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Linux Process Scheduling



Purpose of the Kernel 

• The Linux kernel presents a virtual machine 
interface to user processes. Processes are 
written without needing any knowledge of 
what physical hardware is installed on a 
computer . The kernel actually runs several 
processes concurrently, and is responsible 
for mediating access to hardware resources 
so that each process has fair access while 
inter-process security is maintained .



Overview of the Kernel Structure 

• The Linux kernel is composed of five main subsystems: 
• The Process Scheduler (SCHED) is responsible for controlling process access to the 

CPU. The scheduler enforces a policy that ensures that processes will have fair access to 
the CPU, while ensuring that necessary hardware actions are performed by the kernel on 
time 

• The Memory Manager (MM) permits multiple process to securely share the machine's 
main memory system. In addition, the memory manager supports virtual memory that 
allows Linux to support processes that use more memory than is available in the system. 
Unused memory is swapped out to persistent storage using the file system then swapped 
back in when it is needed. 

• The Virtual File System (VFS) abstracts the details of the variety of hardware devices 
by presenting a common file interface to all devices. In addition, the VFS supports 
several file system formats that are compatible with other operating systems. 

• The Network Interface (NET) provides access to several networking standards and a 
variety of network hardware. 

• The Inter-Process Communication (IPC) subsystem supports several mechanisms for 
process-to-process communication on a single Linux system. 



The figure Kernel Subsystem Overview shows a high-level decomposition 
of the Linux kernel, where lines are drawn from dependent subsystems to 

the subsystems they depend on. 

This diagram emphasizes that the most central subsystem is the process 
scheduler: all other subsystems depend on the process scheduler since all
subsystems need to suspend and resume processes. Usually a subsystem 

will suspend a process that is waiting for a hardware operation to complete, 
and resume the process when the operation is finished 



Linux Process Scheduling 

• This is an attempt to describe the scheduling 
concepts used in Linux. Scheduling is a core part 
of every OS. Linux uses a simple priority based 
scheduling algorithm to choose between the 
current processes in the system. There are two 
types of processes in Linux, normal and real time. 
Real time processes will always run before normal 
processes and they may have either of two types of 
policy: round robin or first in first out. As Linux 
uses Shortest-Job-First Scheduling, Priority 
Scheduling, Multi-level Queue Scheduling . 



Scheduling  

• It is the scheduler that must select the most 
deserving process to run out of all of the runnable 
processes in the system. A runnable process is one 
which is waiting only for a CPU to run on. Linux 
uses a reasonably simple priority based 
scheduling algorithm to choose between the 
current processes in the system. When it has 
chosen a new process to run it saves the state of 
the current process, the processor specific registers 
and other context being saved in the processes 
task_struct data structure .



task_struct

The most important structure for the scheduling (and may 
be the whole system) is the task_struct. This structure 
represents the states of all tasks running in the systems .

It is this information saved in the task_struct that is used 
by the scheduler to restore the state of the new process 
(this is processor specific) to run and then gives control of 
the system to that process. For the scheduler to fairly 
allocate CPU time between the runnable processes in the 
system it keeps information in the task_struct for each 
process: 



Main variables:
• policy

This is the scheduling policy that will be applied to this process. There are two types 
of Linux process, normal and real time. Real time processes have a higher priority 
than all of the other processes. If there is a real time process ready to run, it will 
always run first. Real time processes may have two types of policy, round robin and 
first in first out. In round robin scheduling, each runnable real time process is run in 
turn and in first in, first out scheduling each runnable process is run in the order that 
it is in on the run queue and that order is never changed. 

• priority
This is the priority that the scheduler will give to this process. It is the value used for 
recalculation when all runnable processes have a counter value of 0. You can alter the 
priority of a process ( use “nice” command ). 

• rt_priority
Linux supports real time processes and these are scheduled to have a higher priority 
than all of the other non-real time processes in system. This field allows the scheduler 
to give each real time process a relative priority. The priority of a real time processes 
can be altered using system calls. 

• counter
This is the amount of time that this process is allowed to run for. It is set to priority
when the process is first run and is decremented each clock tick. 



Start Of The Algorithm



SCHEDULING ALGORITHMS

1. First-Come-First-Served or FIFO Scheduling

The process that requests the CPU first is allocated 
the CPU first. The average waiting time for FCFS 
policy is often quite long.

Example:

Consider the following set of processes that arrive at 
time 0.



Process CPU Burst Time (ms)

P1 24

P2 3

P3 3

Suppose that processes arrive in the order: P1, P2, 
P3, we get the result shown in the Gantt chart below:

P1 P2 P3

0 24     27     30

Waiting time for P1 = 0; P2 = 24; P3 = 27

Ave. waiting time: (0 + 24 + 27) /3 = 17 ms.



FCFS Scheduling, cont.

If the processes arrive in the order: P2, P3, P1, then 
the Gantt chart is as follows:

P1P2 P3

0       3        6 30

Waiting time for P1 = 6; P2 = 0; P3 = 3

Ave. waiting time : (6 + 0 + 3)/3 = 3

Much better than the previous case, where we had a

Convoy Effect: short process behind long process. 
Results in lower CPU utilization



Shortest-Job-First Scheduling

Associate with each process the length of its next 
CPU burst. Use these lengths to schedule the 
process with the shortest time. 

• Non-preemptive - once CPU is given to the 
process, it cannot be preempted until it completes 
its CPU burst.

• Preemptive - if a new process arrives with CPU 
burst length less than remaining time of of current 
executing process, preempt.



Example of non-preemptive SJF:

Process CPU burst time

P1 6

P2 8

P3 7

P4 3

P1 P2P3

0    3 9                     16                   24

P4

Average waiting time = (0 + 3 + 9 +  16)/4 = 7 ms



Example of Preemptive SJF

(Shortest-Remaining-Time-First)

Process Arrival Time Burst Time

P1 0 8

P2 1 4

P3 2 9

P4 3 5

P2 P1P4P1 P3

0 1 5 10 17 26



SJF Scheduling, cont.

When process P2 arrives, the remaining time for P1 
(7 ms) is larger than the time required for P2 (4 
ms), so process P1 is preempted and P2 is 
scheduled.

Average waiting time is :

((10-1) + (1-1) + (17-2) + (5-3)) / 4 = 6.5 ms.



SJF Scheduling, cont.

• The SJF algorithm gives the minimum average 
waiting time for a given set of processes.

• The difficulty with SJF is knowing the length of 
the next CPU request.

• For long-term scheduling in a batch system, an 
estimate of the burst time can be acquired from the 
job description.

• For short-term scheduling, we have to predict the 
value of the next burst time.



Priority Scheduling

The SJF is a special case of the general priority 
scheduling algorithm.

• A priority (an integer) is associated with each 
process.

• The CPU is allocated to the process with the 
highest priority (smallest integer = highest 
priority).

• Equal priority processes are scheduled in FCFS 
order.



Priority Scheduling, cont.

Example: The following processes arrive at time 0 in 
the order - P1, P2, P3, P4, P5.

Process Burst Time Priority

P1 10 3

P2 1 1

P3 2 3

P4 1 4

P5 5 2

P5 P3P1P2 P4

0     1 6 16      18  19



Priority Scheduling, cont.

The average waiting time is:

(0 + 1 + 6 + 16 + 18)/5 = 8.2 ms

• Priority scheduling can be either preemptive or 
non-preemptive.

• A major problem with priority scheduling 
algorithms is indefinite blocking or starvation. 
Low priority processes could wait indefinitely for 
the CPU.

• A solution to the problem of starvation is aging. 
Aging is a technique of gradually increasing the 
priority of processes that wait in the system a long 
time.



Round-Robin Scheduling

• Designed for time-sharing systems.

• Similar to FCFS, with preemption added.

• Each process gets a small unit of CPU time (a time 
slice), usually 10 - 100 milliseconds.

• After time slice has elapsed, the process is 
preempted and added to the end of the ready 
queue.



RR Scheduling, cont.

The ready queue can be implemented as a FIFO 
queue of processes. New processes are added to 
the tail of the queue. The scheduler picks the first 
process from the ready queue, sets a timer to 
interrupt after 1 time quantum and then dispatches 
the process. One of two things will happen:

• The process may have a CPU burst of less than 1 time 
quantum, or

• CPU burst  of the currently executing process is longer 
than one time quantum. In this case, the timer will go off, 
cause an interrupt, a context switch is then executed & the 
process put at the tail of the ready queue.



RR Scheduling, cont.

The average waiting time under the RR scheme is 
often quite long. Consider the following set of 
processes that arrive at time 0, the time quantum is 
set at 4 ms:

Process CPU Burst Time

P1 24

P2 3

P3 3

P2 P1P3P1 P1       P1        P1     P1

0       4 7         10       14       18       22       26      30



RR Scheduling, cont.
The average waiting time is : 17/3 = 5.66 ms.

Performance of RR:

• If there are n processes in the ready queue at time 
quantum q, then each process gets 1/n of the CPU 
time in chunks of at most q time units at once. No 
process waits more than (n-1) x q time units until 
its next time quantum.

• The performance of RR depends on the size of q.

• At one extreme, if q is very large, RR policy is the 
same as FCFS policy.

• If q is very small, the RR approach is called   
processor sharing. Overhead is too high.



Multi-level Queue Scheduling

• A multi-level queue-scheduling (MLQ) algorithm 
partitions the ready queue into several separate 
queues. 

• Created for situations in which processes are 
easily classified into groups. For e.g. 

– foreground (interactive) processes and

– background (batch) processes).

• These two types of processes have different 
response-time requirements, and thus, different 
scheduling needs.



Multi-level Queue Scheduling, cont.

• The processes are permanently assigned to one 
queue, based on some property of the process. 
(e.g. memory size, priority, or type).

• Each queue has its own scheduling algorithm. For 
e.g. the foreground queue might be scheduled by 
an RR algorithm, while the background queue is 
scheduled by a FCFS algorithm.



Multi-level Queue Scheduling, cont.

• There must be scheduling between the queues. 
Commonly implemented as fixed-priority 
preemptive scheduling. I.e. foreground processes 
have absolute priority over over the background 
processes, => starvation.

• Could also use a time slice algorithm where each 
queue gets a certain amount of CPU time which it 
can schedule among its processes. E.g.:

• 80% to foreground in RR

• 20% t o background in FCFS



End Of The Algorithm



Swap processes

– If the most deserving process to run is not the current process, then the current 
process must be suspended and the new one made to run. When a process is 
running it is using the registers and physical memory of the CPU and of the 
system. Each time it calls a routine it passes its arguments in registers and may 
stack saved values such as the address to return to in the calling routine. So, 
when the scheduler is running it is running in the context of the current process. 
It will be in a privileged mode, kernel mode, but it is still the current process that 
is running. When that process comes to be suspended, all of its machine state, 
including the program counter (PC) and all of the processor's registers, must be 
saved in the processes task_struct data structure. Then, all of the machine state 
for the new process must be loaded. 

– This swapping of process context takes place at the end of the scheduler. The 
saved context for the previous process is, therefore, a snapshot of the hardware 
context of the system as it was for this process at the end of the scheduler. 
Equally, when the context of the new process is loaded, it too will be a snapshot 
of the way things were at the end of the scheduler, including this processes 
program counter and register contents. 

– If the previous process or the new current process uses virtual memory then the 
system's page table entries may need to be updated. 



Pseudo - Code

• do kernel work 
– run bottom half's 
– do soft IRQ's 

• treat current process 
– if current process policy == ROUND_ROBIN: put process at the back of run queue. 
– if process id INTERRUPTIBLE and received a signal: current process state := RUNNING 
– if current process state == RUNNING: NOP 
– else remove process from run queue 

• select process 
– calculate goodness 

• if process is a real time process: weight := counter + 1000 
• weight := weight + priority 

– select the process with the highest weight 
– put the current process at the end of run queue 

• swap process 
– if (previous process /= next process) 

• save context of previous process 
• load context of next process 



Time Accounting

• In order to be able to implement the scheduling 
policies described above, we must keep track of 
how long a process has run to be able to do a fair 
selectioning between the processes waiting to be 
processed. And if a process has used up its credit 
to run, we must signal this to system so another 
process can be chosen to run. 

• In Linux this time accounting is done using 
bottom halfs 



What are bottom halfs? 

• There are often times in a kernel when you do not want 
to do work at this moment. A good example of this is 
during interrupt processing. When the interrupt was 
asserted, the processor stopped what it was doing and the 
operating system delivered the interrupt to the 
appropriate device driver. Device drivers should not 
spend too much time handling interrupts as, during this 
time, nothing else in the system can run. There is often 
some work that could just as well be done later on. 
Linux's bottom half handlers were invented so that 
device drivers and other parts of the Linux kernel could 
queue work.



What are bottom halfs?cont.

• Whenever a device driver, or some other part of the kernel, needs to 
schedule work to be done later, it adds work to the appropriate system 
queue, for example the timer queue, and then signals the kernel that 
some bottom half handling needs to be done. It does this by setting the 
appropriate bit in bh_active. Bit 8 is set if the driver has queued 
something on the immediate queue and wishes the immediate bottom
half handler to run and process it. The bh_active bitmask is checked at 
the end of each system call, just before control is returned to the 
calling process. If it has any bits set, the bottom half handler routines 
that are active are called. Bit 0 is checked first, then 1 and so on until 
bit 31. 

• The bit in bh_active is cleared as each bottom half handling routine is 
called. bh_active is transient; it only has meaning between calls to the 
scheduler and is a way of not calling bottom half handling routines 
when there is no work for them to do. 



Time Accounting using bottom 
halfs

• Very early in the boot process when the 
system gets setup (paging, traps and IRQ 
get initialized) the scheduler too gets 
initialized. It's here where the infrastructure 
for time accounting is set up by setting a 
function pointer to the time accounting code 
which is run whenever the bottom halfs are 
processed, ergo every clock tick. 



Summary

• SScheduling is the task of selecting a waiting 
process from the ready queue and allocating the 
CPU to it. The CPU is allocated to the selected 
process by the dispatcher.

• FCFS is  the simplest scheduling algorithm but it 
can cause short processes to wait very long.

• SJF provides the shortest average waiting time. 
Implementing SJF is difficult, due to the difficulty 
in predicting the length of the next CPU burst.
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