e^{-\lambda x^2})
$$

• and our least-squares equation becomes

$$
S = \sum_{i=1}^{21} (Y_i - \frac{A}{x_i}(1 - e^{-\lambda x_i^2}))^2
$$

Interpolation and Curv Fitting III

Dr. Cem Özdogan ˘

[Nonlinear Data, Curve](#page-2-0) **Fitting**

[Least-Squares](#page-6-0) Polynomials

Least-Squares Polynomials XI

• Setting $S_{\lambda} = S_{A} = 0$ gives the following equations:

$$
\begin{array}{l} \sum_{i=1}^{21}(\frac{1}{x_{i}})(1-e^{-\lambda x_{i}^{2}})(Y_{i}-\frac{A}{x_{i}}(1-e^{-\lambda x_{i}^{2}}))=0 \\ \sum_{i=1}^{21}x_{i}(e^{-\lambda x_{i}^{2}})(Y_{i}-\frac{A}{x_{i}}(1-e^{-\lambda x_{i}^{2}}))=0 \end{array}
$$

• When this system of nonlinear equations is solved, we get

$$
g(x) = \frac{0.07618}{x}(1 - e^{-2.30574x^2})
$$

Figure: The graph of V_{θ}/V_{∞} vs R/C.

Interpolation and Curv Fitting III

Dr. Cem Özdogan ˘

[Nonlinear Data, Curve](#page-2-0) **Fitting**

[Least-Squares](#page-6-0) Polynomials

- For these values of A and λ , S = 0.00016.
- The graph of this function is presented in Figure [2.](#page-16-0)

Use of Orthogonal Polynomials I

- We have mentioned that the system of normal equations for a polynomial fit is ill-conditioned when the degree is **high**.
- Even for a cubic least-squares polynomial, the **condition number** of the coefficient matrix can be large.
- In one experiment, a cubic polynomial was fitted to 21 data points.
- When the data were put into the coefficient matrix of Eq. [3,](#page-8-1) its condition number (using 2-norms) was found to be 22000!.
- • This means that small differences in the y-values will make a large difference in the solution.

Interpolation and Curv Fitting III

Dr. Cem Özdogan ˘

[Nonlinear Data, Curve](#page-2-0) **Fitting**

[Least-Squares](#page-6-0) **Polynomials**

Use of Orthogonal Polynomials II

Interpolation and Curv Fitting III

Dr. Cem Özdogan ˘

[Nonlinear Data, Curve](#page-2-0) Fitting

[Least-Squares](#page-6-0) Polynomials

[Use of Orthogonal](#page-17-0) **Polynomials**

- In fact, if the four right-hand-side values are each changed by only 0.01 (about 0.1%),
- the solution for the parameters of the cubic were changed significantly, by as much as 44%!
- However, if we fit the data with **orthogonal polynomials** such as the Chebyshev polynomials.
- A sequence of polynomials is said to be orthogonal with respect to the interval [a,b], if

 $\int_a^b P_n^*(x)P_m(x)dx = 0$ when $n \neq m$.

• The condition number of the coefficient matrix is reduced to about 5 and the solution is not much affected by the perturbations.