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5.3

Concept of a Random Variable I
• It is often important to allocate a numerical description to

the outcome of a statistical experiment.
• These values are random quantities determined by the

outcome of the experiment.
• Definition 3.1 :

A random variable is a function that associates a real
number with each element in the sample space.

• We use a capital letter, say X , to denote a random variable
and its corresponding small letter , x in this case, for one
of its value.

• One and only one numerical value is assigned to each
sample point X .

• Example 3.1 : Two balls are drawn
in succession without replacement
from an box containing 4 red balls
and 3 black balls.

• The possible outcomes and the
values y of the random variable Y,
where Y is the number of red balls,
are

Sample
Space y

RR 2
RB 1
BR 1
BB 0
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5.4

Concept of a Random Variable II

Example : Number of defective (D) products when 3 products
are tested.

Outcomes in x : value
Sample Space of X

DDD 3
DDN 2
DND 2
DNN 1
NDD 2
NDN 1
NND 1
NNN 0
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5.5

Concept of a Random Variable III

• Example 3.3 : Components from the production line are
defective or not defective.

• Define the random variable X by

X =

{

1, if the component is defective
0, if the component is not defective

}

• This random variable is categorical in nature.

• Example 3.5 : A process will be
evaluated by sampling items until a
defective item is observed.

• Define X by the number of
consecutive items observed

Sample
Space x

D 1
ND 2

NND 3
...

...



Random Variables and
Probability

Distributions

Dr. Cem Özdo ğan
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5.6

Concept of a Random Variable IV

• According to the countability of the sample space which is
measurable, it can be either discrete or continuous.

• Discrete random variable: If a random variable take on
only a countable number of distinct values.

• If the set of possible outcomes is countable
• Often represent count data, such as the number of

defectives, highway fatalities

• Continuous random variable : If a random variable can
take on values on a continuous scale.

• often represent measured data, such as heights, weights,
temperatures, distance or life periods

• Definition 3.2 :
Discrete sample space : If a sample space contains
a finite number of possibilities or an unending sequence
with as many elements as there are whole numbers.

• Definition 3.3 :
Continuous sample space : If a sample space contains
an infinite number of possibilities equal to the number of
points on a line segment.
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5.7

Discrete Probability Distributions I

• A discrete random variable assumes each of its values
with a certain probability.

• Frequently, it is convenient to represent all the probabilities
of a random variable X by a formula;

f (x) = P(X = x), f (3) = P(X = 3)

• Definition 3.4 :
The set of ordered pairs (x , f (x)) is a probability func-
tion (probability mass function , or probability distri-
bution) of the discrete random variable X if for each pos-
sible outcome x ,

1 f (x) ≥ 0,
2

P

f (x) = 1,
3 P(X = x) = f (x).

• The probability distribution of a discrete random variable
can be presented in the form of a mathematical formula, a
table, or a graph-probability histogram or barchart.
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5.8

Discrete Probability Distributions II

Example : Let X be the random variable: number of heads in 3
tosses of a fair coin.

Sample Space x
TTT 0
TTH 1
THT 1
THH 2
HTT 1
HTH 2
HHT 2
HHH 3

P(X = x): Probability that outcome is a specific x value.

x 0 1 2 3
P(X=x) 1

8
3
8

3
8

1
8
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5.9

Discrete Probability Distributions III

• Example 3.8 : A
shipment of 8 similar
microcomputers to a
retail outlet contains 3
that are defective.

• If a school make a
random purchase of 2
of these computers.

• Find the probability
distribution for the
number of defectives.

x 0 1 2
f(x) 10

28
15
28

3
28

f (0) = P(X = 0) =

„

3
0

« „

5
2

«

„

8
2

« =
10
28

f (1) = P(X = 1) =

„

3
1

« „

5
1

«

„

8
2

« =
15
28

f (2) = P(X = 2) =

„

3
2

« „

5
0

«

„

8
2

« =
3

28
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5.10

Discrete Probability Distributions IV

• Definition 3.5 :
The Cumulative distribution function F (x) of a discrete
random variable X with probability distribution f (x) is

F (x) = P(X ≤ x) =
∑

t≤x

f (t), for −∞ < x < ∞

• Example 3.10 : Find the cumulative distribution of the
random variable X in Example 3.9.

f (0) = 1
16 , f (1) = 4

16 , f (2) = 6
16 , f (3) = 4

16 , f (4) = 1
16 ,

F (0) = f (0) = 1
16

F (1) = f (0) + f (1) = 5
16

F (2) = f (0) + f (1) + f (2) = 11
16

F (3) = f (0) + f (1) + f (2) + f (3) = 15
16

F (4) = f (0) + f (1) + f (2) + f (3) + f (4) = 1

F (x) =

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

0 for x < 0
1
16 for 0 ≤ x < 1

5
16 for 1 ≤ x < 2

11
16 for 2 ≤ x < 3

15
16 for 3 ≤ x < 4

1 for x ≥ 4

9

>

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

>

;
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5.11

Discrete Probability Distributions V

Figure: Bar chart and probability histogram

Figure: Discrete cumulative distribution.
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5.12

Continuous Probability Distributions I
• A continuous random variable has a probability of zero of

assuming exactly any of its values.

P(a < X ≤ b) = P(a < X < b) = P(a ≤ X < b) = P(a ≤ X ≤ b)

• Example : Height of a random person.
P(X = 178 cm) = 0. No assuming exactly.

• With continuous random variables we talk about the
probability of x being in some interval, like P(a < X < b),
rather than x assuming a precise value like P(X = a).

• Its probability distribution cannot be given in tabular form,
but can be stated as a formula, a function of the numerical
values of the continuous random variables.

• Some of these functions are shown below:

Figure: Typical density functions.
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5.13

Continuous Probability Distributions II

• Definition 3.6 :
The function f (x) is a probability density function (or
density function , p.d.f ) for the continuous random vari-
able X , defined over the set of real numbers R, if

1 f (X ) ≥ 0, for all x ∈ R
2

R

∞

−∞
f (x)dx = 1

3 P(a < X < b) =
R b

a f (x)dx

A probability density function is
constructed so that
the area under its curve
bounded by the x axis is equal
to 1.

Figure: P(a < X < b)
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5.14

Continuous Probability Distributions III

• Example 3.11 : Suppose that the error in reaction
temperature in ◦C is a continuous random variable X
having the probability density function

f (x) =

{

x2

3 for − 1 < x < 2
0, elsewhere

}

• Verify
∫ ∞

−∞
f (x)dx = 1

•
R

∞

−∞
f (x)dx =

R 2
−1

x2

3 dx = x3

9 |2
−1 = 8

9 + 1
9 = 1

• Find P(0 < X < 1)

• P(0 < X < 1) =
R 1

0
x2

3 dx = x3

9 |10 = 1
9
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5.15

Continuous Probability Distributions IV

• Definition 3.7 :
The cumulative function F (x) of a continuous random
variable X with density function f (x) is

F (x) = P(X ≤ x) =

∫ x

−∞

f (t)dt for −∞ < x < ∞

• An immediate consequence:
• P(a < X < b) = F (b) − F (a)

• f (x) = dF (x
dx ), if the derivative exists
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5.16

Continuous Probability Distributions V

Example 3.12 : For the density function of Example 3.6 find
F (x), and use it to evaluate P(0 < X ≤ 1).

For −1 < x < 2

F (x) =

Z x

−∞

f (t)dt =

Z x

−∞

t2

3
dt

=
t3

9
|x
−1 =

x3 + 1

9

F (x) =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

0, x ≤ −1

x3+1
9 ,−1 ≤ x < 2

1, x ≥ 2

9

>

>

>

>

>

>

=

>

>

>

>

>

>

;

P(0 < X ≤ 1) = F (1) − F (0)

=
2

9
−

1

9
=

1

9

Figure: Continuous cumulative
distribution function.
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5.17

Joint Probability Distribution I

• In some experiment, we might want to study simultaneous
outcomes of several random variables.

• If X and Y are two discrete random variables, the
probability distribution for their simultaneous occurrence
can be represented by a function with values f (x , y)

• Definition 3.8 :
The function f (x , y) is a joint probability distribution (or
probability mass function ) of the discrete random vari-
ables X and Y if

1 f (x , y) ≥ 0, for all (x , y)
2

P

x

P

y f (x , y) = 1
3 P(X = x , Y = y) = f (x , y)

For any region A in the xy-plane,

P[(X , Y ) ∈ A] =
∑ ∑

A

f (x , y)
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5.18

Joint Probability Distribution II

• Example 3.14 : Two refills for a ballpoint pen are selected
at random from a box that contains 3 blue refills, 2 red
refills, and 3 green refills. If X is the number of blue refills
and Y is the number of red refills selected, find

• the joint probability function f (x , y)

f (x , y) =

(

3
x

)(

2
y

)(

3
2 − x − y

)

(

8
2

)

• P[(X , Y ) ∈ A], where A is the region {(x , y)|x + y ≤ 1}.

P[(X , Y ) ∈ A] = P(X + Y ≤ 1)

= f (0, 0) + f (0, 1) + f (1, 0)

=
3

28
+

3
14

+
9

28
=

9
14
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5.19

Joint Probability Distribution III

x Row
f (x , y) 0 1 2 Totals

0 3
28

9
28

3
28

15
28

y 1 3
14

3
14

3
7

2 1
28

1
28

Column 5
14

15
28

3
28 1

Totals
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5.20

Joint Probability Distribution IV

• Definition 3.9 :
The function f (x , y) is a joint density function of the con-
tinuous random variables X and Y if

1 f (x , y) ≥ 0, for all (x , y)
2

R

∞

−∞

R

∞

−∞
f (x , y)dxdy = 1

3 P[(X , Y ) ∈ A] =
R R

A f (x , y)dxdy

For any region A in the xy-plane,

• Example 3.15 : A candy company distributes boxes of
chocolates with a mixture of creams, toffees, and nuts
coated in both light and dark chocolate.

• For randomly selected box, let X and Y , respectively, be
the proportions of the light and dark chocolates that are
creams.

• The joint density function is as follows:

f (x , y) =

{

2
5 (2x + 3y), 0 ≤ x ≤ 1, 0 ≤ y ≤ 1
0, elsewhere

}
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5.21

Joint Probability Distribution V

• Verify
∫ ∞

−∞

∫ ∞

−∞
f (x , y)dxdy = 1

Z

∞

−∞

Z

∞

−∞

f (x , y)dxdy =

Z 1

0

Z 1

0

2
5

(2x + 3y)dxdy

=

Z 1

0
(
2x2

5
+

6xy
5

)|x=1
x=0dy =

Z 1

0
(
2
5

+
6y
5

)dy = (
2y
5

+
3y2

5
)|10

=
2
5

+
3
5

= 1

• P[(X , Y ) ∈ A], where A is the region
(x , y)|0 < x <

1
2 ,

1
4 < y <

1
2 ,

P[(X , Y ) ∈ A] = P(0 < X <
1
2

,
1
4

< Y <
1
2

)

=

Z 1
2

1
4

Z 1
2

0

2
5

(2x + 3y)dxdy =

Z 1
2

1
4

(
2x2

5
+

6xy
5

)|
x= 1

2
x=0 dy

=

Z 1
2

1
4

(
1

10
+

3y
5

)dy = (
y
10

+
3y2

10
)|

1
2
1
4

=
13

160
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5.22

Joint Probability Distribution VI

• Definition 3.10 :
The marginal distributions of X alone and of Y alone
are

g(x) =
∑

y

f (x , y) and h(y) =
∑

x

f (x , y)

for the discrete case

g(x) =

∫ ∞

−∞

f (x , y)dy and h(y) =

∫ ∞

−∞

f (x , y)dx

for the continuous case
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5.23

Joint Probability Distribution VII

Example 3.16 : Show that the column and row totals of the
following table give the marginal distribution of X alone and of
Y alone.

x Row
f (x , y) 0 1 2 Totals

0 3
28

9
28

3
28

15
28

y 1 3
14

3
14

3
7

2 1
28

1
28

Column 5
14

15
28

3
28 1

Totals
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5.24

Joint Probability Distribution VIII
Solution:

P(X = 0) = g(0) =

2
∑

y=0

f (0, y) = f (0, 0) + f (0, 1) + f (0, 2)

=
3

28
+

3
14

+
1

28
=

5
14

P(X = 1) = g(1) =
2

∑

y=0

f (1, y) = f (1, 0) + f (1, 1) + f (1, 2)

=
9

28
+

3
14

+ 0 =
15
28

P(X = 2) = g(2) =

2
∑

y=0

f (2, y) = f (2, 0) + f (2, 1) + f (2, 2)

=
3

28
+ 0 + 0 =

3
28

x 0 1 2
g(x) 5

14
15
28

3
28
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5.25

Joint Probability Distribution IX

• Example 3.17 : Find g(x) and h(y) for the following joint
density function.

f (x , y) =

{

2
5 (2x + 3y), 0 ≤ x ≤ 1, 0 ≤ y ≤ 1
0, elsewhere

}

• g(x)

=

Z

∞

−∞

f (x , y)dy =

Z 1

0

2
5

(2x + 3y)dy

= (
4xy
5

+
6y2

10
)|y=1

y=0 =
4x + 3

5
for 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 and g(x) = 0, elsewhere

• h(y)

=

Z

∞

−∞

f (x , y)dx =

Z 1

0

2
5

(2x + 3y)dx

= (
2x2

5
+

6yx
5

)|x=1
x=0 =

2 + 6y
5

for 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 and h(y) = 0, elsewhere
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5.26

Joint Probability Distribution X
• Definition 3.11 :

Let X and Y be two random variables, discrete or
continuous. The conditional distribution of the random
variable Y , given that X = x , is

f (y |x) =
f (x , y)

g(x)
, g(x) > 0

Similarly, the conditional distribution of the random vari-
able X , given that Y = y , is

f (x |y) =
f (x , y)

h(y)
, h(y) > 0

• Evaluate the probability that X falls between a and b given
that Y is known.

P(a < X < b|Y = y) =
∑

x

f (x |y), for the discrete case

P(a < X < b|Y = y) =

∫ b

a
f (x |y), for the continuous case
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5.27

Joint Probability Distribution XI
• Example 3.18 : Referring to Example 3.14, find the

conditional distribution of X , given that Y = 1, and use it to
determine P(X = 0|Y = 1).

• Solution:

h(y = 1) =
2

∑

x=0

f (x , 1) =
3

14
+

3
14

+ 0 =
3
7

f (x |1) =
f (x , 1)

h(1)
=

7
3

f (x , 1), x = 0, 1, 2

f (0|1) =
7
3

f (0, 1) =
7
3
∗

3
14

=
1
2

f (1|1) =
7
3

f (1, 1) =
7
3
∗

3
14

=
1
2

f (2|1) =
7
3

f (2, 1) =
7
3
∗ 0 = 0

=⇒ P(X = 0|Y = 1) = f (0|1) =
1
2

x 0 1 2
f(x|1) 1

2
1
2 0
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5.28

Joint Probability Distribution XII
• Example 3.19 : The joint density for the random variables (X , Y ),

where X is the unit temperature change and Y is the proportion
of spectrum shift that a certain atomic particle produces is

f (x , y) =



10xy2
, 0 < x < y < 1

0, elsewhere

ff

• Find the marginal densities g(x), h(y), and the conditional
density f (y |x).

g(x) =

Z

∞

−∞

f (x , y)dy =

Z 1

x
10xy2dy =

10x(1 − x3)

3

h(y) =

Z

∞

−∞

f (x , y)dx =

Z y

0
10xy2dx

f (y |x) =
f (x , y)

g(x)
=

10xy2

10x(1−x3)
3

=
3y2

(1 − x3)

• Find the probability that the spectrum shifts more than half of the
total observations, given the temperature is increased to 0.25 unit.

P(Y >
1
2
|X = 0.25) =

Z 1

1/2
f (y |0.25)dy =

Z 1

1/2

3y2

(1 − 0.253)
dy =

8
9
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5.29

Joint Probability Distribution XIII

• Definition 3.12 :
Let X and Y be two random variables, discrete or continu-
ous, with joint probability distribution f (x , y) and marginal
distributions g(x) and h(y), respectively. The random vari-
ables X and Y are said to be statistically independent if
and only if

f (x , y) = g(x)h(y), for all (x , y) within their range

• Example 3.21 : Show that the random variables of
Example 3.14 are not statistically independent.

f (0, 1) =
3

14
, g(0) =

2
∑

y=0

f (0, y) =
5

14
, h(1) =

2
∑

x=0

f (x , 1) =
3
7

=⇒ f (0, 1) 6= g(0) ∗ h(1)

therefore X and Y are not statistically independent.
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Random Variables and
Probability
Distributions
Concept of a Random
Variable

Discrete Probability
Distributions

Continuous Probability
Distributions

Joint Probability Distribution

5.30

Joint Probability Distribution XIV
• Example : In a binary communications channel, let X

denote the bit sent by the transmitter and let Y denote the
bit received at the other end of the channel. Due to noise
in the channel we do not always have Y = X . A joint
probability distribution is given as

x
0 1 h(y)

y 0 0.45 0.03 0.48
1 0.05 0.47 0.52

g(x) 0.5 0.5

x
0 1 h(y)

y 0 f(0,0) f(1,0) h(0)
1 f(0,1) f(1,1) h(1)

g(x) g(0) g(1)

• X and Y are not independent because

f (0, 0) 6= g(0)h(0) =⇒ 0.45 6= 0.5 ∗ 0.48

• P(X = x , Y = y) = P[(X = x) ∩ (Y = y)]: it is the
probability that X = x and Y = y simultaneously.

• f (0, 0) = P(X = 0, Y = 0) = P[(X = 0) ∩ (Y = 0)]
• So g(0) = P[X = 0]

= P[(X = 0)∩(Y = 0)]+P[(X = 0)∩(Y = 1)] = f (0, 0)+f (0, 1)

• =⇒ P[Y = 0|X = 0] = P[(X=0)∩(Y=0)]
P[X=0] = f (0,0)

g(0)
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5.31

Joint Probability Distribution XV
• Sent 0 & Received 0: NO error.

P[Y = 0|X = 0] =
f (0, 0)

g(0)
=

0.45
0.9

= 0.9

• Sent 1 & Received 0: ERROR

P[Y = 0|X = 1] =
f (1, 0)

g(1)
=

0.03
0.5

= 0.06

• Sent 0 & Received 1: ERROR

P[Y = 1|X = 0] =
f (0, 1)

g(0)
=

0.05
0.5

= 0.1

• Sent 1 & Received 1: NO error.

P[Y = 1|X = 1] =
f (1, 1)

g(1)
=

0.47
0.5

= 0.94

• Notice that

P[Y = 0|X = 0] + P[Y = 1|X = 0] = 1

P[Y = 0|X = 1] + P[Y = 1|X = 1] = 1
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Joint Probability Distribution XVI

Definition 3.13 :
Let X1, X2, . . . , Xn be n random variables, discrete or con-
tinuous, with joint probability distribution f (x1, x2, . . . , xn)
and marginal distributions f (x1), f (x2), . . . , f (xn), respec-
tively. The random variables X1, X2, . . . , Xn are said to be
mutually statistically independent if and only if

f (x1, x2, . . .) = f1(x1)f2(x2) . . . fn(xn)

for all (x1, x2, . . . , xn) within their range.
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Random Variables and
Probability
Distributions
Concept of a Random
Variable

Discrete Probability
Distributions

Continuous Probability
Distributions

Joint Probability Distribution

5.33

Joint Probability Distribution XVII

• Example 3.22 : Suppose that the shelf life, in years, of a
certain perishable food product packaged in cardboard
containers is a random variable whose probability density
function is given by

f (x , y) =

{

e−x , x > 0
0, elsewhere

}

• Let X1, X2, . . . , Xn represent the shelf lives for three of
these containers selected independently and find
P(X1 < 2, 1 < X2 < 3, X3 > 2)

• Solution:

f (x1, x2, x3) = f (x1)f (x2)f (x3) = e−x1−x2−x3

for x1, x2, x3 > 0 and f (x1, x2, x3) = 0 elsewhere

P(X1 < 2, 1 < X2 < 3, X3 > 2) =

Z

∞

2

Z 3

1

Z 2

0
e−x1−x2−x3 dx1dx2dx3

= (1 − e−2)(e−1 − e−3)e−2 = 0.0372
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