1. (4.2) The probability distribution of the discrete random variable X is

$$f(x) = \begin{pmatrix} 3 \\ x \end{pmatrix} \left(\frac{1}{3}\right)^x \left(\frac{3}{4}\right)^{3-x}, \text{ for } x = 0, 1, 2, 3,$$

Find the mean of X.

- 2. (4.10) Two tire-quality experts examine stacks of tires and assign quality ratings to each tire on a 3-point scale.
 - Let X denote the grade given by expert A
 - ▶ and Y denote the grade given by B.

The following table gives the joint distribution for X and Y.

			У	
	f(x,y)	1	2	3
	1	0.10	0.05	0.02
х	2	0.10	0.35	0.05
	3	0.03	0.10	0.20

Find μ_X and μ_Y .

3 (4.23) Suppose that X and Y have the following joint probability function:

		х	
	f(x,y)	2	4
	1	0.10	0.15
у	3	0.20	0.30
	5	0.10	0.15

(a) Find the expected value of $g(X, Y) = XY^2$.

(b) Find μ_X and μ_Y .

4 (4.35) The random variable X, representing the number of errors per 100 lines of software code, has the following probability distribution:

X	2	3	4	5	6
f(x)	0.01	0.25	0.4	0.3	0.04

Using Theorem 4.2, find the variance of X.

5 (4.40) Referring to Exercise 4.14 on page 113, find $\sigma_{g(X)}^2$ for the function $g(X) = 3X^2 + 4$.

6 (4.55) Let X be a random variable with the following probability distribution:

x	-3	6	9
f(x)	$\frac{1}{6}$	$\frac{1}{2}$	$\frac{1}{3}$

Find E(X) and $E(X^2)$ and then, using these values evaluate $E[(2X + 1)^2]$.

- 7 (4.60) Seventy new jobs are opening up at an automobile manufacturing plant, but 1000 applicants show up for the 70 positions.
 - i. To select the best 70 from among the applicants, the company gives a test that covers mechanical skill, manual dexterity, and mathematical ability.
 - ii. The mean grade on this test turns out to be 60, and the scores have a standard deviation 6.

Assume that the distribution is symmetric about the mean. Can a person who has an 84 score count on getting one of the jobs? [Hint: Use Chebyshev's theorem.]

8 (4.61) An electrical firm manufactures a 100-watt light bulb, which, according to specifications written on the package, has a mean life of 900 hours with a standard deviation of 50 hours. At most, what percentage of of the bulbs fail to last even 700 hours? Assume that the distribution is symmetric about the mean.