

İzmir Kâtip Çelebi University Department of Engineering Sciences Phy102 Physics II Final Examination June 07, 2024 10:20 – 11:50 Good Luck!

NAME-SURNAME:

SIGNATURE:

 ◇ I declare hereby that I fulfilled the requirements for the attendance according to the University regulations and I accept that my examination will not be valid otherwise.
ID:

DEPARTMENT:

INSTRUCTOR:

DURATION: 90 minutes

 \diamond Answer all the questions.

 \diamond Write the solutions explicitly and clearly.

Use the physical terminology.

 \diamond You are allowed to use Formulae Sheet.

- \diamond Calculator is allowed.
- \diamond You are not allowed to use any other

electronic equipment in the exam.

Question	Grade	Out of
1A		10
1B		15
2		20
3		15
4		20
5		20
TOTAL		100

This page is intentionally left blank. Use the space if needed.

- 1. A) A 24.0 m length of 2.0 mm diameter cylindrical conducting wire carries a 140 A current when 28.0 V is applied to its ends.
 - i Calculate the resistance R and resistivity ρ of the conducting wire.
 - ii Find the current density J and electric field E inside the conducting wire.
 - iii If the current is maintained in the conductor for 3 hours, calculate the dissipated energy in the conducting wire.

i) R=V & R=PA 7 g= A R, A= 7/2 R= 28V 140A = 0.2 M $= \frac{Ti(2x10m/2)}{O}$ 2.6×10-8 MM ii) J= 1 = - $\frac{140A}{71(10^{3})^{2}} = 4.5 \times 10^{7} A_{1}$ E=pJ = (2.6×10 Lm)(4.5×10 A/m2)= 1.2 $\frac{\Delta u}{\Delta t} = P = i^2 R \rightarrow \Delta u = i^2 R \Delta t$ 0 ~ AU_ (140A) 2 (0.2n) (3×60×60s)=4.2

B) Figure shows a rectangular loop of wire immersed in a nonuniform and varying magnetic field \vec{B} that is perpendicular to and directed into the page. The field's magnitude is given by $B = 4t^2x^2$, with B in teslas, t in seconds, and x in meters.

The loop has width W = 3.0 m and height H = 2.0 m. What are the magnitude and direction of the induced emf ξ around the loop at t = 0.10 s?

W = 3m & H = 2mAt=0.10s current should oppose 3

2. The circuit containing three ideal batteries and resistors is shown in figure. If $R_1 = 10 \ \Omega$, $R_2 = 20 \ \Omega$, $R_3 = 30 \ \Omega$, $\xi_1 = 10 \ V$, and $\xi_2 = 20 \ V$, $\xi_3 = 30 \ V$;

- i Calculate the current through each battery.
- ii Calculate $V_b V_a$, the potential difference between the points b and a.
- iii Find the total thermal energy dissipation rate in the circuit.

$$\frac{4}{10} \frac{4}{20} \frac{4}{10} \frac$$

3. What uniform magnetic field, applied perpendicular to a beam of electrons moving at $1.30 \times 10^6 \ m/s$, is required to make the electrons travel in a circular arc of radius of 0.35 m? (Hint: Centripetal Force; $F_c = m \frac{v^2}{R}$)

B=7 (1.602×10-2) (0.35m) = 2.11×10 T

4. Figure(a) shows two wires, each carrying a current. Wire 1 consists of a circular arc of radius R and two radial lengths; it carries current $i_1 = 3.0 A$ in the direction indicated. Wire 2 is long and straight; it carries a current i_2 that can be varied; and it is at distance R/2 from the center of the arc. The net magnetic field B due to the two currents is measured at the center of curvature of the arc.

Figure(b) is a plot of B in the direction perpendicular to the figure as a function of current i_2 . The horizontal scale is set by $i_{2s} = 2.00 \ A$. What is the angle subtended by the arc?

1=3A, R net magnetic field at point P 12: variable, R/2 Bp= Mol, & Mol2 5 41TR 2TT R/2 5 circular Straught 2TT R/2 straught whe (into) arc out of page iz=1A ~> Bp=0 $\sim \phi = \frac{4}{3} radians = \frac{76.4}{2}$ (3.14 rad ~ 180°)

5. In Figure below, a 120-turn coil of radius 1.8 cm and resistance 5.3 Ω is coaxial with a solenoid of 220 turns/cm and diameter 3.2 cm. The solenoid current drops from 1.5 A to zero in time interval $\Delta t = 25 ms$.

What current is induced in the coil during Δt ?

We need the include emf, E on the coil by cha current in the solenwid magnet Changing current > ch M l E=-(120) 17+11-6 0.161 Ohm's Law 6 030