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Nonlinear Data, Curve Fitting I

• In many cases, data from experimental tests are not
linear,

• so we need to fit to them some function other than a
first-degree polynomial.

• Popular forms are the exponential form

y = axb

or
y = aebx

• We can develop normal equations to the preceding
development for a least-squares line by setting the partial
derivatives equal to zero.

• Such nonlinear simultaneous equations are
much more difficult to solve than linear equations.
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9.4

Nonlinear Data, Curve Fitting II

• Thus, the exponential forms are usually linearized by
taking logarithms before determining the parameters,

For the case y = axb =⇒
lny = lna + blnx

For the case y = aebx =⇒
lny = lna + bx

• We now fit the new variable, z = lny , as a linear function
of lnx or x as described earlier (normal equations).

• Here we do not minimize the sum of squares of the
deviations of Y from the curve, but rather the deviations of
lnY .

• In effect, this amounts to minimizing the squares of the
percentage errors, which itself may be a desirable feature.

• An added advantage of the linearized forms is that plots of
the data on either log-log or semilog graph paper show at
a glance whether these forms are suitable, by whether a
straight line represents the data when so plotted.
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9.5

Nonlinear Data, Curve Fitting III

• In cases when such linearization of the function is not
desirable,

• or when no method of linearization can be discovered,
graphical methods are frequently used;

• one plots the experimental values and sketches in a curve
that seems to fit well.

• Transformation of the variables to give near linearity ,

• such as by plotting against 1/x , 1/(ax + b), 1/x2,

• and other polynomial forms of the argument may give
curves with gentle enough changes in slope to allow a
smooth curve to be drawn.
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Nonlinear Data, Curve Fitting IV

• S-shaped curves are not easy to linearize; the relation

y = abcx

is sometimes employed.

• The constants a, b, and c are determined by special
procedures.

• Another relation that fits data to an S-shaped curve is

1
y
= a + be−x
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Least-Squares Polynomials I

• Fitting polynomials to data that do not plot linearly is
common.

• It will turn out that the normal equations are linear for this
situation (an added advantage).

• n as the degree of the polynomial
• N as the number of data pairs.
• If N = n + 1, the polynomial passes exactly through each

point and the methods discussed earlier apply,

• so we will always have N > n + 1.

• We assume the functional relationship

y = a0 + a1x + a2x2 + . . .+ anxn (1)

• With errors defined by

ei = Yi − yi = Yi − a0 − a1xi − a2x2
i − . . .− anxn

i
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9.8

Least-Squares Polynomials II

• We again use Yi to represent the observed (experimental)
value corresponding to xi (it is assumed that xi free of
error for the sake of simplicity).

• We minimize the sum of squares;

S =

N∑

i=1

e2
i =

N∑

i=1

(Yi − a0 − a1xi − a2x2
i − . . .− anxn

i )
2

• At the minimum, all the partial derivatives ∂S/∂a0, ∂S/∂an

vanish.

• Writing the equations for these gives n + 1 equations:

∂S
∂a0

= 0 =
∑N

i=1 2(Yi − a0 − a1xi − a2x2
i − . . .− aixn

i )(−1)
∂S
∂a1

= 0 =
∑N

i=1 2(Yi − a0 − a1xi − a2x2
i − . . .− aixn

i )(−xi)
...
∂S
∂an

= 0 =
∑N

i=1 2(Yi − a0 − a1xi − a2x2
i − . . .− aixn

i )(−xn
i )
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9.9

Least-Squares Polynomials III

• Dividing each by −2 and rearranging gives the n + 1
normal equations to be solved simultaneously:

a0N + a1
∑

xi + a2
∑

x2
i + . . .+ an

∑
xn

i =
∑

Yi

a0
∑

xi + a1
∑

x2
i + a2

∑
x3

i + . . .+ an
∑

xn+1
i =

∑
xi Yi

a0
∑

x2
i + a1

∑
x3

i + a2
∑

x4
i + . . .+ an

∑
xn+2

i =
∑

x2
i Yi

...
a0

∑
xn

i + a1
∑

xn+1
i + a2

∑
xn+2

i + . . .+ an
∑

x2n
i =

∑
xn

i Yi

(2)

• Putting these equations in matrix form shows the
coefficient matrix (B).

B
︷ ︸︸ ︷










N
∑

xi
∑

x2
i

∑
x3

i . . .
∑

xn
i∑

xi
∑

x2
i

∑
x3

i

∑
x4

i . . .
∑

xn+1
i∑

x2
i

∑
x3

i

∑
x4

i

∑
x5

i . . .
∑

xn+2
i

...
...

...
...

...
...

∑
xn

i

∑
xn+1

i

∑
xn+2

i

∑
xn+3

i . . .
∑

x2n
i











a
︷ ︸︸ ︷









a0
a1
a2

.

..
an










=










∑
Yi∑
xi Yi∑
x2

i Yi

..

.
∑

xn
i Yi










(3)

All the summations in Eqs. 2 and 3 run from 1 to N.
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Least-Squares Polynomials IV

• Equation 3 represents a linear system.

• However, you need to know that if this system is
ill-conditioned and round-off errors can distort the solution:
the a’s of Eq. 1.

• Up to degree-3 or -4, the problem is not too great.

• Special methods that use orthogonal polynomials are a
remedy.

• Degrees higher than 4 are used very infrequently.

• It is often better to fit a series of lower-degree polynomials
to subsets of the data.

• Matrix B of Eq. 3 is called the normal matrix for the
least-squares problem.
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Least-Squares Polynomials V

• There is another matrix that corresponds to this, called the
design matrix .

• It is of the form;

A =










1 1 1 1 1
x1 x2 x3 . . . xN

x2
1 x2

2 x2
3 . . . x2

N
...

...
...

...
...

xn
1 xn

2 xn
3 . . . xn

N










• AAT is just the coefficient matrix of Eq. 3.
• It is easy to see that Ay , where y is the column vector of

y -values, gives the right-hand side of Eq. 3.
A

︷ ︸︸ ︷









1 1 1 1 1
x1 x2 x3 . . . xN
x2

1 x2
2 x2

3 . . . x2
N

...
...

...
...

...
xn

1 xn
2 xn

3 . . . xn
N










y
︷ ︸︸ ︷









y1
y2
y3
...
yn










=










∑
Yi∑
xiYi∑
x2

i Yi
...
∑

xn
i Yi










(4)
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Least-Squares Polynomials VI
• We can rewrite Eq. 3 in matrix form, as

AAT a = Ba = Ay

1 AAT = B. To find the solution (with MATLAB)
>> a = Ay\A ∗ transpose(A)

A
︷ ︸︸ ︷









1 1 1 . . . 1
x1 x2 x3 . . . xN

x2
1 x2

2 x2
3 . . . x2

N
...

...
...

...
...

xn
1 xn

2 xn
3 . . . xn

N










∗

AT

︷ ︸︸ ︷









1 x1 x2
1 . . . xn

1
1 x2 x2

2 . . . xn
2

1 x3 x2
3 . . . xn

3
...

...
...

...
...

1 xN x2
N . . . xn

N










=










N
∑

xi
∑

x2
i

∑
x3

i . . .
∑

xn
i∑

xi
∑

x2
i

∑
x3

i

∑
x4

i . . .
∑

xn+1
i∑

x2
i

∑
x3

i

∑
x4

i

∑
x5

i . . .
∑

xn+2
i

...
...

...
...

...
...

∑
xn

i

∑
xn+1

i

∑
xn+2

i

∑
xn+3

i . . .
∑

x2n
i










︸ ︷︷ ︸

B
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9.13

Least-Squares Polynomials VII

2 AT a = y

AT

︷ ︸︸ ︷









1 x1 x2
1 . . . xn

1
1 x2 x2

2 . . . xn
2

1 x3 x2
3 . . . xn

3
...

...
...

...
...

1 xN x2
N . . . xn

N










∗

a
︷ ︸︸ ︷








a0

a1

a2

. . .
an









=

y
︷ ︸︸ ︷








y1

y2

y3

. . .
yN









• That is

a0 + a1x1 + a2x2
1 + . . .+ anxn

1 = y1

a0 + a1x2 + a2x2
2 + . . .+ anxn

2 = y2

a0 + a1x3 + a2x2
3 + . . .+ anxn

3 = y3
...

...
...

...
...

...
a0 + a1xN + a2x2

N + . . .+ anxn
N = yN

• Least-squares polynomials with all x -values (from given
xy -pair data) are inserted.
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Least-Squares Polynomials VIII

• It is illustrated the use of Eqs. 2 to fit a quadratic to the
data of Table 1.

Table: Data to illustrate curve fitting.

• To set up the normal equations, we need the sums
tabulated in Table 1. The equations to be solved are:

11a0 + 6.01a1 + 4.6545a2 = 5.905
6.01a0 + 4.6545a1 + 4.1150a2 = 2.1839

4.6545a0 + 4.1150a1 + 3.9161a2 = 1.3357
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Least-Squares Polynomials IX
• The result is a0 = 0.998, a2 = −1.018,a3 = 0.225, so the

least- squares method gives

y = 0.998 − 1.018x + 0.225x2

• which we compare to y = 1 − x + 0.2x2.
• Errors in the data cause the equations to differ.

• Figure 1 shows a plot of the
data.

• The data are actually a
perturbation of the relation
y = 1 − x + 0.2x2.

Figure: Figure for the data to
illustrate curve fitting.
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Least-Squares Polynomials X

• Example: The following data:
R/C: 0.73, 0.78, 0.81, 0.86, 0.875, 0.89, 0.95, 1.02, 1.03, 1.055,
1.135, 1.14, 1.245, 1.32, 1.385, 1.43, 1.445, 1.535, 1.57, 1.63,
1.755.

Vθ/V∞: 0.0788, 0.0788, 0.064, 0.0788, 0.0681, 0.0703, 0.0703,
0.0681, 0.0681, 0.079, 0.0575, 0.0681, 0.0575, 0.0511, 0.0575,
0.049, 0.0532, 0.0511, 0.049, 0.0532,0.0426.

• Let x = R/C and y = Vθ/V∞,

• We would like our curve to be of the form

g(x) =
A
x
(1 − e−λx2

)

• and our least-squares equation becomes

S =

21∑

i=1

(Yi −
A
xi
(1 − e−λx2

i ))2
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9.17

Least-Squares Polynomials XI
• Setting Sλ = SA = 0 gives the following equations:

∑21
i=1(

1
xi
)(1 − e−λx2

i )(Yi −
A
xi
(1 − e−λx2

i )) = 0
∑21

i=1 xi(e−λx2
i )(Yi −

A
xi
(1 − e−λx2

i )) = 0

• When this system of nonlinear equations is solved, we get

g(x) =
0.07618

x
(1 − e−2.30574x2

)

• For these values of A and
λ,S = 0.00016.

• The graph of this function is
presented in Figure 2.

Figure: The graph of Vθ/V∞ vs
R/C.
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9.18

Use of Orthogonal Polynomials I

• We have mentioned that the system of normal equations
for a polynomial fit is ill-conditioned when the degree is
high .

• Even for a cubic least-squares polynomial, the condition
number of the coefficient matrix can be large.

• In one experiment, a cubic polynomial was fitted to 21 data
points.

• When the data were put into the coefficient matrix of Eq.
3, its condition number (using 2-norms) was found to be
22000!.

• This means that small differences in the y -values will
make a large difference in the solution.
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Use of Orthogonal Polynomials II

• In fact, if the four right-hand-side values are each changed
by only 0.01 (about 0.1%),

• the solution for the parameters of the cubic were changed
significantly, by as much as 44%!

• However, if we fit the data with orthogonal polynomials
such as the Chebyshev polynomials.

• A sequence of polynomials is said to be orthogonal with
respect to the interval [a,b], if
∫ b

a P∗

n (x)Pm(x)dx = 0 when n 6= m.

• The condition number of the coefficient matrix is reduced
to about 5 and the solution is not much affected by the
perturbations.


	Nonlinear Data, Curve Fitting
	Least-Squares Polynomials
	Use of Orthogonal Polynomials


