
1 OPERATING SYSTEMS LABORATORY

I - UNIX Tutorial

1.1 Login and Logout

Logging in to a UNIX system requires two pieces of information:

• A username,

• and a password.

When you sit down for a UNIX session, you are given a login prompt that
looks like this:

Figure 1: Login Screen

• Type your username at the login prompt, and press the return key.
The system will then ask you for your password. When you type your
password, the screen will not display what you type.

• After login process is completed, open a terminal. The first thing you
should do is change your password, using the passwd utility (see Fig.
2). Here are some rules for selecting a good password:

– Do not use any part of your name, your spouse’s name, your child’s
name, your pet’s name, or anybody’s name. Do not use any back-
ward spellings of any name, either.

– Do not use an easily-guessable number, like your phone number,
your social security number, your address, license plate number,
etc.

– Do not use any word that can be found in an English or foreign-
language dictionary.

1

– Do not use all the same letter, or a simple sequence of keys on the
keyboard, like qwerty.

– Do use a mix of upper-case and lower-case letters, numbers, and
control characters.

– Do use at least six characters.

Figure 2: Terminal/Console/Shell

• When you’re ready to quit, type the command exit. This command
will make you close the shell, but not the logout o the system.

• Use logout item in the main menu to logout. Before you leave your
computer, make sure that you see the login prompt (Fig. 1), indicating
that you have successfully logged out.

• Some shells will recognize other commands to log you out, like ”logout”
or even ”bye”.

1.2 Commands

This tutorial will help you learn the basics of Unix. You should work on it
while you are at the computer. Read a paragraph, then try the suggested
commands. Do NOT make copy-paste for your benefit. For the first com-
mand date, see Fig. 3.

2

Figure 3: date command.

1.2.1 Simple Commands

• date - we want the computer to tell us today’s date.

• whoami - displays the login name of the current user, who (for the
purpose of these lessons) is ”ozdogan”. The computer should respond
with your login name.

• echo - it tells the computer to retype the string after echo. Try the
followings;
echo This is a test
echo $SHELL
Why the output is different now? What is $SHELL?

1.2.2 Files

• cd - (change directory) used with no arguments takes us from wherever
we might be to our home directory.

• pwd - (print working directory) tells in which directory we find our-
selves for the moment.

• echo $HOME - Note that echo $HOME has exactly the same ef-
fect as pwd. Figure out what your home directory is. Now, What is
$HOME?

3

• cat > dict
red: rojo
yellow: amarillo
black: negro
white: blanco
blue: azul
green: verde
<control-d>

By <control-d> we mean: hold the control key down; while it is down
press ”d”. We have just used cat to create a short English-Spanish
dictionary. This dictionary resides in the file dict.

• ls -al dict - lists the files in the current directory. For the moment
there is only one, namely dict.

• cat dict - shows us what is in dict.

• wc dict - counts words (and more). In the case at hand it tells us that
dict contains 6 lines, 12 words, and 78 characters (”letters”).

• grep white dict - looks for the word white in the file dict and displays
the lines in which this word appears. It gives us a way to search through
files.

• sort dict - command does just what it says.

• sort dict > dict2 - the use of the ”into” symbol ”>”. In our example
it had the effect of directing the output of the sort command from the
screen to the file dict2.
ls -al dict dict2 - be sure that dict2 was there.
cat dict2 - be sure that the content is correct.

• rm dict2 - remove the file dict2.

1.2.3 Directories

• mkdir letters - (make directory), create a new directory named let-

ters.
ls -al

• mv dict letters - (move), move the dict into the directory letters.
ls -al letters/dict

4

• mv dict* letters - here the character * matches any sequence of char-
acters, including the null string. Thus files starting with dict would
all be moved into letters.

• cd letters - (chhange directory), work inside the directory letters.
ls -al dict

• cd - to go back to our home directory.

• ls -al - check what our home directory contains.

• mkdir cprogs; mv *.c cprogs; ls -al cprogs/ letters/

• pwd
cd letters
pwd
rm * - removes all files in the current directory
cd .. - changes the current directory to the parent of the current one.
rmdir letters - (remove directory), to remove a directory we first
remove all the file in it, then remove the directory.

• man - manual/help, to investigate other flags to the command you
are interested in type:
man commandname

man ls - to investigate other flags, such as “which flags will display
file size and ownership?”
To quit man simply type the letter q.

• ls -l filename - will list the long directory list entry (which includes
owner and permission bits) and the group of a file. The output looks
something like:

permission owner group filename

-rw-r----- 1 ozdogan ozdogan 65538 Feb 6 01:44 commands.html

• The Permission Bits;

– The first position (which is not set) specifies what type of file this
is. If it were set, it would probably be a d (for directory) or l (for
link).

– The next nine positions are divided into three sets of binary num-
bers and determine permissions for three different sets of people.

5

u g o

421 421 421

rw- r-- ---

6 4 0

∗ The file has ”mode” 640.

∗ The first bits, set to ”r + w” (4+2=6) in our example, specify
the permissions for the user who owns the files (u).

∗ The user who owns the file can read or write (which includes
delete) the file.

∗ The next trio of bits, set to ”r” (4) in our example, specify
access to the file for other users in the same group (g) as the
group of the file.

∗ In this case the group is ug – all members of the ug group can
read the file (print it out, copy it, or display it using more).

∗ Finally, all other users (o) are given no access to the file.

∗ The one form of access which no one is given, even the owner,
is ”x” (for execute).

∗ This is because the file is not a program to be executed.

∗ It is probably a text file which would have no meaning to the
computer. The x would appear in the third position if it was
an executable file.

– If you wanted to make the file readable to all other users, you
could type:
chmod 644 filename or chmod o+r filename

• rm -i filename - would return a prompt asking if you are certain you
want to delete that file.

• du - display disk usage of the current directory and its subdirectories.

– du -s - display only total disk usage.

– du -s -k - some versions of UNIX, such as Solaris, need -k to
report kilobytes.

• df - to examine what disks and partitions exist and are mounted.

• ps ux - to list your own processes.

• top - an interactive command that displays and periodically updates
the top cpu processes, ranked by raw cpu percentage. To quit top
simply type the letter q.

6

1.3 Compiling A C Program

• Lets assume there is a file named code1.c that we want to compile.
We will do so using a command line similar to this:
gcc -c code1.c - to compile
gcc -o code1 code1.o - to link. Suppose that you want the resulting
program to be called ”code1”
gcc -o code1 code1.c - just use this command for combined action
of compiling and linking.

1.3.1 Running The Resulting Program

• code1 - Once we created the program, we wish to run it. This is
usually done by simply typing its name. However, this requires that
the current directory be in our PATH (which is a variable telling our
Unix shell where to look for programs we’re trying to run).

• ./code1 - In many cases, this directory is not placed in our PATH.
This time we explicitly told our Unix shell that we want to run the
program from the current directory.

• However, yet one more obstacle could block our path - file permission
flags.
ls -al code1
chmod u+rwx code1 - we set the permissions of the file properly.
This means the user (’u’) should be given (’+’) permissions read (’r’),
write (’w’) and execute (’x’) to the file ’code1’.
ls -al code1
kdevelop code1.c

1.4 Compiling A Multi-Source C Program

• So we learned how to compile a single-source program properly. Yet,
sooner or later you’ll see that having all the source in a single file is
rather limiting, for several reasons:

– As the file grows, compilation time tends to grow, and for each
little change, the whole program has to be re-compiled,

– It is very hard, if not impossible, that several people will work on
the same project together in this manner,

– Managing your code becomes harder. Backing out erroneous changes
becomes nearly impossible.

7

http://siber.cankaya.edu.tr/OperatingSystems/cfiles/code1.c

• The solution to this would be to split the source code into multiple
files, each containing a set of closely-related functions.

• There are two possible ways to compile a multi-source C program.

– The first is to use a single command line to compile all the files.
Suppose that we have a program whose source is found in files
code2.c, code3.cand code4.c. Analyze these files by opening
kdevelop. We could compile it this way:
gcc -o code2 code2.c code3.c code4.c
This will cause the compiler to compile each of the given files
separately, and then link them all together to one executable file
named ”code2”.

– The problem with this way of compilation is that even if we only
make a change in one of the source files, all of them will be re-
compiled when we run the compiler again. In order to overcome
this limitation, we could divide the compilation process into two
phases - compiling, and linking.
gcc -c code2.c
gcc -c code3.c
gcc -c code4.c
gcc -o code2 code2.o code3.o code4.o

∗ The first 3 commands have each taken one source file, and
compiled it into something called ”object file”, with the same
names, but with a ”.o” suffix.

∗ It is the ”-c” flag that tells the compiler only to create an
object file, and not to generate a final executable file just yet.

∗ The object file contains the code for the source file in machine
language, but with some unresolved symbols. For example,
the ”code2.o” file refers to a symbol named ”func a”, which
is a function defined in file ”code3.c”.

∗ Surely we cannot run the code like that. Thus, after creating
the 3 object files, we use the 4th command to link the 3 object
files into one program.

∗ The linker (which is invoked by the compiler now) takes all
the symbols from the 3 object files, and links them together -
it makes sure that when ”func a” is invoked from the code in
object file ”code2.o”, the function code in object file ”code3.o”
gets executed.

8

http://siber.cankaya.edu.tr/OperatingSystems/cfiles/code2.c
http://siber.cankaya.edu.tr/OperatingSystems/cfiles/code3.c
http://siber.cankaya.edu.tr/OperatingSystems/cfiles/code4.c

∗ nm code2 - try this command and recognize the definitions
for ”func a” and ”func b”.

∗ Further more, the linker also links the standard C library
into the program, in this case, to resolve the ”printf” symbol
properly.

1.5 Exercises

The UNIX shell is case-sensitive, meaning that an uppercase letter is not
equivalent to the same lower case letter (i.e., ”A” is not equal to ”a”). Most
all UNIX commands are lower case. Find out the correct command for the
followings:

1. Changing to your home directory.

2. Changing access permissions. Change the access permissions of a file
or directory.

3. Finding out which shell you are using. Use the SHELL environment
variable (command echo).

4. Displaying current variables. Say, to display the value of PATH envi-
ronment variable (command export).

5. Changing default access permissions. Use umask, first start with man
umask.

who | wc -l

ps aux | grep ’your username’ |sort +5 -6|more

cat dict | head -5 | tail -3

grep ’your username’ /etc/passwd

6. man grep, man sort, man more, man head, man tail

7. What is the relative pathname?

8. When you execute a non built-in shell command, the shell asks the
kernel to create a new subprocess (called a ”child” process) to perform
the command. The child process exists just long enough to execute the
command. The shell waits until the child process finishes before it will
accept the next command. Explain why the exit (logout) procedure
must be built in to the shell.

9

	OPERATING SYSTEMS LABORATORY I - UNIX Tutorial
	Login and Logout
	Commands
	Simple Commands
	Files
	Directories

	Compiling A C Program
	Running The Resulting Program

	Compiling A Multi-Source C Program
	Exercises

