
Programming Shared
Memory III

Dr. Cem Özdo ğan

Thread Examples
Computing the value of π

Producer-consumer work
queues

Condition Variables for
Synchronization

9.1

Lecture 9
Programming Shared Memory III
Synchronization Primitives; Condition Variables

Ceng471 Parallel Computing at December 23, 2010

Dr. Cem Özdoğan
Computer Engineering Department

Çankaya University



Programming Shared
Memory III

Dr. Cem Özdo ğan

Thread Examples
Computing the value of π

Producer-consumer work
queues

Condition Variables for
Synchronization

9.2

Contents

1 Thread Examples
Computing the value of π
Producer-consumer work queues

2 Condition Variables for Synchronization



Programming Shared
Memory III

Dr. Cem Özdo ğan

Thread Examples
Computing the value of π

Producer-consumer work
queues

Condition Variables for
Synchronization

9.3

Computing the value of π I

• Computing the value of π.

• Based on generating random numbers in a unit length
square and counting the number of points that fall within
the largest circle inscribed in the square.

• Since the area of the circle (πr2) is equal to π/4, and the
area of the square is 1 × 1, the fraction of random points
that fall in the circle should approach π/4.

• Threaded strategy :

• assigns a fixed number of points to each thread.

• Each thread generates these random points and
keeps track of the number of points in the circle locally.

• After all threads finish execution,
their counts are combined to compute the value of π (by
calculating the fraction over all threads and multiplying by
4).



Programming Shared
Memory III

Dr. Cem Özdo ğan

Thread Examples
Computing the value of π

Producer-consumer work
queues

Condition Variables for
Synchronization

9.4

Computing the value of π II

The arg field is used to pass an integer id that is used as a
seed for randomization.



Programming Shared
Memory III

Dr. Cem Özdo ğan

Thread Examples
Computing the value of π

Producer-consumer work
queues

Condition Variables for
Synchronization

9.5

Computing the value of π III



Programming Shared
Memory III

Dr. Cem Özdo ğan

Thread Examples
Computing the value of π

Producer-consumer work
queues

Condition Variables for
Synchronization

9.6

Computing the value of π IV



Programming Shared
Memory III

Dr. Cem Özdo ğan

Thread Examples
Computing the value of π

Producer-consumer work
queues

Condition Variables for
Synchronization

9.7

Computing the value of π V

• For computing the value of π,

• First read in the desired number of threads, num_threads,
and the desired number of sample points, sample_points.

• These points are divided equally among the threads.

• The program uses an array, hits , for assigning an integer
id to each thread (this id is used as a seed for randomizing
the random number generator).

• The same array is used to keep track of the number of hits
(points inside the circle) encountered by each thread
upon return.



Programming Shared
Memory III

Dr. Cem Özdo ğan

Thread Examples
Computing the value of π

Producer-consumer work
queues

Condition Variables for
Synchronization

9.8

Computing the value of π VI

• The program creates num_threads threads, each invoking
the same function compute_pi, using the pthread_create
function.

• Once the respective compute_pi threads have generated
assigned number of random points and computed their
hit ratios, the results must be combined to determine π.

• Once all threads have joined, the value of π is computed
by multiplying the combined hit ratio by 4.0.

• The use of the function rand_r (instead of superior random
number generators such as drand48).

• The reason for this is that many functions (including rand
and drand48) are not reentrant .



Programming Shared
Memory III

Dr. Cem Özdo ğan

Thread Examples
Computing the value of π

Producer-consumer work
queues

Condition Variables for
Synchronization

9.9

Producer-consumer work queues I

• Producer-consumer work queues
• A common use of mutex-locks is in establishing a

producer-consumer relationship between threads.

• The producer creates tasks and inserts them into a
work-queue.

• The consumer threads pick up tasks from the task
queue and execute them.

• Consider that the task queue can hold only one task.

• In a general case, the task queue may be longer but is
typically of bounded size.

• A simple (and incorrect) threaded program would
associate a producer thread with creating a task

• and placing it in a shared data structure
• and the consumer threads with picking up tasks from this

shared data structure and executing them.



Programming Shared
Memory III

Dr. Cem Özdo ğan

Thread Examples
Computing the value of π

Producer-consumer work
queues

Condition Variables for
Synchronization

9.10

Producer-consumer work queues II

• However, this simple version does not account for the
following possibilities:

1 The producer thread must not overwrite the shared buffer
when the previous task has not been picked up by a
consumer thread.

2 The consumer threads must not pick up tasks until there is
something present in the shared data structure.

3 Individual consumer threads should pick up tasks one at a
time.

• To implement this, we can use a variable called
task_available.

• If this variable is 0, consumer threads must wait, but the
producer thread can insert tasks into the shared data
structure task_queue.

• If task_available is equal to 1, the producer thread must wait
to insert the task into the shared data structure but one of
the consumer threads can pick up the task available.



Programming Shared
Memory III

Dr. Cem Özdo ğan

Thread Examples
Computing the value of π

Producer-consumer work
queues

Condition Variables for
Synchronization

9.11

Producer-consumer work queues III

All of these operations on the variable task_available should be
protected by mutex-locks to ensure that only one thread is
executing test-update on it.



Programming Shared
Memory III

Dr. Cem Özdo ğan

Thread Examples
Computing the value of π

Producer-consumer work
queues

Condition Variables for
Synchronization

9.12

Producer-consumer work queues IV



Programming Shared
Memory III

Dr. Cem Özdo ğan

Thread Examples
Computing the value of π

Producer-consumer work
queues

Condition Variables for
Synchronization

9.13

Producer-consumer work queues V



Programming Shared
Memory III

Dr. Cem Özdo ğan

Thread Examples
Computing the value of π

Producer-consumer work
queues

Condition Variables for
Synchronization

9.14

Producer-consumer work queues VI

• The create_task and process_task functions are left
outside the critical region , making the critical section as
small as possible.

• but insert_into_queue and extract_from_queue functions
are left inside the critical region .

• Inside because if the lock is relinquished after updating
task_available but not inserting or extracting the task,

• other threads may gain access to the shared data
structure while the insertion or extraction is in progress,
resulting in errors.



Programming Shared
Memory III

Dr. Cem Özdo ğan

Thread Examples
Computing the value of π

Producer-consumer work
queues

Condition Variables for
Synchronization

9.15

Producer-consumer work queues VII

• For producer-consumer work queues

• The producer thread creates a task and waits for space on
the queue.

• This is indicated by the variable task_available being 0.

• The test and update of this variable as well as insertion
and extraction from the shared queue are protected by a
mutex called task_queue_lock.

• Once space is available on the task queue, the recently
created task is inserted into the task queue and the
availability of the task is signaled by setting task_available
to 1.

• Within the producer thread, the fact that the recently
created task has been inserted into the queue is signaled
by the variable inserted being set to 1, which allows the
producer to produce the next task.

• Irrespective of whether a recently created task is
successfully inserted into the queue or not, the lock is
relinquished.



Programming Shared
Memory III

Dr. Cem Özdo ğan

Thread Examples
Computing the value of π

Producer-consumer work
queues

Condition Variables for
Synchronization

9.16

Producer-consumer work queues VIII

• This allows consumer threads to pick up work from the
queue in case there is work on the queue to begin with.

• If the lock is not relinquished, threads would deadlock
since a consumer would not be able to get the lock to pick
up the task and the producer would not be able to insert its
task into the task queue.

• The consumer thread waits for a task to become available
and executes it when available.

• As was the case with the producer thread, the consumer
relinquishes the lock in each iteration of the while loop to
allow the producer to insert work into the queue if there
was none.



Programming Shared
Memory III

Dr. Cem Özdo ğan

Thread Examples
Computing the value of π

Producer-consumer work
queues

Condition Variables for
Synchronization

9.17

Synchronization Primitives; Condition Variables I

• Indiscriminate use of locks can result in idling overhead
from blocked threads.

• While the function pthread_mutex_trylock removes this
overhead, it introduces the overhead of polling for
availability of locks.

• For example, if the producer-consumer example is
rewritten using pthread_mutex_trylock instead of
pthread_mutex_lock,

• the producer and consumer threads would have to
periodically poll for availability of lock (and subsequently
availability of buffer space or tasks on queue).

• A natural solution to this problem is to suspend the
execution of the polling thread until space becomes
available.

• An interrupt driven mechanism as opposed to a polled
mechanism .



Programming Shared
Memory III

Dr. Cem Özdo ğan

Thread Examples
Computing the value of π

Producer-consumer work
queues

Condition Variables for
Synchronization

9.18

Synchronization Primitives; Condition Variables II

• The availability of space is signaled by the thread that
holding the space.

• The functionality to accomplish this is provided by a
condition variable .

• A condition variable is a data object used for synchronizing
threads and always used in conjunction with a mutex lock.

• While mutexes implement synchronization by controlling
thread access to data ,

• condition variables allow threads to synchronize based
upon the actual value of data .

• This variable allows a thread to block itself until specified
data reaches a predefined state.



Programming Shared
Memory III

Dr. Cem Özdo ğan

Thread Examples
Computing the value of π

Producer-consumer work
queues

Condition Variables for
Synchronization

9.19

Synchronization Primitives; Condition Variables III

• pthread_cond_wait

• A thread locks this mutex and tests the predicate defined
on the shared variable;

• if the predicate is not true, the thread waits on the
condition variable associated with the predicate using this
function.

• A call to this function blocks the execution of the thread
until it receives a signal from another thread or is
interrupted by an OS signal.

• In addition to blocking the thread, the pthread_cond_wait
function releases the lock on mutex .

• This is important because otherwise no other thread will
be able to work on the shared variable and the predicate
would never be satisfied.



Programming Shared
Memory III

Dr. Cem Özdo ğan

Thread Examples
Computing the value of π

Producer-consumer work
queues

Condition Variables for
Synchronization

9.20

Synchronization Primitives; Condition Variables IV

• pthread_cond_signal

• When the condition is signaled, pthread_cond_signal ,
one of these threads in the queue is unblocked,

• and when the mutex becomes available, it is handed to
this thread (and the thread becomes runnable).

• When the thread is released on a signal, it waits to
reacquire the lock on mutex before resuming execution.

• It is convenient to think of each condition variable as being
associated with a queue.

• Threads performing a condition wait on the variable
relinquish their lock and enter the queue.



Programming Shared
Memory III

Dr. Cem Özdo ğan

Thread Examples
Computing the value of π

Producer-consumer work
queues

Condition Variables for
Synchronization

9.21

Synchronization Primitives; Condition Variables V

• pthread_cond_init & pthread_cond_destroy

• Function calls for initializing and destroying condition
variables.

• Condition variables must be declared with type
pthread_cond_t, and must be initialized before they can be
used.

• There are two ways to initialize a condition variable:

1 Statically, when it is declared. For example:
pthread_cond_t myconvar =
PTHREAD_COND_INITIALIZER;

2 Dynamically, with the pthread_cond_init() routine.



Programming Shared
Memory III

Dr. Cem Özdo ğan

Thread Examples
Computing the value of π

Producer-consumer work
queues

Condition Variables for
Synchronization

9.22

Synchronization Primitives; Condition Variables VI

• The function pthread_cond_init initializes a condition
variable (pointed to by cond).

• The ID of the created condition variable is returned to the calling
thread through the condition parameter.

• This method permits setting condition variable object attributes,
attr. (NULL assigns default attributes)

• If at some point in a program a condition variable is no
longer required, it can be discarded using the function
pthread_cond_destroy .



Programming Shared
Memory III

Dr. Cem Özdo ğan

Thread Examples
Computing the value of π

Producer-consumer work
queues

Condition Variables for
Synchronization

9.23

Synchronization Primitives; Condition Variables VII

Figure: A representative sequence for using condition variables.



Programming Shared
Memory III

Dr. Cem Özdo ğan

Thread Examples
Computing the value of π

Producer-consumer work
queues

Condition Variables for
Synchronization

9.24

Synchronization Primitives; Condition Variables VIII

• When a thread performs a condition wait, it takes itself off
the runnable list consequently, it does not use any CPU
cycles until it is woken up.

• This is in contrast to a mutex lock which consumes CPU
cycles as it polls for the lock.

• pthread_cond_broadcast .

• In some cases, it may be beneficial to wake all threads
that are waiting on the condition variable as opposed to a
single thread.

• An example of this is in the producer-consumer scenario
with large work queues and multiple tasks being inserted
into the work queue on each insertion cycle.

• Another example is in the implementation of barriers.



Programming Shared
Memory III

Dr. Cem Özdo ğan

Thread Examples
Computing the value of π

Producer-consumer work
queues

Condition Variables for
Synchronization

9.25

Synchronization Primitives; Condition Variables IX

• pthread_cond_timedwait ,

• It is often useful to build time-outs into condition waits.

• Using the function a thread can perform a wait on a
condition variable until a specified time expires.

• At this point, the thread wakes up by itself if it does not
receive a signal or a broadcast.

• If the absolute time abstime specified expires before a
signal or broadcast is received, the function returns an
error message.

• It also reacquires the lock on mutex when it becomes
available.


	Thread Examples
	Computing the value of 
	Producer-consumer work queues

	Condition Variables for Synchronization

