

İzmir Kâtip Çelebi University Department of Engineering Sciences Phy102 Physics II Final Examination January 09, 2023 17:00 – 18:30 Good Luck!

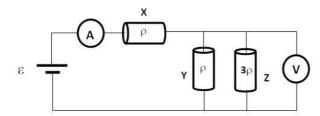
NA	\mathbf{ME}	-SI	RN	Δ	MF.
$T \times T$		$ \sim$	TULY	Δ	.v

SIGNATURE:

ID:

DEPARTMENT:

INSTRUCTOR:


DURATION: 90 minutes

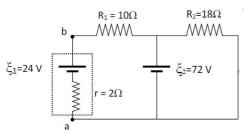
- ♦ Answer all the questions.
- ♦ Write the solutions explicitly and clearly. Use the physical terminology.
- ♦ You are allowed to use Formulae Sheet.
- ♦ Calculator is allowed.
- ♦ You are not allowed to use any other electronic equipment in the exam.
- \diamond I declare hereby that I fulfilled the requirements for the attendance according to the University regulations and I accept that my examination will not be valid otherwise.

Question	Grade	Out of
1A		15
1B		15
2		20
3		20
4		20
5		20
TOTAL		110

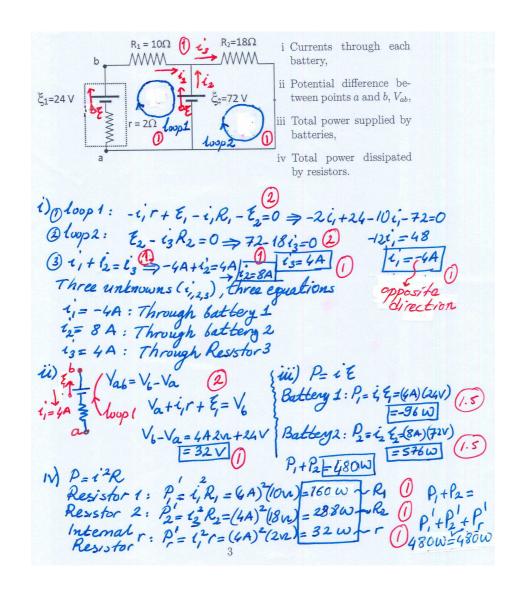
This page is intentionally left blank. Use the space if needed.

1. A) The circuit containing three cylindrical resistors, namely X, Y and Z, which obey Ohm's Law is shown in the figure below. The resistors which have length of L and cross-sectional area of A are connected to an ideal battery of emf ε . As shown an ammeter is connected in series while voltmeter is connected to ends of resistor Z. The resistors X and Y have a resistivity ρ and the resistor Z has a resistivity 3ρ .

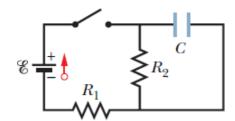
- i Find the current i through the ammeter.
- ii Find the reading of voltmeter.


Express your result in terms of given quantities and constants (ε , A, ρ , L). (**Hint:** Resistance is related to resistivity; $R = \rho \frac{L}{A}$)

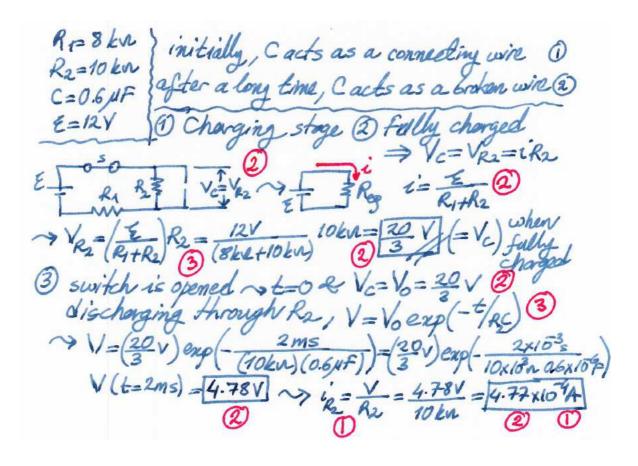
B) What uniform magnetic field, applied perpendicular to a beam of electrons moving at $1.30 \times 10^6 \ m/s$, is required to make the electrons travel in a circular arc of radius of $0.35 \ m$? (Hint: Centripetal Force; $F_c = m \frac{v^2}{R}$)

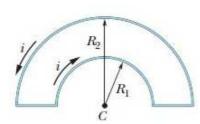

 $\begin{array}{lll} V = 1.3 \times 10^{6} \text{ m/s} & F_{c} = m \, u^{2} \, L \, F_{B} = 19 \, l \, u \, B \, Sin \, \Theta \\ R = 0.3 \times m & R & F_{C} = m \, u^{2} \, L \, F_{B} = 19 \, l \, u \, B \, Sin \, \Theta \\ e = 1.602 \times 10^{-19} \, C \, (=191) & 19 \, l \, u \, B \, Sin \, 90^{\circ} = m_{e} \, u^{2} / R \, (S) \\ M_{e} = 9.109 \times 10^{-31} \, kg & \Rightarrow B = \frac{m_{e} \, u}{e \, R} \, (S) \\ B = ? & = \frac{(9.109 \times 10^{-19})}{(1.602 \times 10^{-19})} \, (0.3 \times 10^{6} \, m/s) \\ & = \frac{(9.109 \times 10^{-19})}{(1.602 \times 10^{-19})} \, (0.3 \times m) \\ & = \frac{(2.11 \times 10^{-5})}{(1.602 \times 10^{-5})} \, (0.3 \times m) \end{array}$

2. Consider circuit as shown in figure which consists of two batteries. One of the following batteries has an internal resistance r, while the other battery is an ideal battery.



Calculate;

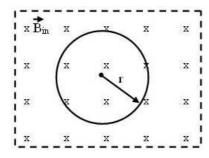

- i Currents through each battery,
- ii Total power dissipated by resistors.
- iii Potential difference between points a and b, V_{ab} ,


3. In Figure given below, $R_1 = 8.0 \times 10^3 \ \Omega$, $R_2 = 10.0 \times 10^3 \ \Omega$, $C = 6 \times 10^{-7} \ F$, and the ideal battery has emf $\epsilon = 12.0 \ V$. First, the switch is closed a long time so that the steady state is reached. Then the switch is opened at time t = 0.

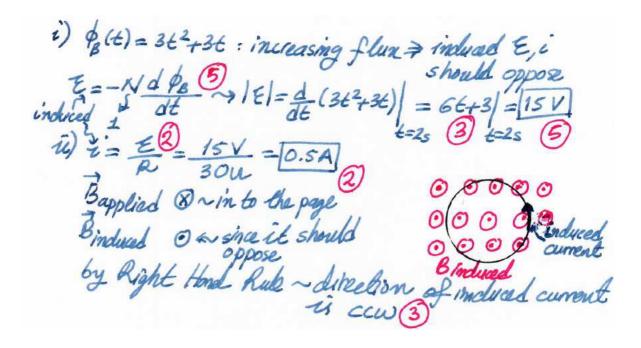
What is the current in resistor 2 at $t = 2.00 \times 10^{-3} \ s$?

4. In Figure, two semicircular arcs have radii $R_2 = 2.6 \ cm$ and $R_1 = 1.05 \ cm$, carry current $i = 0.0937 \ A$, and share the same center of curvature C.

What are the


- i magnitude
- ii direction (into or out of the page, why?)

of the net magnetic field at C?


Hint: Use Biot-Savart Law.

Biot-Savort law: $d\vec{B} = \frac{M_0}{4\pi} = \frac{i d\vec{s} \times \hat{r}}{r^2}$ $d\vec{b} = \frac{M_0}{4\pi} = \frac{i ds \sin 30^\circ}{R^2} = \frac{M_0}{4\pi} = \frac{i ds}{R^2}$ where $\vec{b} = \frac{M_0}{R^2} = \frac{M_0}{4\pi} = \frac{i ds}{R^2}$ where $\vec{b} = \frac{M_0}{4\pi} = \frac{i ds}{R^2} = \frac{M_0}{R^2} = \frac{i ds}{R^2} = \frac{i d$

5. In figure below, the magnetic flux through the circular loop of radius r=2.0~m increases according to the relation $\Phi_B=3t^2+3t$, where Φ_B is in Webers and t is in seconds.

- i Find the magnitude of the induced emf, ξ in the circular loop at t = 2.0 s.
- ii What is the magnitude and direction of the induced current in the circular loop at t=2.0~s if the loop has a total resistance of $R=30~\Omega$?

İzmir Kâtip Çelebi University Department of Engineering Sciences Phy102 Physics II Final Examination January 14, 2022 11:00 – 12:30 Good Luck!

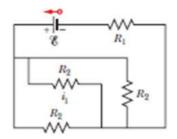
NAME-SURNAME:

SIGNATURE:

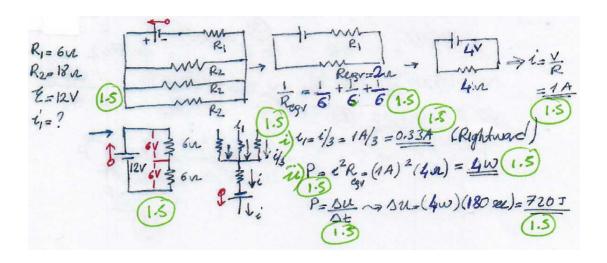
ID:

DEPARTMENT:

INSTRUCTOR:

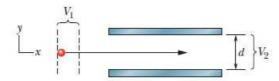

DURATION: 90 minutes

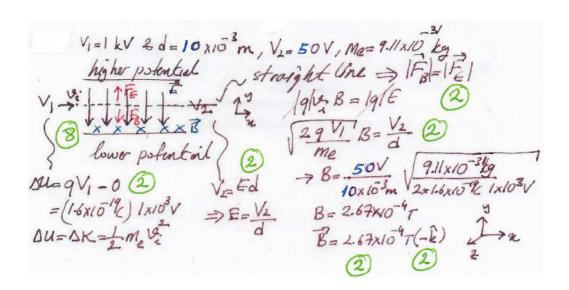
- ♦ Answer all the questions.
- ⋄ Write the solutions explicitly and clearly. Use the physical terminology.
- ♦ You are allowed to use Formulae Sheet.
- ♦ Calculator is allowed.
- ♦ You are not allowed to use any other electronic equipment in the exam.
- \diamond I declare hereby that I fulfilled the requirements for the attendance according to the University regulations and I accept that my examination will not be valid otherwise.


Question	Grade	Out of
1A		15
1B		15
2		20
3		20
4		20
5		20
TOTAL		110

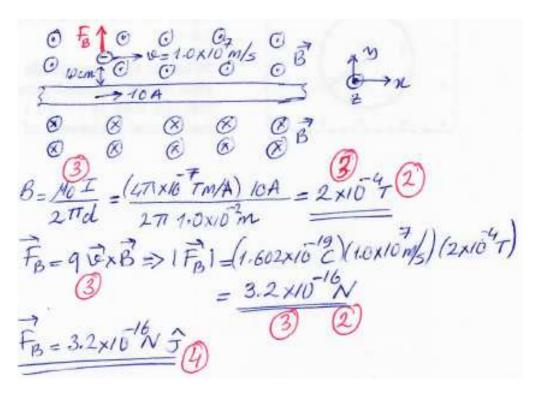
This page is intentionally left blank. Use the space if needed.

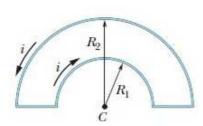
1. A) In Figure, $R_1=2.0~\Omega,~R_2=6.0~\Omega,$ and the ideal battery has emf $\varepsilon=4.0~V.$


- i What are the size and direction (left or right) of current i_1 ?
- ii How much energy is dissipated by all four resistors in 3.00 minutes?


- B) A 15.0 $k\Omega$ resistor and a capacitor are connected in series and then a 12.0 V potential difference is suddenly applied across them. The potential difference across the capacitor rises to 5.0 V in 1.30 μs .
 - a) Calculate the time constant of the circuit.
 - b) Find the capacitance of the capacitor.

Charging capacitor:
$$q = C \mathcal{E}(1 - e^{\frac{t}{RC}})$$
 & $z = RC$
 $V(t) = \mathcal{E}(1 - e^{\frac{t}{RC}})$ \mathcal{Z}
 $V(t) = \mathcal{E}(1 - e^{-\frac{t}{RC}})$ \mathcal{Z}
 $V(t) = \mathcal{E}(1 - e^{-\frac{t}{RC}})$ \mathcal{Z}
 $V(t) = \mathcal{Z}(1

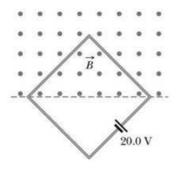

2. In Figure, an electron accelerated from rest through potential difference $V_1 = 1.00 \ kV$ enters the gap between two parallel plates having separation $d = 10.0 \ mm$ and potential difference $V_2 = 50 \ V$. The lower plate is at the lower potential. Neglect fringing and assume that the electron's velocity vector is perpendicular to the electric field vector between the plates.


In unit-vector notation, what uniform magnetic field allows the electron to travel in a straight line in the gap?

3. A long wire carries a 10 A current from left to right. An electron 1.0 cm above the wire is traveling to the right at a speed of 1.0×10^7 m/s. What are the magnitude and the direction of the magnetic force on the electrons?

4. In Figure, two semicircular arcs have radii $R_2 = 3.9 \ cm$ and $R_1 = 1.575 \ cm$, carry current $i = 0.1405 \ A$, and share the same center of curvature C.

What are the


- i magnitude
- ii direction (into or out of the page, why?)

of the net magnetic field at C?

Hint: Use Biot-Savart Law.

Biot-Savort law: $dB = \frac{M_0}{4\pi} = \frac{i d \tilde{s} \times \hat{r}}{r^2}$ $dB = \frac{M_0}{4\pi} = \frac{i d \tilde{s} \times \hat{r} \times \hat{r}}{R^2} = \frac{M_0}{4\pi} = \frac{i d \tilde{s}}{R^2} = \frac{i d \tilde{s$

5. A square wire loop with 3.00 m sides and resistance 3 Ω is perpendicular to a uniform magnetic field, with half the area of the loop in the field as shown in figure. The loop contains an ideal battery with emf (ε) 20.0 V. The magnitude of the field varies with time according to B=0.0420-0.3870t, with B in teslas and t in second.

- i Find the value and direction of the induced ε .
- ii What is the net emf in the circuit?
- iii Find the magnitude and the direction of the net current around the loop?

Hint: Magnetic field is decreasing.

L=2.00 m

R=3 VL $E_{B}=20.0V$ $E_{B}=20.0V$ $E_{C}=-\frac{d\Phi_{B}}{dt}=-\frac{d\Phi_{B}}{dt}=-\frac{l^{2}}{2}\frac{dB}{dt}=-\frac{l^{2}}{2}\frac{dO(N)O-0.3370t}{dt}$ $E_{C}=-\frac{l^{2}}{2}\left(-0.3870T/5\right)=\frac{(300m)^{2}}{2}\left(0.3870T/5\right)$ $E_{C}=-\frac{l^{2}}{2}\left(-0.3870T/5\right)=\frac{(300m)^{2}}{2}\left(0.3870T/5\right)$ $E_{C}=-\frac{l^{2}}{2}\left(-0.3870T/5\right)=\frac{(300m)^{2}}{2}\left(0.3870T/5\right)$ $E_{C}=-\frac{l^{2}}{2}\left(-0.3870T/5\right)=\frac{(300m)^{2}}{2}\left(0.3870T/5\right)$ $E_{C}=-\frac{l^{2}}{2}\left(-0.3870T/5\right)=\frac{(300m)^{2}}{2}\left(0.3870T/5\right)$ $E_{C}=-\frac{l^{2}}{2}\left(0.010-0.3870t\right)$ $E_{C}=-\frac{l^{2}}{2}\left(0.010-0.3870t\right)$ $E_{C}=-\frac{l^{2}}{2}\left(-0.3870T/5\right)=\frac{(300m)^{2}}{2}\left(0.3870T/5\right)$ $E_{C}=-\frac{l^{2}}{2}\left(0.010-0.3870t\right)$ $E_{C}=-\frac{l^{2}}{2}\left(0.010-0.870t\right)$

İzmir Kâtip Çelebi University Department of Engineering Sciences Phy102 Physics II Final Examination January 09, 2020 13:30 – 15:30 Good Luck!

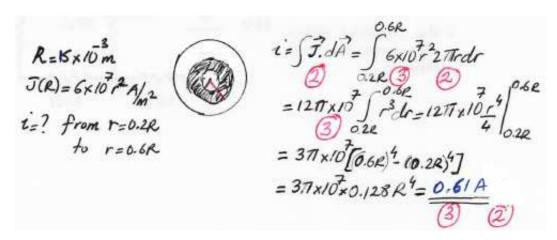
NAME-SURNAME:

SIGNATURE:

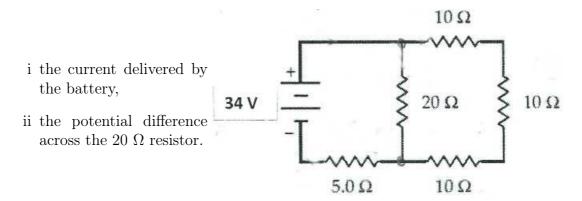
ID:

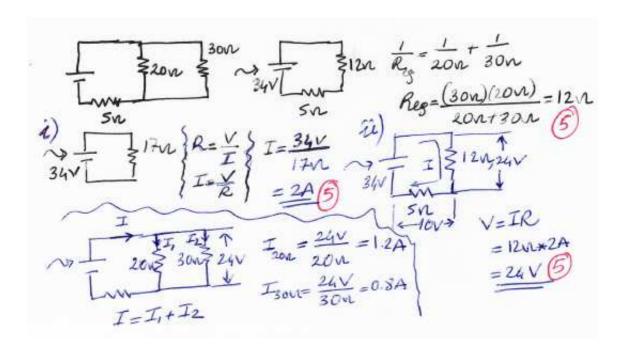
DEPARTMENT:

INSTRUCTOR:

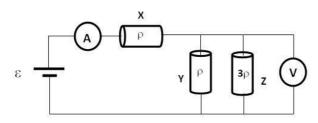

DURATION: 120 minutes

- ♦ Answer all the questions.
- ♦ Write the solutions explicitly and clearly. Use the physical terminology.
- You are allowed to use Formulae Sheet.
- ⋄ Calculator is allowed.
- ♦ You are not allowed to use any other electronic equipment in the exam.
- ♦ I declare hereby that I fulfilled the requirements for the attendance according to the University regulations and I accept that my examination will not be valid otherwise.

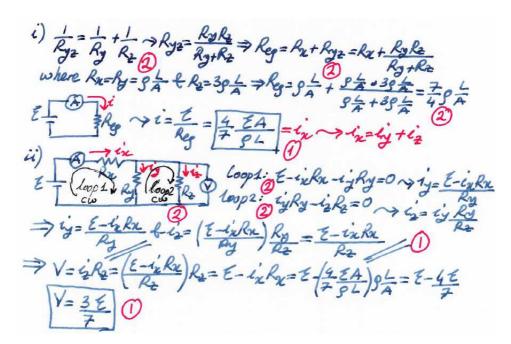

Question	Grade	Out of
1A		15
1B		15
2		20
3		20
4		20
5		20
TOTAL		110


This page is intentionally left blank. Use the space if needed.

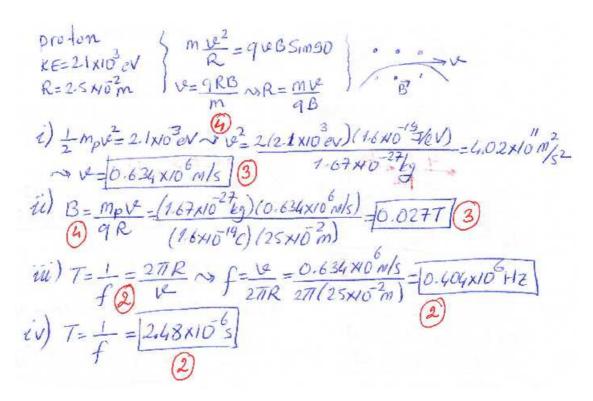
1. A) The magnitude J of the current density in a certain lab wire with a circular cross section of radius R=15.00 mm is given by $J=(6.00\times 10^7)r^2$, with J in amperes per square meter and radial distance r in meters. What is the current through the outer section bounded by r=0.200R and r=0.600R?



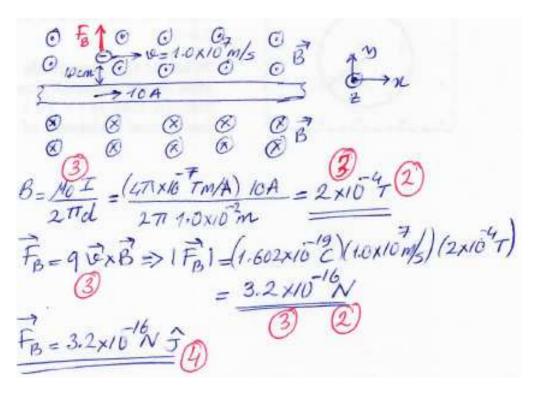
B) For the circuit shown find

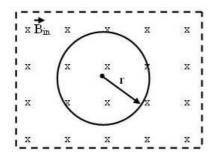


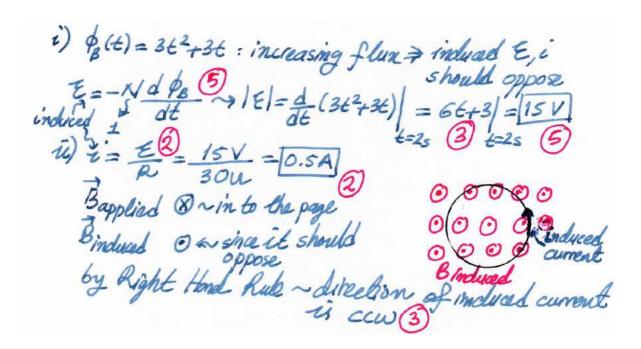
2. The circuit containing three cylindrical resistors, namely X, Y and Z, which obey Ohm's Law is shown in the figure below. The resistors which have length of L and cross-sectional area of A are connected to an ideal battery of emf ε . As shown an ammeter is connected in series while voltmeter is connected to ends of resistor Z. The resistors X and Y have a resistivity ρ and the resistor Z has a resistivity 3ρ .



- i Find the current i through the ammeter.
- ii Find the reading of voltmeter. (Hint: Multi-loop circuit. Apply junction and loop rules.)


Express your result in terms of given quantities and constants $(\rho, \varepsilon, A, L)$. (Hint: Resistance is related to resistivity.)


- 3. A proton of kinetic energy $2.10~{\rm keV}$ circles in a plane perpendicular to a uniform magnetic field. The orbit radius is $25.0~{\rm cm}$. Find
 - i the proton's speed,
 - ii the magnetic field magnitude,
 - iii the circling frequency,
 - iv the period of the motion.


4. A long wire carries a 10 A current from left to right. An electron 1.0 cm above the wire is traveling to the right at a speed of 1.0×10^7 m/s. What are the magnitude and the direction of the magnetic force on the electrons?

5. In figure below, the magnetic flux through the circular loop of radius r=2.0~m increases according to the relation $\Phi_B=6t^2+6t$, where Φ_B is in Webers and t is in seconds.

- i Find the magnitude of the induced emf, ξ in the circular loop at t = 2.0 s.
- ii What is the magnitude and direction of the induced current in the circular loop at t=2.0~s if the loop has a total resistance of $R=60~\Omega$?

İzmir Kâtip Çelebi University Department of Engineering Sciences Phy102 Physics II Final Examination January 09, 2018 14:30 – 16:30 Good Luck!

NAME-SURNAME:

SIGNATURE:

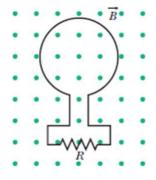
ID:

DEPARTMENT:

DURATION: 120 minutes

- ♦ Answer all the questions.
- ♦ Write the solutions explicitly and clearly. Use the physical terminology.
- ♦ You are allowed to use Formulae Sheet.
- ♦ Calculator is allowed.
- ♦ You are not allowed to use any other electronic equipment in the exam.
- ♦ I declare hereby that I fulfilled the requirements for the attendance according to the University regulations and I accept that my examination will not be valid otherwise.

Question	Grade	Out of
1A		15
1B		15
2		20
3		20
4		20
5		20
TOTAL		110

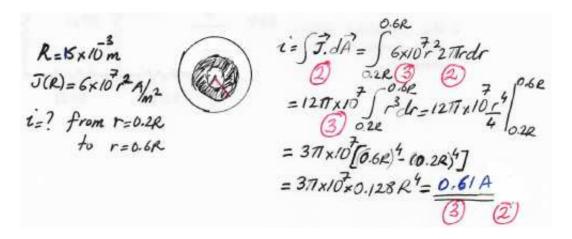

This page is intentionally left blank. Use the space if needed.

- 1. A) A parallel-plate air-filled capacitor has a capacitance of 50 pF.
 - i If each of its plates has an area of $0.35\ m^2$, what is the separation?
 - ii If the region between the plates is now filled with material having k=5.6, what is the capacitance?

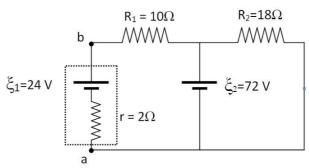
i)
$$C = \mathcal{E}_0 \frac{A}{d} \sim 50 \times 10^{-12} = 8.85 \times 10^{-12} \frac{C^2}{Nm^2} \frac{0.35 m^2}{d}$$

$$\approx d = \frac{(8.85 \times 10^{12} c^2/Nm^2)(0.35 m^2)}{50 \times 10^{-12} F} = \frac{0.062 m}{0}$$
ii) $C_1 = \mathcal{K}C_0 = (5.6) /50 \times 10^{-12} F = \frac{280 pF}{0}$

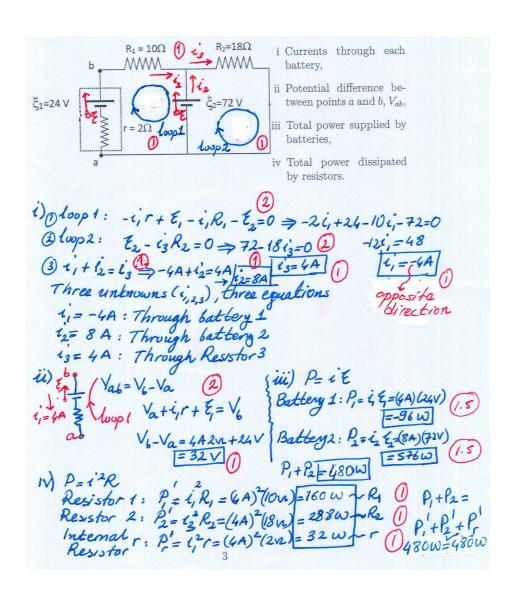
B) In Figure given below, the magnetic flux through the loop increases according to the relation $\Phi_B = 6.0t^2 + 7.0t$, where Φ_B is in miliwebers and t is in seconds.

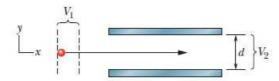

- i What is the magnitude of the emf (ε) induced in the loop when $t = 2.0 \ s$?
- ii Is the direction of the current through R to the right or left?

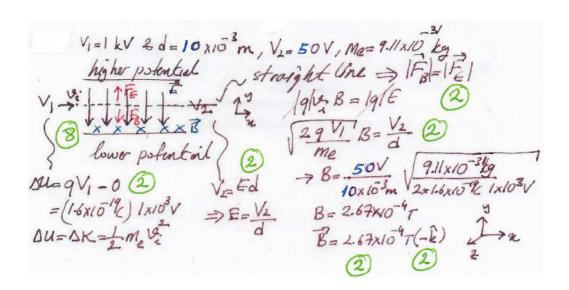
Increasing magnetic flux Induced emf in the loop

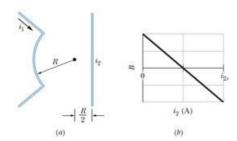

i) $|E| = \left| \frac{d \Phi_B}{dt} \right| \Rightarrow E = \frac{d}{dt} \left(6.0t^2 + 7.0 t \right) \right| = 12t + 7 \Big|_{t=2s}$ $\Rightarrow E = 31 \text{ mV}$ ii) Increasing flux \iff induced emf should create a magnetic flux to oppose (to decrease to have an inward kinduced) B, we extend should have a clockwise current at the loop. \Rightarrow Left through R

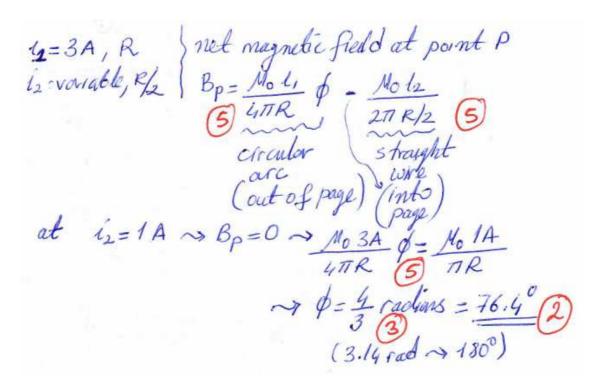
2


2. The magnitude J of the current density in a certain lab wire with a circular cross section of radius R=5.00 mm is given by $J=(2.00\times 10^7)r^2$, with J in amperes per square meter and radial distance r in meters. What is the current through the outer section bounded by r=0.800R and r=R?


3. Consider circuit as shown in figure which consists of two batteries. One of the following batteries has an internal resistance r, while the other battery is an ideal battery. Calculate;


- i Currents through each battery,
- ii Potential difference between points a and b, V_{ab} ,
- iii Total power supplied by batteries,
- iv Total power dissipated by resistors.


4. In Figure, an electron accelerated from rest through potential difference $V_1 = 1.00 \ kV$ enters the gap between two parallel plates having separation $d = 20.0 \ mm$ and potential difference $V_2 = 100 \ V$. The lower plate is at the lower potential. Neglect fringing and assume that the electron's velocity vector is perpendicular to the electric field vector between the plates.


In unit-vector notation, what uniform magnetic field allows the electron to travel in a straight line in the gap?

5. Figure(a) shows two wires, each carrying a current. Wire 1 consists of a circular arc of radius R and two radial lengths; it carries current $i_1 = 3.0 A$ in the direction indicated. Wire 2 is long and straight; it carries a current i_2 that can be varied; and it is at distance R/2 from the center of the arc. The net magnetic field B due to the two currents is measured at the center of curvature of the arc.

Figure(b) is a plot of the component of B in the direction perpendicular to the figure as a function of current i_2 . The horizontal scale is set by $i_{2s} = 2.00 A$. What is the angle subtended by the arc?

