
File-System Interface &
File System

Implementation I

Dr. Cem Özdo ğan

File-System Interface
File Concept

File Attributes

File Operations

An Example Program
Using File System Calls

File Types

Internal File Structure

Access Methods

Sequential Access

Direct (Random) Access

Directory Structure

Storage Structure

Directory Overview

Single-Level Directory

Two-Level Directory

Tree-Structured Directories

Acyclic-Graph Directories

File-System Mounting

File Sharing

Multiple Users

Protection

Types of Access

Access Control

10.1

Lecture 10
File-System Interface & File System
Implementation I
Lecture Information

Ceng328 Operating Systems at May 04, 2010

Dr. Cem Özdoğan
Computer Engineering Department

Çankaya University

File-System Interface &
File System

Implementation I

Dr. Cem Özdo ğan

File-System Interface
File Concept

File Attributes

File Operations

An Example Program
Using File System Calls

File Types

Internal File Structure

Access Methods

Sequential Access

Direct (Random) Access

Directory Structure

Storage Structure

Directory Overview

Single-Level Directory

Two-Level Directory

Tree-Structured Directories

Acyclic-Graph Directories

File-System Mounting

File Sharing

Multiple Users

Protection

Types of Access

Access Control

10.2

Contents

1 File-System Interface
File Concept

File Attributes
File Operations
An Example Program Using File System Calls
File Types
Internal File Structure

Access Methods
Sequential Access
Direct (Random) Access

Directory Structure
Storage Structure
Directory Overview
Single-Level Directory
Two-Level Directory
Tree-Structured Directories
Acyclic-Graph Directories

File-System Mounting
File Sharing

Multiple Users

Protection
Types of Access
Access Control

File-System Interface &
File System

Implementation I

Dr. Cem Özdo ğan

File-System Interface
File Concept

File Attributes

File Operations

An Example Program
Using File System Calls

File Types

Internal File Structure

Access Methods

Sequential Access

Direct (Random) Access

Directory Structure

Storage Structure

Directory Overview

Single-Level Directory

Two-Level Directory

Tree-Structured Directories

Acyclic-Graph Directories

File-System Mounting

File Sharing

Multiple Users

Protection

Types of Access

Access Control

10.3

File-System Interface I

• Since main memory is usually too small, the computer
system must provide secondary storage to back up main
memory.

• The file system provides the mechanism for storage of and
(multiple) access to both data and programs residing on
the disks.

• File Management System: Bridges the gap between
low-level disk organization (an array of blocks) and the
user’s views (a stream or collection of records) (mapped).

• Some devices transfer a character or a block of characters
at a time.

• Some can be accessed only sequentially, others randomly.
• Some transfer data synchronously, others asynchronously.
• Some are dedicated, some shared.
• They can be read-only or read-write.

• Also includes tools outside the kernel; formatting,
recovery, defrag, consistency, backup utilities (system
administration).

File-System Interface &
File System

Implementation I

Dr. Cem Özdo ğan

File-System Interface
File Concept

File Attributes

File Operations

An Example Program
Using File System Calls

File Types

Internal File Structure

Access Methods

Sequential Access

Direct (Random) Access

Directory Structure

Storage Structure

Directory Overview

Single-Level Directory

Two-Level Directory

Tree-Structured Directories

Acyclic-Graph Directories

File-System Mounting

File Sharing

Multiple Users

Protection

Types of Access

Access Control

10.4

File-System Interface II

• In many ways, they are also the slowest major component
of the computer.

• A file is a collection of related information defined by its
creator.

• The file system consists of two distinct parts:
1 a collection of files ;
2 a directory structure ;

• Objectives for a file management system;
• Provide a convenient naming system for files.
• Provide a standardized set of I/O interface routines and

provide access control for multiple users.
• Guarantee that the data in the file are valid. Minimize or

eliminate the potential for lost or destroyed data.
• Optimize performance.
• How do you keep one user from reading another’s data?
• How do you know which blocks are free?

File-System Interface &
File System

Implementation I

Dr. Cem Özdo ğan

File-System Interface
File Concept

File Attributes

File Operations

An Example Program
Using File System Calls

File Types

Internal File Structure

Access Methods

Sequential Access

Direct (Random) Access

Directory Structure

Storage Structure

Directory Overview

Single-Level Directory

Two-Level Directory

Tree-Structured Directories

Acyclic-Graph Directories

File-System Mounting

File Sharing

Multiple Users

Protection

Types of Access

Access Control

10.5

File Concept

• Think of a disk as a linear sequence of fixed-size blocks
and supporting reading and writing of blocks.

• The OS abstracts from the physical properties of its
storage devices to define a logical storage unit, the file .

• A file is a named collection of related information that is
recorded on secondary storage, with two views:

• Logical (programmer) view,
• Physical (OS) view,

• The information in a file is defined by its creator.
• Data files may be numeric, alphabetic, alphanumeric, or

binary.
• Files may be free form, such as text files, or may be

formatted rigidly.
• A file has a certain defined structure, which depends on its

type .
• A text file; (sequence of characters)
• A source file; (sequence of subroutines and functions)
• An object file is a sequence of bytes organized into blocks

understandable by the system’s linker.
• An executable file is a series of code sections that the

loader can bring into memory and execute.

File-System Interface &
File System

Implementation I

Dr. Cem Özdo ğan

File-System Interface
File Concept

File Attributes

File Operations

An Example Program
Using File System Calls

File Types

Internal File Structure

Access Methods

Sequential Access

Direct (Random) Access

Directory Structure

Storage Structure

Directory Overview

Single-Level Directory

Two-Level Directory

Tree-Structured Directories

Acyclic-Graph Directories

File-System Mounting

File Sharing

Multiple Users

Protection

Types of Access

Access Control

10.6

File Attributes I

When a file is named, it becomes independent of the process,
the user, and even the system that created it.

Figure: Some possible file attributes.

File-System Interface &
File System

Implementation I

Dr. Cem Özdo ğan

File-System Interface
File Concept

File Attributes

File Operations

An Example Program
Using File System Calls

File Types

Internal File Structure

Access Methods

Sequential Access

Direct (Random) Access

Directory Structure

Storage Structure

Directory Overview

Single-Level Directory

Two-Level Directory

Tree-Structured Directories

Acyclic-Graph Directories

File-System Mounting

File Sharing

Multiple Users

Protection

Types of Access

Access Control

10.7

File Attributes II

• The table of Fig. 1 shows some of the possibilities, but
other ones also exist. No existing system has all of these,
but each one is present in some system.

• A file’s attributes vary from one OS to another but typically
consist of these:

• Name.
• Identifier . This unique tag, usually a number, identifies the

file within the file system (non-human-readable name)
• Type .
• Location . This information is a pointer to a device and to

the location of the file on that device.
• Size. The current size of the file (in bytes, words, or blocks)

and possibly the maximum allowed size.
• Protection . Access-control information determines who can

do reading, writing, executing, and so on.
• Time, date, and user identification . This information may

be kept for creation, last modification, and last use.

• The information about all files is kept in the directory
structure, which also resides on secondary storage.

File-System Interface &
File System

Implementation I

Dr. Cem Özdo ğan

File-System Interface
File Concept

File Attributes

File Operations

An Example Program
Using File System Calls

File Types

Internal File Structure

Access Methods

Sequential Access

Direct (Random) Access

Directory Structure

Storage Structure

Directory Overview

Single-Level Directory

Two-Level Directory

Tree-Structured Directories

Acyclic-Graph Directories

File-System Mounting

File Sharing

Multiple Users

Protection

Types of Access

Access Control

10.8

File Operations I

• A file is an abstract data type. To define a file properly, we
need to consider the operations that can be performed on
files.

• Six basic file operations. The OS can provide system calls
to create, write, read, reposition, delete, and truncate files.

• Creating a file . Two steps are necessary to create a file.
1 Space in the file system must be found for the file.
2 An entry for the new file must be made in the directory.

• Writing a file . The write pointer must be updated whenever
a write occurs.

• Reading a file . The system needs to keep a read pointer to
the location in the file where the next read is to take place.

• Because a process is usually either reading from or writing to
a file, the current operation location can be kept as a
per-process current-file-position pointer.

• Both the read and write operations use this same pointer,
saving space and reducing system complexity.

File-System Interface &
File System

Implementation I

Dr. Cem Özdo ğan

File-System Interface
File Concept

File Attributes

File Operations

An Example Program
Using File System Calls

File Types

Internal File Structure

Access Methods

Sequential Access

Direct (Random) Access

Directory Structure

Storage Structure

Directory Overview

Single-Level Directory

Two-Level Directory

Tree-Structured Directories

Acyclic-Graph Directories

File-System Mounting

File Sharing

Multiple Users

Protection

Types of Access

Access Control

10.9

File Operations II
• Repositioning within a file . The directory is searched for

the appropriate entry, and the current-file-position pointer
is repositioned to a given value (file seek).

• Deleting a file . To delete a file, we search the directory for
the named file. Having found the associated directory
entry, we release all file space and erase the directory
entry.

• Truncating a file . The user may want to erase the
contents of a file but keep its attributes. The file be reset to
length zero and its file space released.

Figure: File operations.

File-System Interface &
File System

Implementation I

Dr. Cem Özdo ğan

File-System Interface
File Concept

File Attributes

File Operations

An Example Program
Using File System Calls

File Types

Internal File Structure

Access Methods

Sequential Access

Direct (Random) Access

Directory Structure

Storage Structure

Directory Overview

Single-Level Directory

Two-Level Directory

Tree-Structured Directories

Acyclic-Graph Directories

File-System Mounting

File Sharing

Multiple Users

Protection

Types of Access

Access Control

10.10

File Operations III

• These primitive operations can then be combined to
perform other file operations (i.e., copying).

• The OS keeps a small table, called the open-file table,
containing information about all open files.

• When a file operation is requested, the file is specified via
an index into this table, so no searching is required.

• When the file is no longer being actively used, it is closed by
the process, and the OS removes its entry from the
open-file table.

• Most systems require that the programmer open a file
explicitly with the open() system call before that file can be
used.

• The implementation of the open() and close() operations
is more complicated in an environment where
several processes may open the file at the same time.

• This may occur in a system where several different
applications open the same file at the same time.

File-System Interface &
File System

Implementation I

Dr. Cem Özdo ğan

File-System Interface
File Concept

File Attributes

File Operations

An Example Program
Using File System Calls

File Types

Internal File Structure

Access Methods

Sequential Access

Direct (Random) Access

Directory Structure

Storage Structure

Directory Overview

Single-Level Directory

Two-Level Directory

Tree-Structured Directories

Acyclic-Graph Directories

File-System Mounting

File Sharing

Multiple Users

Protection

Types of Access

Access Control

10.11

File Operations IV

• Typically, the OS uses two levels of internal tables:
1 A per-process table . The per-process table tracks all files

that a process has open. Access rights to the file and
accounting information can also be included.

2 A system-wide table . Each entry in the per-process table
in turn points to a system-wide open-file table (also contains
process-independent information, such as the location of
the file on disk, access dates, and file size).

• Typically, the open-file table also has an open count
associated with each file to indicate how many processes
have the file open.

• Each close() decreases this open count, and when the
open count reaches zero, the file is no longer in use, and
the file’s entry is removed from the open-file table.

File-System Interface &
File System

Implementation I

Dr. Cem Özdo ğan

File-System Interface
File Concept

File Attributes

File Operations

An Example Program
Using File System Calls

File Types

Internal File Structure

Access Methods

Sequential Access

Direct (Random) Access

Directory Structure

Storage Structure

Directory Overview

Single-Level Directory

Two-Level Directory

Tree-Structured Directories

Acyclic-Graph Directories

File-System Mounting

File Sharing

Multiple Users

Protection

Types of Access

Access Control

10.12

File Operations V

• In summary, several pieces of information are associated
with an open file.

• File pointer .
• File-open count .
• Disk location of the file . The information needed to locate

the file on disk is kept in memory so that the system does
not have to read it from disk for each operation.

• Access rights . Each process opens a file in an access
mode. This information is stored on the per-process table
so the OS can allow or deny subsequent I/O requests.

• Some OSs provide facilities for locking an open file (or
sections of a file).

• File locks are useful for files that are shared by several
processes.

File-System Interface &
File System

Implementation I

Dr. Cem Özdo ğan

File-System Interface
File Concept

File Attributes

File Operations

An Example Program
Using File System Calls

File Types

Internal File Structure

Access Methods

Sequential Access

Direct (Random) Access

Directory Structure

Storage Structure

Directory Overview

Single-Level Directory

Two-Level Directory

Tree-Structured Directories

Acyclic-Graph Directories

File-System Mounting

File Sharing

Multiple Users

Protection

Types of Access

Access Control

10.13

An Example Program Using File System Calls I

• A simple UNIX program that copies one file from its source
file to a destination file (see Fig. 3). The program has
minimal functionality and even worse error reporting.

copyfile abc xyz

• The copy loop. It starts by trying to read in 4 KB of data to
buffer. It does this by calling the library procedure read,
which actually invokes the read system call.

• The call to write outputs the buffer to the destination file.

• When the entire file has been processed, the first call
beyond the end of file will return 0 to rd_count which will
make it exit the loop. At this point the two files are closed
and the program exits with a status indicating normal
termination.

File-System Interface &
File System

Implementation I

Dr. Cem Özdo ğan

File-System Interface
File Concept

File Attributes

File Operations

An Example Program
Using File System Calls

File Types

Internal File Structure

Access Methods

Sequential Access

Direct (Random) Access

Directory Structure

Storage Structure

Directory Overview

Single-Level Directory

Two-Level Directory

Tree-Structured Directories

Acyclic-Graph Directories

File-System Mounting

File Sharing

Multiple Users

Protection

Types of Access

Access Control

10.14

An Example Program Using File System Calls II

Figure: A simple program to copy a file.

File-System Interface &
File System

Implementation I

Dr. Cem Özdo ğan

File-System Interface
File Concept

File Attributes

File Operations

An Example Program
Using File System Calls

File Types

Internal File Structure

Access Methods

Sequential Access

Direct (Random) Access

Directory Structure

Storage Structure

Directory Overview

Single-Level Directory

Two-Level Directory

Tree-Structured Directories

Acyclic-Graph Directories

File-System Mounting

File Sharing

Multiple Users

Protection

Types of Access

Access Control

10.15

File Types I

• A common technique for implementing file types is to
include the type as part of the file name (see Fig. 4).

• The name is split into two parts -a name and an extension,
usually separated by a period character.

• In this way, the user and the OS can tell from the name
alone what the type of a file is.

• Many file systems support names as long as 255
characters. Some file systems distinguish between upper
and lower case letters (Case (in)sensitivity).

• Windows 95 and Windows 98 both use the MS-DOS file
system, and thus inherit many of its properties, such as
how file names are constructed.

• Windows NT and Windows 2000 support the MS-DOS file
system and thus also inherit its properties. However, these
OSs also have a native file system (NTFS) that has
different properties.

File-System Interface &
File System

Implementation I

Dr. Cem Özdo ğan

File-System Interface
File Concept

File Attributes

File Operations

An Example Program
Using File System Calls

File Types

Internal File Structure

Access Methods

Sequential Access

Direct (Random) Access

Directory Structure

Storage Structure

Directory Overview

Single-Level Directory

Two-Level Directory

Tree-Structured Directories

Acyclic-Graph Directories

File-System Mounting

File Sharing

Multiple Users

Protection

Types of Access

Access Control

10.16

File Types II

Figure: Common file types.

File-System Interface &
File System

Implementation I

Dr. Cem Özdo ğan

File-System Interface
File Concept

File Attributes

File Operations

An Example Program
Using File System Calls

File Types

Internal File Structure

Access Methods

Sequential Access

Direct (Random) Access

Directory Structure

Storage Structure

Directory Overview

Single-Level Directory

Two-Level Directory

Tree-Structured Directories

Acyclic-Graph Directories

File-System Mounting

File Sharing

Multiple Users

Protection

Types of Access

Access Control

10.17

File Types III
• The UNIX system uses a crude magic number stored at

the beginning of some files to indicate roughly the type of
the file -executable program, batchfile (or shell script),
PostScript file, and so on.

• Not all files have magic numbers, so system features cannot
be based solely on this information.

• UNIX does allow file-name-extension hints, but these
extensions are neither enforced nor depended on by the OS
(interpreted by tools).

• In contrast, Windows is aware of the extensions and
assigns meaning to them. Users (or processes) can register
extensions with the operating system (Interpreted by OS).

• UNIX also has character and block special files (Device
Files).

• Character special files are related to input/output and used
to model serial I/O devices such as terminals, printers, and
networks.

• Block special files are used to model disks.
• Other files are binary files, which just means that they are

not ASCII files.
• Usually, they have some internal structure known to

programs that use them (see Fig. 5).

File-System Interface &
File System

Implementation I

Dr. Cem Özdo ğan

File-System Interface
File Concept

File Attributes

File Operations

An Example Program
Using File System Calls

File Types

Internal File Structure

Access Methods

Sequential Access

Direct (Random) Access

Directory Structure

Storage Structure

Directory Overview

Single-Level Directory

Two-Level Directory

Tree-Structured Directories

Acyclic-Graph Directories

File-System Mounting

File Sharing

Multiple Users

Protection

Types of Access

Access Control

10.18

File Types IV

(a) (b)

Header

Header

Header

Magic number

Text size

Data size

BSS size

Symbol table size

Entry point

Flags

Text

Data

Relocation
bits

Symbol
table

Object
module

Object
module

Object
module

Module
name

Date

Owner

Protection

Size����H
ea

de
r

Figure: (a) An executable file. (b) An archive.

Every OS must recognize at least one file type; its own
executable file.

File-System Interface &
File System

Implementation I

Dr. Cem Özdo ğan

File-System Interface
File Concept

File Attributes

File Operations

An Example Program
Using File System Calls

File Types

Internal File Structure

Access Methods

Sequential Access

Direct (Random) Access

Directory Structure

Storage Structure

Directory Overview

Single-Level Directory

Two-Level Directory

Tree-Structured Directories

Acyclic-Graph Directories

File-System Mounting

File Sharing

Multiple Users

Protection

Types of Access

Access Control

10.19

File Types V

• A simple executable binary file taken from a version of
UNIX is seen in Fig. 5a .

• Although technically the file is just a sequence of bytes, the
operating system will only execute a file if it has the proper
format.

• It has five sections: header, text, data, relocation bits, and
symbol table.

• Try the following commands:
readelf -S exe_file
objdump -h exe_file

• Second example of a binary file is an archive, also from
UNIX (see Fig. 5b).

• It consists of a collection of library procedures (modules)
compiled but not linked.

• Each one is prefaced by a header telling its name, creation
date, owner, protection code, and size.

File-System Interface &
File System

Implementation I

Dr. Cem Özdo ğan

File-System Interface
File Concept

File Attributes

File Operations

An Example Program
Using File System Calls

File Types

Internal File Structure

Access Methods

Sequential Access

Direct (Random) Access

Directory Structure

Storage Structure

Directory Overview

Single-Level Directory

Two-Level Directory

Tree-Structured Directories

Acyclic-Graph Directories

File-System Mounting

File Sharing

Multiple Users

Protection

Types of Access

Access Control

10.20

Internal File Structure I
• Three common possibilities for structuring are depicted in

Fig. 6.

(a) (b) (c)

1 Record

Ant Fox Pig

Cat Cow Dog Goat Lion Owl Pony Rat Worm

Hen Ibis Lamb

1 Byte

Figure: Three kinds of files. (a) Byte sequence. (b) Record
sequence. (c) Tree.

• Stream of Bytes . The file in Fig. 6a is an unstructured
sequence of bytes. All it sees are bytes.

• Records . The first step up in structure is shown in Fig. 6b.
A file is a sequence of fixed-length records, each with some
internal structure.

• Tree of Records . The third kind of file structure is shown in
Fig. 6c. In this organization, a file consists of a tree of
records, not necessarily all the same length (a key field).

File-System Interface &
File System

Implementation I

Dr. Cem Özdo ğan

File-System Interface
File Concept

File Attributes

File Operations

An Example Program
Using File System Calls

File Types

Internal File Structure

Access Methods

Sequential Access

Direct (Random) Access

Directory Structure

Storage Structure

Directory Overview

Single-Level Directory

Two-Level Directory

Tree-Structured Directories

Acyclic-Graph Directories

File-System Mounting

File Sharing

Multiple Users

Protection

Types of Access

Access Control

10.21

Internal File Structure II

• Internally, locating an offset within a file can be
complicated for the OS.

• All disk I/O is performed in units of one block (physical
record), and all blocks are the same size.

• It is unlikely that the physical record size will exactly match
the length of the desired logical record.

• Packing a number of logical records into physical blocks is
a common solution to this problem.

• The file may be considered to be a sequence of blocks. All
the basic I/O functions operate in terms of blocks.

• Because disk space is always allocated in blocks, some
portion of the last block of each file is generally wasted.

• The waste incurred to keep everything in units of blocks
(instead of bytes) is internal fragmentation .

• All file systems suffer from internal fragmentation; the
larger the block size, the greater the internal
fragmentation.

File-System Interface &
File System

Implementation I

Dr. Cem Özdo ğan

File-System Interface
File Concept

File Attributes

File Operations

An Example Program
Using File System Calls

File Types

Internal File Structure

Access Methods

Sequential Access

Direct (Random) Access

Directory Structure

Storage Structure

Directory Overview

Single-Level Directory

Two-Level Directory

Tree-Structured Directories

Acyclic-Graph Directories

File-System Mounting

File Sharing

Multiple Users

Protection

Types of Access

Access Control

10.22

Sequential Access I

• The simplest access method is sequential access .

• Information in the file is processed in order, one record
after the other.

• Reads and writes make up the bulk of the operations on a
file.

• A read operation read next reads the next portion of the file
and automatically advances a file pointer, which tracks the
I/O location.

• Similarly, the write operation write next appends to the end
of the file and advances to the end of the newly written
material (the new end of file).

File-System Interface &
File System

Implementation I

Dr. Cem Özdo ğan

File-System Interface
File Concept

File Attributes

File Operations

An Example Program
Using File System Calls

File Types

Internal File Structure

Access Methods

Sequential Access

Direct (Random) Access

Directory Structure

Storage Structure

Directory Overview

Single-Level Directory

Two-Level Directory

Tree-Structured Directories

Acyclic-Graph Directories

File-System Mounting

File Sharing

Multiple Users

Protection

Types of Access

Access Control

10.23

Sequential Access II

Figure: Sequential-access file.

Sequential access, which is depicted in Fig. 7, is based on a
tape model of a file and works as well on sequential-access
devices as it does on random-access ones.

File-System Interface &
File System

Implementation I

Dr. Cem Özdo ğan

File-System Interface
File Concept

File Attributes

File Operations

An Example Program
Using File System Calls

File Types

Internal File Structure

Access Methods

Sequential Access

Direct (Random) Access

Directory Structure

Storage Structure

Directory Overview

Single-Level Directory

Two-Level Directory

Tree-Structured Directories

Acyclic-Graph Directories

File-System Mounting

File Sharing

Multiple Users

Protection

Types of Access

Access Control

10.24

Direct (Random) Access

• Another method is direct access (or relative access).
• A file is made up of fixed-length logical records that allow

programs to read and write records rapidly in
no particular order.

• There are no restrictions on the order of reading or writing
for a direct-access file.

• The direct-access method is based on a disk model of a
file, since disks allow random access to any file block.

• Direct-access files are of great use for immediate access
to large amounts of information (Databases).

• The block number provided by the user to the OS is
normally a relative block number.

• A relative block number is an index relative to the beginning
of the file.

• Thus, the first relative block of the file is 0, the next is 1, and
so on, even though the actual absolute disk address of the
block may be 14703 for the first block and 3192 for the
second.

• Modern OSs have all their files are automatically random
access.

File-System Interface &
File System

Implementation I

Dr. Cem Özdo ğan

File-System Interface
File Concept

File Attributes

File Operations

An Example Program
Using File System Calls

File Types

Internal File Structure

Access Methods

Sequential Access

Direct (Random) Access

Directory Structure

Storage Structure

Directory Overview

Single-Level Directory

Two-Level Directory

Tree-Structured Directories

Acyclic-Graph Directories

File-System Mounting

File Sharing

Multiple Users

Protection

Types of Access

Access Control

10.25

Storage Structure I

• Sometimes, it is desirable to place multiple file systems on
a disk or to use parts of a disk for a file system and other
parts for other things, such as swap space or unformatted
(raw) disk space.

• These parts are known variously as partitions , slices , or
(in the IBM world) minidisks .

• A file system can be created on each of these parts of the
disk. We simply refer to a chunk of storage that holds a file
system as a volume .

• Each volume that contains a file system must also contain
information about the files in the system. This information
is kept in entries in a device directory or volume table of
contents .

• The device directory (more commonly known simply as a
directory) records information-such as name, location,
size, and type-for all files on that volume.

File-System Interface &
File System

Implementation I

Dr. Cem Özdo ğan

File-System Interface
File Concept

File Attributes

File Operations

An Example Program
Using File System Calls

File Types

Internal File Structure

Access Methods

Sequential Access

Direct (Random) Access

Directory Structure

Storage Structure

Directory Overview

Single-Level Directory

Two-Level Directory

Tree-Structured Directories

Acyclic-Graph Directories

File-System Mounting

File Sharing

Multiple Users

Protection

Types of Access

Access Control

10.26

Storage Structure II

Figure 8 shows a typical file-system organization.

Figure: A typical file-system organization.

File-System Interface &
File System

Implementation I

Dr. Cem Özdo ğan

File-System Interface
File Concept

File Attributes

File Operations

An Example Program
Using File System Calls

File Types

Internal File Structure

Access Methods

Sequential Access

Direct (Random) Access

Directory Structure

Storage Structure

Directory Overview

Single-Level Directory

Two-Level Directory

Tree-Structured Directories

Acyclic-Graph Directories

File-System Mounting

File Sharing

Multiple Users

Protection

Types of Access

Access Control

10.27

Directory Overview

• To keep track of files, file systems normally have
directories or folders.

• Usually, a directory is itself a file.

• The directory can be viewed as a symbol table that
translates file names into their directory entries.

• A typical directory entry contains information (attributes,
location, ownership) about a file.

• When considering a particular directory structure, we need
to keep in mind the operations that are to be performed on
a directory:

• Search for a file .
• Create a file .
• Delete a file .
• List a directory .
• Rename a file .
• Traverse the file system . We may wish to access every

directory and every file within a directory structure. For
reliability, it is a good idea to save the contents and structure
of the entire file system at regular intervals (backup copy).

File-System Interface &
File System

Implementation I

Dr. Cem Özdo ğan

File-System Interface
File Concept

File Attributes

File Operations

An Example Program
Using File System Calls

File Types

Internal File Structure

Access Methods

Sequential Access

Direct (Random) Access

Directory Structure

Storage Structure

Directory Overview

Single-Level Directory

Two-Level Directory

Tree-Structured Directories

Acyclic-Graph Directories

File-System Mounting

File Sharing

Multiple Users

Protection

Types of Access

Access Control

10.28

Single-Level Directory

• The simplest directory structure is the single-level
directory.

• All files are contained in the same directory, which is easy
to support and understand (see Fig. 9).

Figure: Single-level directory.

• A single-level directory has significant limitations, when
the number of files increases or when the system has
more than one user.

• Since all files are in the same directory, they must have
unique names. If two users call their data file test , then the
unique-name rule is violated.

• Even a single user on a single-level directory may find it
difficult to remember the names of all the files as the
number of files increases.

File-System Interface &
File System

Implementation I

Dr. Cem Özdo ğan

File-System Interface
File Concept

File Attributes

File Operations

An Example Program
Using File System Calls

File Types

Internal File Structure

Access Methods

Sequential Access

Direct (Random) Access

Directory Structure

Storage Structure

Directory Overview

Single-Level Directory

Two-Level Directory

Tree-Structured Directories

Acyclic-Graph Directories

File-System Mounting

File Sharing

Multiple Users

Protection

Types of Access

Access Control

10.29

Two-Level Directory I

• The standard solution to limitations of single-level directory
is to create a separate directory for each user.

• In the two-level directory structure, each user has his own
user file directory (UFD).

• The UFDs have similar structures, but each lists
only the files of a single user.

• When a user job starts or a user logs in, the system’s
master file directory (MFD) is searched.

• The MFD is indexed by user name or account number, and
each entry points to the UFD for that user (see Fig. 10).

• When a user refers to a particular file, only his own UFD is
searched (create a file, delete a file?).

• Although the two-level directory structure solves the
name-collision problem, it still has disadvantages.

File-System Interface &
File System

Implementation I

Dr. Cem Özdo ğan

File-System Interface
File Concept

File Attributes

File Operations

An Example Program
Using File System Calls

File Types

Internal File Structure

Access Methods

Sequential Access

Direct (Random) Access

Directory Structure

Storage Structure

Directory Overview

Single-Level Directory

Two-Level Directory

Tree-Structured Directories

Acyclic-Graph Directories

File-System Mounting

File Sharing

Multiple Users

Protection

Types of Access

Access Control

10.30

Two-Level Directory II

Figure: Two-level directory structure.

• This structure effectively isolates one user from another.

• Isolation is an advantage when the users are completely
independent but is a disadvantage when the users want to
cooperate on some task and to access one another’s files.

• A two-level directory can be thought of as a tree, or an
inverted tree, of height 2.

• The root of the tree is the MFD.
• Its direct descendants are the UFDs.
• The descendants of the UFDs are the files themselves. The

files are the leaves of the tree.

File-System Interface &
File System

Implementation I

Dr. Cem Özdo ğan

File-System Interface
File Concept

File Attributes

File Operations

An Example Program
Using File System Calls

File Types

Internal File Structure

Access Methods

Sequential Access

Direct (Random) Access

Directory Structure

Storage Structure

Directory Overview

Single-Level Directory

Two-Level Directory

Tree-Structured Directories

Acyclic-Graph Directories

File-System Mounting

File Sharing

Multiple Users

Protection

Types of Access

Access Control

10.31

Two-Level Directory III

• Specifying a user name and a file name defines a path in
the tree from the root (the MFD) to a leaf (the specified
file).

• Thus, a user name and a file name define a path name.

• To name a file uniquely, a user must know the path name
of the file desired.

• Additional syntax is needed to specify the volume of a file.

• For instance, in MS-DOS a volume is specified by a letter
followed by a colon. Thus, a file specification might be

C:\userb\test

File-System Interface &
File System

Implementation I

Dr. Cem Özdo ğan

File-System Interface
File Concept

File Attributes

File Operations

An Example Program
Using File System Calls

File Types

Internal File Structure

Access Methods

Sequential Access

Direct (Random) Access

Directory Structure

Storage Structure

Directory Overview

Single-Level Directory

Two-Level Directory

Tree-Structured Directories

Acyclic-Graph Directories

File-System Mounting

File Sharing

Multiple Users

Protection

Types of Access

Access Control

10.32

Tree-Structured Directories I

• Once we have seen how to view a two-level directory as a
two-level tree, the natural generalization is to extend the
directory structure to a tree of arbitrary height (see Fig.
11).

Figure: Tree-structured directory structure.

File-System Interface &
File System

Implementation I

Dr. Cem Özdo ğan

File-System Interface
File Concept

File Attributes

File Operations

An Example Program
Using File System Calls

File Types

Internal File Structure

Access Methods

Sequential Access

Direct (Random) Access

Directory Structure

Storage Structure

Directory Overview

Single-Level Directory

Two-Level Directory

Tree-Structured Directories

Acyclic-Graph Directories

File-System Mounting

File Sharing

Multiple Users

Protection

Types of Access

Access Control

10.33

Tree-Structured Directories II

• This generalization allows users to create their own
subdirectories and to organize their files accordingly.

• A tree is the most common directory structure.
• The tree has a root directory, and every file in the system

has a unique path name.
• A directory is simply another file, but it is treated in a

special way.
• One bit in each directory entry defines the entry

• as a file (0),
• as a subdirectory (1).

• Path names can be of two types: absolute and relative
• With a tree-structured directory system, users can be

allowed to access, in addition to their files, the files of
other users.

• For example, user B can access a file of user A by
specifying its path names.

• User B can specify either an absolute or a relative path
name.

• Alternatively, user B can change her current directory to be
user A’s directory and access the file by its file names.

File-System Interface &
File System

Implementation I

Dr. Cem Özdo ğan

File-System Interface
File Concept

File Attributes

File Operations

An Example Program
Using File System Calls

File Types

Internal File Structure

Access Methods

Sequential Access

Direct (Random) Access

Directory Structure

Storage Structure

Directory Overview

Single-Level Directory

Two-Level Directory

Tree-Structured Directories

Acyclic-Graph Directories

File-System Mounting

File Sharing

Multiple Users

Protection

Types of Access

Access Control

10.34

Acyclic-Graph Directories I
• The acyclic graph is a natural generalization of the

tree-structured directory scheme.
• The common subdirectory should be shared.
• A tree structure prohibits the sharing of files or directories.
• An acyclic graph (a graph with no cycles) allows

directories to share subdirectories and files (see Fig. 12).

Figure: Acyclic-graph directory structure.

File-System Interface &
File System

Implementation I

Dr. Cem Özdo ğan

File-System Interface
File Concept

File Attributes

File Operations

An Example Program
Using File System Calls

File Types

Internal File Structure

Access Methods

Sequential Access

Direct (Random) Access

Directory Structure

Storage Structure

Directory Overview

Single-Level Directory

Two-Level Directory

Tree-Structured Directories

Acyclic-Graph Directories

File-System Mounting

File Sharing

Multiple Users

Protection

Types of Access

Access Control

10.35

Acyclic-Graph Directories II
• The same file or subdirectory may be in two different

directories.
• It is important to note that a shared file (or directory) is not

the same as two copies of the file.
• With two copies, each programmer can view the copy rather

than the original, but if one programmer changes the file,
the changes will not appear in the other’s copy.

• With a shared file, only one actual file exists, so any
changes made by one person are immediately visible to the
other.

• A common way, exemplified by many of the UNIX
systems, is to create a new directory entry called a link .

• A link is effectively a pointer to another file or subdirectory.
• We resolve the link by using that path name to locate the

real file.
• Links are easily identified by their format in the directory

entry and are effectively named indirect pointers.
• Another common approach to implementing shared files is

simply to duplicate all information about them in both
sharing directories.

• Thus, both entries are identical and equal.

File-System Interface &
File System

Implementation I

Dr. Cem Özdo ğan

File-System Interface
File Concept

File Attributes

File Operations

An Example Program
Using File System Calls

File Types

Internal File Structure

Access Methods

Sequential Access

Direct (Random) Access

Directory Structure

Storage Structure

Directory Overview

Single-Level Directory

Two-Level Directory

Tree-Structured Directories

Acyclic-Graph Directories

File-System Mounting

File Sharing

Multiple Users

Protection

Types of Access

Access Control

10.36

Acyclic-Graph Directories III
• A link is clearly different from the original directory entry;

thus, the two are not equal.
• Several problems must be considered carefully for an

acyclic-graph directory structure.
• A file may now have multiple absolute path names.
• Another problem involves deletion. When can the space

allocated to a shared file be deallocated and reused?
• One possibility is to remove the file whenever anyone deletes

it, but this action may leave dangling pointers to the now
nonexistent file.

• Worse, if the remaining file pointers contain actual disk
addresses, and the space is subsequently reused for other
files, these dangling pointers may point into the middle of
other files.

• In a system where sharing is implemented by
symbolic links, this situation is somewhat easier to handle.

• The deletion of a link need not affect the original file; only
the link is removed.

• If the file entry itself is deleted, the space for the file is
deallocated, leaving the links dangling.

• In the case of UNIX, symbolic links are left when a file is
deleted. Microsoft Windows (all flavours) uses the same
approach.

File-System Interface &
File System

Implementation I

Dr. Cem Özdo ğan

File-System Interface
File Concept

File Attributes

File Operations

An Example Program
Using File System Calls

File Types

Internal File Structure

Access Methods

Sequential Access

Direct (Random) Access

Directory Structure

Storage Structure

Directory Overview

Single-Level Directory

Two-Level Directory

Tree-Structured Directories

Acyclic-Graph Directories

File-System Mounting

File Sharing

Multiple Users

Protection

Types of Access

Access Control

10.37

Acyclic-Graph Directories IV

• Another approach to deletion is to preserve the file until all
references to it are deleted.

• To implement this approach, we must have some
mechanism for determining that the last reference to the
file has been deleted.

• The trouble with this approach is the variable and
potentially large size of the file-reference list.

• However, we really do not need to keep the entire list -we
need to keep only a count of the number of references.

• Adding a new link or directory entry increments the
reference count;

• Deleting a link or entry decrements the count.
• When the count is 0, the file can be deleted; there are no

remaining references to it.

• The UNIX OS uses this approach for non-symbolic links
(or hard links), keeping a reference count in the file
information block (or inode).

File-System Interface &
File System

Implementation I

Dr. Cem Özdo ğan

File-System Interface
File Concept

File Attributes

File Operations

An Example Program
Using File System Calls

File Types

Internal File Structure

Access Methods

Sequential Access

Direct (Random) Access

Directory Structure

Storage Structure

Directory Overview

Single-Level Directory

Two-Level Directory

Tree-Structured Directories

Acyclic-Graph Directories

File-System Mounting

File Sharing

Multiple Users

Protection

Types of Access

Access Control

10.38

File-System Mounting I

• Just as a file must be opened before it is used, a file
system must be mounted before it can be available to
processes on the system.

• The mount procedure is straightforward. The OS is given
the name of the device and the mount point .

• Typically, a mount point is an empty directory.

• Next, the OS verifies that the device
contains a valid file system.

• Finally, the OS notes in its directory structure that a file
system is mounted at the specified mount point.

• To illustrate file mounting, consider the file system
depicted in Fig. 13.

• At this point, only the files on the existing file system can
be accessed.

• Figure 14 shows the effects of mounting the volume
residing on /dev/disk over /users.

File-System Interface &
File System

Implementation I

Dr. Cem Özdo ğan

File-System Interface
File Concept

File Attributes

File Operations

An Example Program
Using File System Calls

File Types

Internal File Structure

Access Methods

Sequential Access

Direct (Random) Access

Directory Structure

Storage Structure

Directory Overview

Single-Level Directory

Two-Level Directory

Tree-Structured Directories

Acyclic-Graph Directories

File-System Mounting

File Sharing

Multiple Users

Protection

Types of Access

Access Control

10.39

File-System Mounting II

Figure: File system. (a) Existing system. (b) Unmounted volume.

Figure: Mount point.

File-System Interface &
File System

Implementation I

Dr. Cem Özdo ğan

File-System Interface
File Concept

File Attributes

File Operations

An Example Program
Using File System Calls

File Types

Internal File Structure

Access Methods

Sequential Access

Direct (Random) Access

Directory Structure

Storage Structure

Directory Overview

Single-Level Directory

Two-Level Directory

Tree-Structured Directories

Acyclic-Graph Directories

File-System Mounting

File Sharing

Multiple Users

Protection

Types of Access

Access Control

10.40

Multiple Users

• When an OS accommodates multiple users, the issues of
file sharing, file naming, and file protection become
important.

• Most systems have evolved to use the concepts of file (or
directory) owner (or user) and group.

• The owner is the user who can change attributes and grant
access and who has the most control over the file.

• The group attribute defines a subset of users who can share
access to the file.

• For example, the owner of a file on a UNIX system can
issue all operations on a file, while members of the file’s
group can execute one subset of those operations, and all
other users can execute another subset of operations.

• The owner and group IDs of a given file (or directory) are
stored with the other file attributes.

• When a user requests an operation on a file, the user ID
can be compared with the owner attribute to determine if
the requesting user is the owner of the file.

• Likewise, the group IDs can be compared.
• The result indicates which permissions are applicable.

File-System Interface &
File System

Implementation I

Dr. Cem Özdo ğan

File-System Interface
File Concept

File Attributes

File Operations

An Example Program
Using File System Calls

File Types

Internal File Structure

Access Methods

Sequential Access

Direct (Random) Access

Directory Structure

Storage Structure

Directory Overview

Single-Level Directory

Two-Level Directory

Tree-Structured Directories

Acyclic-Graph Directories

File-System Mounting

File Sharing

Multiple Users

Protection

Types of Access

Access Control

10.41

Protection

• When information is stored in a computer system, we want
to keep it safe from physical damage (reliability) and
improper access (protection) .

• Reliability is generally provided by duplicate copies of files
(copy disk files to tape).

• File systems can be damaged by hardware problems
(such as errors in reading or writing), power surges or
failures, head crashes, dirt, temperature extremes, and
vandalism.

• Files may be deleted accidentally.

• Bugs in the file-system software can also cause file
contents to be lost.

File-System Interface &
File System

Implementation I

Dr. Cem Özdo ğan

File-System Interface
File Concept

File Attributes

File Operations

An Example Program
Using File System Calls

File Types

Internal File Structure

Access Methods

Sequential Access

Direct (Random) Access

Directory Structure

Storage Structure

Directory Overview

Single-Level Directory

Two-Level Directory

Tree-Structured Directories

Acyclic-Graph Directories

File-System Mounting

File Sharing

Multiple Users

Protection

Types of Access

Access Control

10.42

Types of Access

• The need to protect files is a direct result of the ability to
access files.

• Systems that do not permit access to the files of other users
do not need protection.

• Alternatively, we could provide free access with no
protection.

• Both approaches are too extreme for general use. What is
needed is controlled access .

• Several different types of operations may be controlled:
• Read.
• Write .
• Execute . Load the file into memory and execute it.
• Append . Write new information at the end of the file.
• Delete .
• List . List the name and attributes of the file.

• Other operations, such as renaming, copying, and editing
the file, may also be controlled.

• These higher-level functions may be implemented by a
system program that makes lower-level system calls.

File-System Interface &
File System

Implementation I

Dr. Cem Özdo ğan

File-System Interface
File Concept

File Attributes

File Operations

An Example Program
Using File System Calls

File Types

Internal File Structure

Access Methods

Sequential Access

Direct (Random) Access

Directory Structure

Storage Structure

Directory Overview

Single-Level Directory

Two-Level Directory

Tree-Structured Directories

Acyclic-Graph Directories

File-System Mounting

File Sharing

Multiple Users

Protection

Types of Access

Access Control

10.43

Access Control I
• The most common approach to the protection problem is

to make access dependent on the identity of the user.
• The most general scheme to implement

identity-dependent access is to associate with each file
and directory an access-control list (ACL) specifying user
names and the types of access allowed for each user.

• This approach has the advantage of enabling complex
access methodologies.

• The main problem with access lists is their length. If we
want to allow everyone to read a file, we must list all users
with read access.

• These problems can be resolved by use of a condensed
version of the access list.

• To condense the length of the access-control list, many
systems recognize three classifications of users in
connection with each file:

• Owner . The user who created the file is the owner.
• Group . A set of users who are sharing the file and need

similar access is a group, or work group.
• Universe . All other users in the system constitute the

universe.

File-System Interface &
File System

Implementation I

Dr. Cem Özdo ğan

File-System Interface
File Concept

File Attributes

File Operations

An Example Program
Using File System Calls

File Types

Internal File Structure

Access Methods

Sequential Access

Direct (Random) Access

Directory Structure

Storage Structure

Directory Overview

Single-Level Directory

Two-Level Directory

Tree-Structured Directories

Acyclic-Graph Directories

File-System Mounting

File Sharing

Multiple Users

Protection

Types of Access

Access Control

10.44

Access Control II

• With this more limited protection classification, only three
fields are needed to define protection.

• Often, each field is a collection of bits, and each bit either
allows or prevents the access associated with it.

• For example, the UNIX system defines three fields of 3 bits
each−rwx , where r controls read access, w controls write
access, and x controls execution.

• In this scheme, nine bits per file are needed to record
protection information.

	File-System Interface
	File Concept
	Access Methods
	Directory Structure
	File-System Mounting
	File Sharing
	Protection

