
MURAT MELİH EKİCİ
200111006

Linux Process Scheduling

Purpose of the Kernel

• The Linux kernel presents a virtual machine
interface to user processes. Processes are
written without needing any knowledge of
what physical hardware is installed on a
computer . The kernel actually runs several
processes concurrently, and is responsible
for mediating access to hardware resources
so that each process has fair access while
inter-process security is maintained .

Overview of the Kernel Structure

• The Linux kernel is composed of five main subsystems:
• The Process Scheduler (SCHED) is responsible for controlling process access to the

CPU. The scheduler enforces a policy that ensures that processes will have fair access to
the CPU, while ensuring that necessary hardware actions are performed by the kernel on
time

• The Memory Manager (MM) permits multiple process to securely share the machine's
main memory system. In addition, the memory manager supports virtual memory that
allows Linux to support processes that use more memory than is available in the system.
Unused memory is swapped out to persistent storage using the file system then swapped
back in when it is needed.

• The Virtual File System (VFS) abstracts the details of the variety of hardware devices
by presenting a common file interface to all devices. In addition, the VFS supports
several file system formats that are compatible with other operating systems.

• The Network Interface (NET) provides access to several networking standards and a
variety of network hardware.

• The Inter-Process Communication (IPC) subsystem supports several mechanisms for
process-to-process communication on a single Linux system.

The figure Kernel Subsystem Overview shows a high-level decomposition
of the Linux kernel, where lines are drawn from dependent subsystems to

the subsystems they depend on.

This diagram emphasizes that the most central subsystem is the process
scheduler: all other subsystems depend on the process scheduler since all
subsystems need to suspend and resume processes. Usually a subsystem

will suspend a process that is waiting for a hardware operation to complete,
and resume the process when the operation is finished

Linux Process Scheduling

• This is an attempt to describe the scheduling
concepts used in Linux. Scheduling is a core part
of every OS. Linux uses a simple priority based
scheduling algorithm to choose between the
current processes in the system. There are two
types of processes in Linux, normal and real time.
Real time processes will always run before normal
processes and they may have either of two types of
policy: round robin or first in first out. As Linux
uses Shortest-Job-First Scheduling, Priority
Scheduling, Multi-level Queue Scheduling .

Scheduling

• It is the scheduler that must select the most
deserving process to run out of all of the runnable
processes in the system. A runnable process is one
which is waiting only for a CPU to run on. Linux
uses a reasonably simple priority based
scheduling algorithm to choose between the
current processes in the system. When it has
chosen a new process to run it saves the state of
the current process, the processor specific registers
and other context being saved in the processes
task_struct data structure .

task_struct

The most important structure for the scheduling (and may
be the whole system) is the task_struct. This structure
represents the states of all tasks running in the systems .

It is this information saved in the task_struct that is used
by the scheduler to restore the state of the new process
(this is processor specific) to run and then gives control of
the system to that process. For the scheduler to fairly
allocate CPU time between the runnable processes in the
system it keeps information in the task_struct for each
process:

Main variables:
• policy

This is the scheduling policy that will be applied to this process. There are two types
of Linux process, normal and real time. Real time processes have a higher priority
than all of the other processes. If there is a real time process ready to run, it will
always run first. Real time processes may have two types of policy, round robin and
first in first out. In round robin scheduling, each runnable real time process is run in
turn and in first in, first out scheduling each runnable process is run in the order that
it is in on the run queue and that order is never changed.

• priority
This is the priority that the scheduler will give to this process. It is the value used for
recalculation when all runnable processes have a counter value of 0. You can alter the
priority of a process (use “nice” command).

• rt_priority
Linux supports real time processes and these are scheduled to have a higher priority
than all of the other non-real time processes in system. This field allows the scheduler
to give each real time process a relative priority. The priority of a real time processes
can be altered using system calls.

• counter
This is the amount of time that this process is allowed to run for. It is set to priority
when the process is first run and is decremented each clock tick.

Start Of The Algorithm

SCHEDULING ALGORITHMS

1. First-Come-First-Served or FIFO Scheduling

The process that requests the CPU first is allocated
the CPU first. The average waiting time for FCFS
policy is often quite long.

Example:

Consider the following set of processes that arrive at
time 0.

Process CPU Burst Time (ms)

P1 24

P2 3

P3 3

Suppose that processes arrive in the order: P1, P2,
P3, we get the result shown in the Gantt chart below:

P1 P2 P3

0 24 27 30

Waiting time for P1 = 0; P2 = 24; P3 = 27

Ave. waiting time: (0 + 24 + 27) /3 = 17 ms.

FCFS Scheduling, cont.

If the processes arrive in the order: P2, P3, P1, then
the Gantt chart is as follows:

P1P2 P3

0 3 6 30

Waiting time for P1 = 6; P2 = 0; P3 = 3

Ave. waiting time : (6 + 0 + 3)/3 = 3

Much better than the previous case, where we had a

Convoy Effect: short process behind long process.
Results in lower CPU utilization

Shortest-Job-First Scheduling

Associate with each process the length of its next
CPU burst. Use these lengths to schedule the
process with the shortest time.

• Non-preemptive - once CPU is given to the
process, it cannot be preempted until it completes
its CPU burst.

• Preemptive - if a new process arrives with CPU
burst length less than remaining time of of current
executing process, preempt.

Example of non-preemptive SJF:

Process CPU burst time

P1 6

P2 8

P3 7

P4 3

P1 P2P3

0 3 9 16 24

P4

Average waiting time = (0 + 3 + 9 + 16)/4 = 7 ms

Example of Preemptive SJF

(Shortest-Remaining-Time-First)

Process Arrival Time Burst Time

P1 0 8

P2 1 4

P3 2 9

P4 3 5

P2 P1P4P1 P3

0 1 5 10 17 26

SJF Scheduling, cont.

When process P2 arrives, the remaining time for P1
(7 ms) is larger than the time required for P2 (4
ms), so process P1 is preempted and P2 is
scheduled.

Average waiting time is :

((10-1) + (1-1) + (17-2) + (5-3)) / 4 = 6.5 ms.

SJF Scheduling, cont.

• The SJF algorithm gives the minimum average
waiting time for a given set of processes.

• The difficulty with SJF is knowing the length of
the next CPU request.

• For long-term scheduling in a batch system, an
estimate of the burst time can be acquired from the
job description.

• For short-term scheduling, we have to predict the
value of the next burst time.

Priority Scheduling

The SJF is a special case of the general priority
scheduling algorithm.

• A priority (an integer) is associated with each
process.

• The CPU is allocated to the process with the
highest priority (smallest integer = highest
priority).

• Equal priority processes are scheduled in FCFS
order.

Priority Scheduling, cont.

Example: The following processes arrive at time 0 in
the order - P1, P2, P3, P4, P5.

Process Burst Time Priority

P1 10 3

P2 1 1

P3 2 3

P4 1 4

P5 5 2

P5 P3P1P2 P4

0 1 6 16 18 19

Priority Scheduling, cont.

The average waiting time is:

(0 + 1 + 6 + 16 + 18)/5 = 8.2 ms

• Priority scheduling can be either preemptive or
non-preemptive.

• A major problem with priority scheduling
algorithms is indefinite blocking or starvation.
Low priority processes could wait indefinitely for
the CPU.

• A solution to the problem of starvation is aging.
Aging is a technique of gradually increasing the
priority of processes that wait in the system a long
time.

Round-Robin Scheduling

• Designed for time-sharing systems.

• Similar to FCFS, with preemption added.

• Each process gets a small unit of CPU time (a time
slice), usually 10 - 100 milliseconds.

• After time slice has elapsed, the process is
preempted and added to the end of the ready
queue.

RR Scheduling, cont.

The ready queue can be implemented as a FIFO
queue of processes. New processes are added to
the tail of the queue. The scheduler picks the first
process from the ready queue, sets a timer to
interrupt after 1 time quantum and then dispatches
the process. One of two things will happen:

• The process may have a CPU burst of less than 1 time
quantum, or

• CPU burst of the currently executing process is longer
than one time quantum. In this case, the timer will go off,
cause an interrupt, a context switch is then executed & the
process put at the tail of the ready queue.

RR Scheduling, cont.

The average waiting time under the RR scheme is
often quite long. Consider the following set of
processes that arrive at time 0, the time quantum is
set at 4 ms:

Process CPU Burst Time

P1 24

P2 3

P3 3

P2 P1P3P1 P1 P1 P1 P1

0 4 7 10 14 18 22 26 30

RR Scheduling, cont.
The average waiting time is : 17/3 = 5.66 ms.

Performance of RR:

• If there are n processes in the ready queue at time
quantum q, then each process gets 1/n of the CPU
time in chunks of at most q time units at once. No
process waits more than (n-1) x q time units until
its next time quantum.

• The performance of RR depends on the size of q.

• At one extreme, if q is very large, RR policy is the
same as FCFS policy.

• If q is very small, the RR approach is called
processor sharing. Overhead is too high.

Multi-level Queue Scheduling

• A multi-level queue-scheduling (MLQ) algorithm
partitions the ready queue into several separate
queues.

• Created for situations in which processes are
easily classified into groups. For e.g.

– foreground (interactive) processes and

– background (batch) processes).

• These two types of processes have different
response-time requirements, and thus, different
scheduling needs.

Multi-level Queue Scheduling, cont.

• The processes are permanently assigned to one
queue, based on some property of the process.
(e.g. memory size, priority, or type).

• Each queue has its own scheduling algorithm. For
e.g. the foreground queue might be scheduled by
an RR algorithm, while the background queue is
scheduled by a FCFS algorithm.

Multi-level Queue Scheduling, cont.

• There must be scheduling between the queues.
Commonly implemented as fixed-priority
preemptive scheduling. I.e. foreground processes
have absolute priority over over the background
processes, => starvation.

• Could also use a time slice algorithm where each
queue gets a certain amount of CPU time which it
can schedule among its processes. E.g.:

• 80% to foreground in RR

• 20% t o background in FCFS

End Of The Algorithm

Swap processes

– If the most deserving process to run is not the current process, then the current
process must be suspended and the new one made to run. When a process is
running it is using the registers and physical memory of the CPU and of the
system. Each time it calls a routine it passes its arguments in registers and may
stack saved values such as the address to return to in the calling routine. So,
when the scheduler is running it is running in the context of the current process.
It will be in a privileged mode, kernel mode, but it is still the current process that
is running. When that process comes to be suspended, all of its machine state,
including the program counter (PC) and all of the processor's registers, must be
saved in the processes task_struct data structure. Then, all of the machine state
for the new process must be loaded.

– This swapping of process context takes place at the end of the scheduler. The
saved context for the previous process is, therefore, a snapshot of the hardware
context of the system as it was for this process at the end of the scheduler.
Equally, when the context of the new process is loaded, it too will be a snapshot
of the way things were at the end of the scheduler, including this processes
program counter and register contents.

– If the previous process or the new current process uses virtual memory then the
system's page table entries may need to be updated.

Pseudo - Code

• do kernel work
– run bottom half's
– do soft IRQ's

• treat current process
– if current process policy == ROUND_ROBIN: put process at the back of run queue.
– if process id INTERRUPTIBLE and received a signal: current process state := RUNNING
– if current process state == RUNNING: NOP
– else remove process from run queue

• select process
– calculate goodness

• if process is a real time process: weight := counter + 1000
• weight := weight + priority

– select the process with the highest weight
– put the current process at the end of run queue

• swap process
– if (previous process /= next process)

• save context of previous process
• load context of next process

Time Accounting

• In order to be able to implement the scheduling
policies described above, we must keep track of
how long a process has run to be able to do a fair
selectioning between the processes waiting to be
processed. And if a process has used up its credit
to run, we must signal this to system so another
process can be chosen to run.

• In Linux this time accounting is done using
bottom halfs

What are bottom halfs?

• There are often times in a kernel when you do not want
to do work at this moment. A good example of this is
during interrupt processing. When the interrupt was
asserted, the processor stopped what it was doing and the
operating system delivered the interrupt to the
appropriate device driver. Device drivers should not
spend too much time handling interrupts as, during this
time, nothing else in the system can run. There is often
some work that could just as well be done later on.
Linux's bottom half handlers were invented so that
device drivers and other parts of the Linux kernel could
queue work.

What are bottom halfs?cont.

• Whenever a device driver, or some other part of the kernel, needs to
schedule work to be done later, it adds work to the appropriate system
queue, for example the timer queue, and then signals the kernel that
some bottom half handling needs to be done. It does this by setting the
appropriate bit in bh_active. Bit 8 is set if the driver has queued
something on the immediate queue and wishes the immediate bottom
half handler to run and process it. The bh_active bitmask is checked at
the end of each system call, just before control is returned to the
calling process. If it has any bits set, the bottom half handler routines
that are active are called. Bit 0 is checked first, then 1 and so on until
bit 31.

• The bit in bh_active is cleared as each bottom half handling routine is
called. bh_active is transient; it only has meaning between calls to the
scheduler and is a way of not calling bottom half handling routines
when there is no work for them to do.

Time Accounting using bottom
halfs

• Very early in the boot process when the
system gets setup (paging, traps and IRQ
get initialized) the scheduler too gets
initialized. It's here where the infrastructure
for time accounting is set up by setting a
function pointer to the time accounting code
which is run whenever the bottom halfs are
processed, ergo every clock tick.

Summary

• SScheduling is the task of selecting a waiting
process from the ready queue and allocating the
CPU to it. The CPU is allocated to the selected
process by the dispatcher.

• FCFS is the simplest scheduling algorithm but it
can cause short processes to wait very long.

• SJF provides the shortest average waiting time.
Implementing SJF is difficult, due to the difficulty
in predicting the length of the next CPU burst.

REFERENCE

1.http://iamexwiwww.unibe.ch/studenten/schlp
bch/linuxScheduling/LinuxScheduling.html

2.http://www.oreilly.com/catalog/linuxkernel/c
hapter/ch10.html

	MURAT MELÝH EKÝCÝ200111006
	Purpose of the Kernel
	Overview of the Kernel Structure
	The figure Kernel Subsystem Overview shows a high-level decomposition of the Linux kernel, where lines are drawn from dependent subsystems to the subsystems they depend on.
	Linux Process Scheduling
	Scheduling
	task_struct
	Main variables:
	Start Of The Algorithm
	SCHEDULING ALGORITHMS
	Slide17
	Slide18
	Shortest-Job-First Scheduling
	Slide20
	Slide22
	Slide23
	SJF Scheduling, cont.
	Priority Scheduling
	Slide26
	Slide27
	Round-Robin Scheduling
	Slide29
	RR Scheduling, cont.
	Slide31
	Multi-level Queue Scheduling
	Multi-level Queue Scheduling, cont.
	Slide34
	End Of The Algorithm
	Swap processes
	Pseudo - Code
	Time Accounting
	What are bottom halfs?
	What are bottom halfs?cont.
	Time Accounting using bottom halfs
	Summary
	REFERENCE

