
1 Introduction

Computer systems have two major components:

• hardware–electronic,mechanical, optical devices

• software–programs.

Without support software, a computer is of little use. With its software,
however, a computer can store, manipulate, and retrieve information, and can
engage in many other activities. Software can be grouped into the following
categories:

• systems software (operating system & utilities)

• applications software (user programs)

Summary,

• Hardware provides basic computing resources (CPU, memory, I/O de-
vices).

• Operating system controls and coordinates the use of the hardware
among the various application programs for the various users.

• Application programs define the ways in which the system resources are
used to solve the computing problems of the users (compilers, database
systems, video games, business programs).

• Users (people, machines, other computers).

Figure 1: Abstract view

1



1.1 What is Operating System?

A program that acts as an intermediary between a user of a computer and
the computer hardware.

• An operating system (OS) is everything in system that isn’t an appli-
cation or hardware

• An OS provides orderly and controlled allocation and use (i.e., shar-
ing, optimization of resource utilization) of the resources (Processor,
Memory, I/O devices) by the users (jobs) that compete for them.

• Support programs (typically called daemons) running in the machine
that handle higher level services such as mail transport (networking),
off-line file system checking (system robustness), web serving (server
work), etc.

• Protection and Security

• Provides an abstraction layer over the concrete hardware. Use the
computer hardware in an efficient manner (converting hardware into
useful form;) “hide” the complexity of the underlying hardware and give
the user a better view (an abstraction) of the computer for applications
by providing:

– Standard library

∗ allow applications to reuse common facilities

∗ make different devices look the same

∗ provide higher-level abstractions

∗ What are the right abstractions Challenge.

– Resource manager, Resource - “Something valuable” e.g. CPU,
memory (RAM), I/O devices (disk). Each program gets time
with the resource and each program gets space on the resource

∗ Multiple users/applications can share, why share: (1) devices
are expensive, and (2) there is need to share data as well as
communicate

∗ Protect applications from one another

∗ Provide fair and efficient access to resources

∗ OS cannot please all the people all the time, but it should
please most of the people most of the time, so: What mech-
anisms? What policies? (e.g.,. which user/process should
get priority for printing on a common shared printer?); Chal-
lenges

2



1.1.1 Functionalities in OS:

Desired functionalities of OS depend on outside factors like users’ & applica-
tion’s “Expectations” and “Technology changes” in Computer Architecture
(hardware).
OS must adapt:

• Change abstractions provided to users

• Change algorithms to change these abstractions

• Change low-level implementation to deal with hardware

The current operating systems are driven by such evolutions.

1.2 History of operating Systems

The earliest computers, developed in the 1940s, were programmed in machine
language and they used front panel switches for input. The programmer was
also the operator interacting with the computer directly from the system
console (control panel).

• programmers needed to sign-up in advance to use the computer one at
a time

• executing a single program (often called a job) required substantial
time to setup the computer.

• First generation 1945 - 1955, vacuum tubes, plug boards

• Second generation 1955 - 1965, transistors, batch systems

• Third generation 1965 - 1980, ICs and multiprogramming

• Fourth generation 1980 - present, personal computers

• Next generation ??, personal digital assistants (PDA), information ap-
pliances

Two distinct phases in history: Expensive computers, Cheap computers

3



1.2.1 Mainframe Systems

First commercial systems: Enormous, expensive and slow, I/O: Punch cards
and line printers.

• Single operator/programmer/user runs and debugs interactively:

– Standard library with no resource coordination

– Monitor that is always resident

∗ initial control in monitor

∗ control transfers to job

∗ when job completes control transfers back to monitor

• Inefficient use of hardware: poor throughput and poor utilization

• Performance metrics:
Throughput: like amount of useful work done per hour
Utilization: keeping all devices busy

• Mainframe systems started to appear after world war 2.

• They initially executed one program at a time and were known as batch
systems.

1.2.2 Batch and Multiprogrammed Systems

Group if jobs submitted to machine together, Batch. A job was originally
presented to the machine (and its human operator) in the form of a set of
cards – these cards held information according to how “punched” out of the
cardboard. The operator grouped all of the jobs into various batches with
similar characteristics before running them (all the quick jobs might run,
then the slower ones, etc.).

• Operator collects job, orders efficiently, runs one at a time

• Amortize setup costs over many jobs

• Keep machine busy while programmer thinks

• User must wait for results until batch collected and submitted

Result: Improved system throughput and utilization, but lost interactivity.
Since the I/O used slow mechanical devices, the CPU was often idle waiting
on a card to be read or some result to be printed, etc. One way to minimize
this inefficiency was to have a number of jobs available and to switch to
running another one to avoid idleness.

4



Figure 2: Job Interleaving

• Mechanical I/O devices much slower than CPU

• Overlap I/O with execution by providing pool of ready jobs

• New OS Functionality evolved: Buffering, Direct Memory Access (DMA),
interrupt handling

Result: Improves throughput and utilization.
In multiprogrammed systems, a number of programs were resident in memory
and the CPU could choose which one to run. One way to choose is to just
keep executing the current program until an I/O delay is pending – instead
of just waiting, the CPU would move onto the next program ready to be run.

• Keep multiple jobs resident in memory

• OS chooses which job to run

• When job waits for I/O switch to another resident job

Result: Job scheduling policies, Memory management and protection, im-
proves throughput and utilization, still not interactive.

5



Figure 3: Memory Layout; Simple Batch, Multi Programming

1.2.3 Time Sharing

While multiprogrammed systems used resources more efficiently i.e. mini-
mized CPU idle time, a user could not interact with a program. By having
the CPU switch between jobs at relatively short intervals, we can obtain an
interactive system.That is, a system in which a number of users are sharing
the CPU (or other critical resource) with a timing interval small enough not
to be noticed e.g. no more than 1 second. We say that a time-sharing sys-
tem uses CPU scheduling and multiprogramming to provide each user with
a small portion of a time-shared computer.

• Switch between jobs so frequently that get appearance of dedicated
machines for each user/process.

• New OS Functionality: More complex job scheduling, memory man-
agement, concurrency control and synchronization

• Users easily submit jobs and get immediate feedbacks

OS Features Needed for Multiprogramming:

• I/O routines supplied by system

• Memory management system must allocate memory to several jobs

• CPU scheduling system must choose among several jobs ready to run

• Allocation of devices

Time-Sharing Systems Interactive Computing:

6



• The CPU multiplexed among several jobs in memory and on disk (CPU
allocated only to jobs in memory). The CPU switches to the next job
that can be run whenever the current job enters a wait state or after
the current job has used a standard unit of time.When viewed over a
relatively long time frame, we obtain the appearance that the CPU is
simultaneously running multiple programs.

• Job swapped in and out of memory to disk. If the time-sharing com-
puter does not have enough semiconductor memory installed to hold all
of the desired programs, then a backing store must be used to temporar-
ily hold the contents relating to some programs when other programs
are present in semiconductor memory. In effect, we are now “memory
sharing” between competing users (programs). This idea leads to a
mechanism called virtual memory.

• On-line communication between user and system provided; when OS
finishes execution of a command, it awaits next “control statement”
from user.

The sensible sharing of resources such as CPU time and memory must be
handled by the operating system, which is just another program running on
the computer. For this control program to always be in control, we require
that it never be blocked from running. The operating system, which might
in fact be organized like a small number of cooperating programs, will lock
itself into memory and then control CPU allocation priority in order that it
never be blocked from running.

1.2.4 Personnel Computers

Single-user, dedicated.

• I/O devices keyboards, mice, screens, printers

• User convenience and responsiveness

• Can adopt technology developed for larger system

• Previously thought,

– individuals have sole use of computer, do not need advanced CPU
utilization, protection features

– still true? See next list of operating systems...

7



• May run several different types of OS (Windows, Mac OS X, UNIX,
Linux)

• Operating systems such as FreeBSD, NetBSD, Mac OS-X and Linux
offer multitasking and virtual memory on PC hardware.

• The *BSD world has influenced the world of computing through net-
working advances, virtual file storage systems, dynamically self-optimizing
resource allocation schemes, etc.

• While all *BSD systems have a family history derived from the original
non-networking UNIX, Linux is mostly a “work-alike” re-implementation
and can be traced back to MINIX which was developed by Tanenbaum
for operating system teaching.

1.2.5 Parallel Processing Systems

Traditional multiprocessor system (share a common bus, clock, and memory),
tightly-coupled; multiprocessing. The desire for increased throughput has led
to system designs in which multiple streams of processing occurs in parallel.

• Tightly coupled system processors share memory and a clock; commu-
nication usually takes place through the shared memory. For a system
with n processors that is to run n or more separate programs, the
speedup may approach n. It will not reach n because there will be
some contention for access to shared elements such as the memory sys-
tem.

• Advantages of parallelism:

– higher throughput and better fault tolerance

– Economical (?)

– Increased availability (6= reliability)

• Symmetric multiprocessing (SMP), a symmetric multi-processor system
shares the execution of the operating system amongst all of the pro-
cessors – it is usually multi-threaded and contains no block structures.
The CPUs are equal i.e. we say that they are all peers.

– Each processor runs identical copy of OS

– Many processes at once without performance loss

– Most modern operating systems support SMP

8



• Asymmetric multiprocessing, an asymmetric multi-processor system con-
tains a single CPU called the master that carefully controls access to
single threaded sections of the kernel – this processor controls the activ-
ities of the slave processors. Asymmetric MP systems are less efficient.

– Each processor is assigned specific task; master processor sched-
ules, allocates work to slave processors.

– Mostly for specialized high-end computation

• What can we say about an n-processor system that has m < n appli-
cation programs to run? Unless some of the application programs can
support multiple threadsÂ of simultaneous execution, then the speedup
may only approach m (since n - m processors are idle).

• As programmers, you will learn about thread models (and support
libraries) that allow you to develop multi-threaded applications. Im-
portant applications of multi-threading include database servers, and
users of databases will be aware that aspects of simultaneous access
can require special care.

• In specialized application areas such as high speed digital signal pro-
cessing (DSP) e.g. radar processing, digital mobile base station pro-
cessing, etc., hybrid parallel systems may be assembled with individual
CPUs having significant private memory plus a connection onto a com-
mon shared memory.

• While these tightly coupled systems require specialized hardware sup-
port in order that the CPUs can share the common memory system,
another approach is to use a network to join together more conventional
systems into what is termed a distributed system.

1.2.6 Distributed Systems

Multicomputers (do not share memory and clock); loosely-coupled.

• Networked computers

• Require networking infrastructure

• Local area networks (LAN) or Wide area networks (WAN)

• May be either client-server or peer-to-peer systems

9



Figure 4: SMP architecture, Client-Server

– Client and server roles may vary e.g. X terminal is a windows
server ; runs on machine you think of as client

– Client-Server Systems are a common form of distributed system
in which the client system and server system are not similar.

– An example of a client-server system is the file server on campus.
Here, a central server provides file access to authenticated users
at client machines.

– Peer-to-Peer Systems are another form of distributed system in
which the participating computer systems are similar.

• Students wishing to experiment with programming at this parallel level
can investigate the PVM (Parallel Virtual Machine) and MPI (Message
Passing Interface) libraries that are widely available.

1.2.7 Clustered Systems

• 2 or more systems share resources

• Provides high availability

• Asymmetric clustering : one server runs application, rest stand by.

• Symmetric clustering : all N run application

1.2.8 Real–Time

Deadline (time critical) requirements. A real-time system is required to pro-
duce a result within a non-negotiable time period.

• Common uses:

10



– control device in dedicated application, e.g., control scientific ex-
periment, medical imaging, industrial control, space shuttle con-
trol systems, anti-lock automotive brake systems, banking sys-
tems, etc.

– some display systems

• Real-Time systems may be either;

– hard (must react in time), the real-time system absolutely must
complete critical tasks within a guaranteed time.

∗ Secondary storage limited or absent, data stored in short term
memory, or read-only memory (ROM)

∗ Conflicts with time-sharing systems, not supported by general-
purpose operating systems.

– soft real-time (deal with failure to react in time), the real-time
system can satisfy its performance criteria by running any critical
task at a higher priority (of CPU access).

∗ Limited utility in industrial control of robotics

∗ Useful in applications (multimedia, virtual reality) requiring
advanced operating-system features.

∗ In some instances, off-the-shelf operating systems such as
Linux or *BSD may be modified to support soft real-time
operation. An alternative is for the Linux or *BSD operating
system to be run as a task within some other (less conven-
tional) real-time operating system.

∗ An example of soft real-time service is a multi-media server
delivering audio or video – if it fails, no loss of life (other than
social life) occurs.

1.2.9 Embedded, Smart-Card and Handheld

• Embedded systems are the most common. They typically run real-time
operating systems with custom I/O designed for specific tasks.

• For example, a microwave oven contains a microprocessor chip with
built in peripherals such as timers and I/O lines so that cooking may
be controlled and keypads and LCD modules handled.

• Personal Digital Assistants (PDAs)

• Cellular telephones, Cameras? ...

11



• Smart-card and digital mobile telephones also run custom real-time
operating systems. At least two “standards” exists – one is JAVA
based. The computation load from handling encryption means that the
designer has an interesting problem given limited resources of electrical
power, memory, and CPU capacity.

• Hand-held systems must also deal with limited resources although their
screens have recently become more substantial.

• Issues:

– Limited memory

– Variety of interconnect standards

– Slow processors

– Small screens

• Their current evolution may be towards a form of “cut back” PC.
Sounds like a PC in 1985...

1.3 Computer Hardware Review

Understanding operating systems requires some basic understanding of com-
puter systems.

1.3.1 Processor

• Processor

– Fetches instructions from memory, decodes and executes them

– Set of instructions is processor specific

– Instructions include:

∗ load value from memory into register

∗ combine operands from registers or memory

∗ branch

– All CPU’s have registers to store

∗ key variables and temporary results

∗ information related to control program execution

• Processor Registers

12



– Data and address registers

∗ Hold operands of most native machine instructions

∗ Enable programmer to minimize main-memory references by
optimizing register use

∗ user-visible

– Control and status registers

∗ Used by processor to control operating of the processor

∗ Used by operating-system routines to control the execution of
programs

∗ Sometimes not accessible by user (architecture dependent)

• User–Visible Registers

– May be referenced by machine language instructions

– Available to all programs - application programs and system pro-
grams

– Types of registers

∗ Data

∗ Address

· Index

· Segment pointer

· Stack pointer

∗ Many architectures do not distinguish different types

• Control and Status Registers

– Program Counter (PC), Contains the address of an instruction to
be fetched

– Instruction Register (IR), Contains the instruction most recently
fetched

– Processor Status Word (PSW)

∗ condition codes

∗ interrupt enable/disable

∗ supervisor/user mode

– Condition Codes or Flags

∗ Bits set by the processor hardware as a result of operations

13



Figure 5: Fetch and Execute

∗ Can be accessed by a program but not altered

∗ Examples: positive/negative result, zero, overflow

• Instruction Fetch and Execute

– Program counter (PC) holds address of the instruction to be fetched
next

– The processor fetches the instruction from memory

– Program counter is incremented after each fetch

– Overlapped on modern architectures (pipelining)

• Instruction Register

– Fetched instruction is placed in the instruction register

– Types of instructions

∗ Processor-memory, transfer data between processor and mem-
ory

∗ Processor-I/O, data transferred to or from a peripheral device

∗ Data processing, arithmetic or logic operation on data

∗ Control, alter sequence of execution

1.3.2 Main Memory

• Referred to as real memory or primary memory

• volatile, because its contents are lost when the power is removed

• Should be, fast, abundant, cheap, Unfortunately, that’s not the re-
ality..., Solution: combination of fast & expensive and slow & cheap
memory

14



Figure 6: Cache Memory

• Program instructions and the data used by programs being executed
must reside in high speed semiconductor memory called random ac-
cess memory (RAM) in order to obtain high speed operation. We say
random access because the CPU can access any byte of storage in any
order.

Disk Cache

• A portion of main memory used as a buffer to temporarily to hold data
for the disk

• Disk writes are clustered

• Some data written out may be referenced again. The data are retrieved
rapidly from the software cache instead of slowly from disk

• Mostly transparent to operating system

Cache Memory

• Contain a small amount of very fast storage which holds a subset of
the data held in the main memory

• Processor first checks cache

• If not found in cache, the block of memory containing the needed in-
formation is moved to the cache replacing some other data

Cache Design

• Cache size, small caches have a significant impact on performance

15



• Line size (block size), the unit of data exchanged between cache and
main memory

• hit means the information was found in the cache

• larger line size ⇒ higher hit rate

• until probability of using newly fetched data becomes less than the
probability of reusing data that has been moved out of cache

Mapping function, determines which cache location the data will occupy.
Replacement algorithm

• determines which line to replace

• Least-Recently-Used (LRU) algorithm

Write policy,

• When the memory write operation takes place

• Can occur every time line is updated (write-through policy)

• Can occur only when line is replaced (write-back policy)

– Minimizes memory operations

– Leaves memory in an obsolete state

1.3.3 I/O Modules and Structure

• secondary memory devices

• communications equipment

• terminals

CPU much faster than I/O devices

• waiting for I/O operation to finish is inefficient

• not feasible for mouse, keyboard

• I/O module sends an interrupt to CPU to signal completion

• Interrupts normal sequence of execution

• I/O requests can be handled synchronously or asynchronously.

16



– In a synchronous system, a program makes the appropriate op-
erating system call and, as the CPU is now executing operating
system code, the original program’s execution is halted i.e. it
waits.

– In an asynchronous system, a program makes its request via the
operating system call and then its execution resumes. It will most
likely not have had its request serviced yet!

– The advantage of having an asynchronous mechanism available is
that the programmer is free to organize other CPU activity while
the I/O request is handled.

• Software that communicates with controller is called device driver

• Most drivers run in kernel mode

• To put new driver into kernel, system may have to

– be relinked

– be rebooted

– dynamically load new driver

• we must have an event driven I/O system handling all of the pend-
ing I/O requests (maybe these are triggered when data arrives, or a
peripheral device such as a CD drive indicates it is ready etc.).

• Requests that the operating system has not yet been able to service
might mean that the program is currently “sleeping” or “waiting”.

1.3.4 System bus

Communication among processors, memory, and I/O modules.

• A system bus would link the CPU and memory – this structure would
involve a pathway along which data could travel (usually 32-bits side-
by-side i.e. in bit-wise parallel), a pathway along which the address
specifying a particular desired memory location could travel, and a few
other lines which would tell the memory whether to store (write) or
retrieve (read) data in an access.

• As any I/O device must pass data between the computer and the out-
side world, it will also be attached to the memory system and the CPU
via the system bus.

17



Figure 7: Top-level Components, Pentium System

Figure 8: Going down the hierarchy

1.3.5 Storage Structure and Hierarchy

• Decreasing cost per bit

• Increasing capacity

• Increasing access time

• Decreasing frequency of access of the memory by the processor

• Fully electronic memory systems are the fastest and most expensive,
hence must be used in cost effective ways. This memory system is
called main memory or primary memory.

• A source of cheaper-per-byte and non-volatile storage is provided by
magnetic disk. However, the computer does not have direct random
access to any byte at any time on the disk – the magnetic discs in
the drive are rotating and magnetic heads move in and out in order to
access any part of the surface area on the disc that holds data. This

18



means access usually involves a disc rotation delay and also a head
positioning delay.

• Other common forms of non-volatile secondary storage include: optical
CD drives (CD-R write-once or CD-RW read-write), recent flash mem-
ory chips in very small modules that can be inserted into laptop card
interfaces or can be used for data logging.

• Stages such as the CPU registers and cache are typically located within
the CPU chip so distances are very short and busses can be made very
very wide (e.g. 128-bits), yielding very fast speeds.

• Future storage technology includes 3-dimensional crystal structures
which allow optical access to a dense 3-dimensional storage facility.

1.3.6 Protection

• Single Tasking System

– Only one program can perform at a time

– Simple to implement, Only one process attattempting use re-
sources

– Few security risks

– Poor utilization of the CPU and other resources

– i.e., MS-DOS

• Multi Tasking System

– Very complex

– Serious security issues, how to protect one program from another
sharing the same memory

– Much higher utilization of system resources

– i.e., Unix, Windows NT

• OS must protect itself from users -reserved memory only accessible by
OS. The operating system is responsible for allocating access to mem-
ory space and CPU time and peripherals etc., and it will control dedi-
cated hardware facilities to help it enforce whatever resource allocation
policies are in force:

19



– The memory controller, unremarked when it appeared in the ba-
sic computer ororganizationis under operating system control to
detect and prevent ununauthorizedccess

– A timer will also be under operating system control to manage
CPU time allocation to programs competing for resources

• OS may protect users from another user. A fundamental requirement
of multiple users of a shared computer system is that they do not
interfere with each other. This gives rise to the need for separation of
the programs in terms of their resource use and access;

– If one program attempts to access main memory allocated to some
other program, the access should be denied and an exception
raised

– If one program attempts to gain a larger proportion of the shared
CPU time, this should be prevented

• One approach to implementing resource allocation is to have at least
two modes of CPU operation, where one mode called the supervisory
mode has its code kept in a reserved memory region, and to limit
execution of special resource allocation instructions to only the program
executing in the supervisory mode.

• Modes of operation

– supervisor (protected, kernel) mode: all (basic and privileged)
instructions available.

∗ all hardware and memory available

∗ mode the OS runs in

∗ never let the user run in supervisory mode

– user mode: a subset (basic only) of instructions.

∗ limited set of hardware and memory available

∗ mode all user programs run in

∗ I/O protection, all I/O operations are privileged

∗ Memory protection, base/limit registers (in early systems),
memory management unit, MMU (in modern systems)

∗ CPU control, timer (alarm clock), context switch

– All I/O instructions are restricted to supervisory mode – so user
programs can only access I/O by sending a request to the (con-
trolling) operating system

20



– All instructions controlling the memory management unit are re-
stricted to supervisory mode – so user programs can only access
the memory that the operating system has allocated

– All instructions controlling the timer (or real-time clock) are re-
stricted to supervisory mode – so user programs can only read the
time of day, and can only have as much CPU time as the operating
system allocates

– All interrupt vector table entries, which are specific to each task
or program that can run, must be configured (initially at least)
by the (controlling) operating system

• One of the early advantages of UNIX operating systems was that a
well defined set of system calls was developed to allow a programmer
to request access to system resources.

21


	Introduction
	What is Operating System?
	Functionalities in OS:

	History of operating Systems
	Mainframe Systems
	Batch and Multiprogrammed Systems
	Time Sharing
	Personnel Computers
	Parallel Processing Systems
	Distributed Systems
	Clustered Systems
	Real--Time
	Embedded, Smart-Card and Handheld

	Computer Hardware Review
	Processor
	Main Memory
	I/O Modules and Structure
	System bus
	Storage Structure and Hierarchy
	Protection



