
1 Introduction to Shell Programming

This lecture is prepared for beginners who wish to learn the basics of shell
scripting/programming plus introduction to power tools such as awk, sed,

etc.

1.1 What is Linux Shell?

• In Operating System, there is special program called Shell. Shell ac-
cepts your instruction or commands in English (mostly) and if its a
valid command, it is passed to kernel.

• Shell is a user program or it’s a environment provided for user interac-
tion.

• Shell is an command language interpreter that executes commands read
from the standard input device (keyboard) or from a file.

• Shell is not part of system kernel, but uses the system kernel to execute
programs, create files etc.

• To find all available shells in your system type following command:

$ cat /etc/shells

• Note that each shell does the same job, but each understand a different
command syntax and provides different built-in functions.

• In MS-DOS, Shell name is COMMAND.COM which is also used for
same purpose, but it’s not as powerful as our Linux Shells are!

• To find your current shell type following command

$ echo $SHELL

• To use shell (You start to use your shell as soon as you log into your
system) you have to simply type commands.

1

1.2 What is Shell Script ?

• Normally shells are interactive. It means shell accept command from
you (via keyboard) and execute them.

• But if you use command one by one (sequence of ’n’ number of com-
mands) , the you can store this sequence of command to text file and
tell the shell to execute this text file instead of entering the commands.

• Why to Write Shell Script ?

– Shell script can take input from user, file and output them on
screen.

– Useful to create our own commands.

– Save lots of time.

– To automate some task of day today life.

– System Administration part can be also automated.

1.3 Getting started with Shell Programming

You are introduced to shell programming, how to write script, execute them
etc.

How to write shell script

• Use any editor to write shell script.

• After writing shell script set execute permission for your script as fol-
lows:

$ chmod +x your-script-name

or

$ chmod 755 your-script-name

• Execute your script as;

$ bash your-script-name

$ sh your-script-name

$./your-script-name

• In the last syntax ./ means current directory.

2

• But only . (dot) means execute given command file in current shell
without starting the new copy of shell as follows;

$. your-script-name

Now you are ready to write first shell script that will print ”Knowledge
is Power” on screen. first

#

My first shell script

#

clear

echo "Knowledge is Power"

After saving the above script, you can run the script as follows:

$./first

This will not run script since we have not set execute permission for
our script first; to do this type command

$ chmod 755 first

$./first

• Script to print user information who currently login , current date and
time.ginfo

#

#Script to print user information who currently login , current date

& time

#

clear

echo "Hello $USER"

echo -e "Today is \c ";date

echo -e "Number of user login : \c" ; who | wc -l

echo "Calendar"

cal

exit 0

At the end why statement exit 0 is used?

3

http://siber.cankaya.edu.tr/SystemsProgramming/cfiles/first
http://siber.cankaya.edu.tr/SystemsProgramming/cfiles/ginfo

Variables in Shell

• In Linux (Shell), there are two types of variable:

1. System variables - Created and maintained by Linux itself. This
type of variable defined in CAPITAL LETTERS.

– We have learned the command printenv to see environment
variables. You can see system variables by giving command
like some of the important System variables are:

Table 1: Some of the important System variables

System Variable Meaning
BASH Our shell name
BASH VERSION Our shell version name
COLUMNS No. of columns for our screen
LINES No. of columns for our screen
PS1 Our prompt settings
HOME Our home directory
OSTYPE Our Os type
PATH Our path settings
PWD Our current working directory
SHELL Our shell name
LOGNAME Our logging name
USERNAME User name who is currently login to this PC

2. User defined variables - Created and maintained by user. This
type of variable defined in lower letters. The following script de-
fines three variables; variscript

#

Script to test MY knowledge about variables!

#

myname=Vivek

myos = TroubleOS

myno=5

echo "My name is $myname"

echo "My os is $myos"

echo "My number is myno, can you see this number ?"

4

http://siber.cankaya.edu.tr/SystemsProgramming/cfiles/variscript

Shell Arithmetic

• Use to perform arithmetic operations. Syntax:

expr op1 math-operator op2

Examples:

$ expr 1 + 3

$ expr 2 - 1

$ expr 10 / 2

$ expr 20 % 3

$ expr 10 * 3

$ echo ‘expr 6 + 3‘

– Multiplication use and not ∗ since its wild card.

– Before expr keyword we used ‘ (back quote) sign not the (single
quote i.e. ’) sign. expr is also end with ‘ i.e. back quote.

– If you use double quote or single quote, it will NOT work.

• There are three types of quotes

1. Double quotes (”) - Anything enclose in double quotes removed
meaning of that characters (except \ and $).

2. Single quotes (’) - Enclosed in single quotes remains unchanged.

3. Back quote (‘) - To execute command

$ echo "Today is date"

$ echo "Today is ‘date‘".

Exit Status

• By default in Linux if particular command/shell script is executed, it
return two type of values which is used to see whether command or
shell script executed is successful or not.

1. If return value is zero (0), command is successful.

2. If return value is nonzero, command is not successful or some sort
of error executing command/shell script.

• This value is know as Exit Status.

5

• To find out exit status of command or shell script; use $? special vari-
able of shell.

$ rm unknownfile

$ echo $?

$ ls

$ echo $?

$ expr 1 + 3

$ echo $?

$ echo Welcome

$ echo $?

$ something nonse

$ echo $?

$ date

$ echo $?

The read Statement

• Use to get input (data from user) from keyboard and store (data) to
variable.

• Following script first ask user, name and then waits to enter name
from the user via keyboard. Then user enters name from keyboard
(after giving name you have to press ENTER key) and entered name
through keyboard is stored (assigned) to variable fname. sayH

#

#Script to read your name from key-board

#

echo "Your first name please:"

read fname

echo "Hello $fname, Lets be friend!"

Why Command Line arguments required

• Telling the command/utility which option to use.

• Informing the utility/command which file or group of files to process
(reading/writing of files).

• Following script is used to print command line argument and will show
you how to access them: demo

6

http://siber.cankaya.edu.tr/SystemsProgramming/cfiles/sayH
http://siber.cankaya.edu.tr/SystemsProgramming/cfiles/demo

#!/bin/sh

#

Script that demos, command line args

#

echo "Total number of command line argument are $#"

echo "$0 is script name"

echo "$1 is first argument"

echo "$2 is second argument"

echo "All of them are :- $* or $@"

Redirection of Standard output/input

• Mostly all commands give output on screen or take input from key-
board, but it’s also possible to send output to file or to read input from
file.

• There are three main redirection symbols >, >>, <

1. > Redirector Symbol. Syntax:
Linux-command > filename
To output Linux-commands result (output of command or shell
script) to file. Note that if file already exist, it will be overwritten
else new file is created.

$ ls > myfiles

2. >> Redirector Symbol. Syntax:
Linux-command >> filename
To output Linux-commands result (output of command or shell
script) to END of file. Note that if file exist , it will be opened
and new information/data will be written to END of file, without
losing previous information/data, And if file is not exist, then new
file is created.

$ date >> myfiles

3. < Redirector Symbol. Syntax:
Linux-command < filename
To take input to Linux-command from file instead of keyboard.

$ cat < myfiles

1.4 Shells (bash) structured Language Constructs

This section introduces to the bash’s structured language constructs such as:

7

1. Decision making

2. Loops

1.4.1 Decision making

• if condition

– If condition which is used for decision making in shell script, If
given condition is true then command1 is executed.
Syntax:

if condition

then

command1 if condition is true or if exit status

of condition is 0 (zero)

...

...

fi

– Condition is nothing but comparison between two values.

– For compression you can use test or [expr] statements or even
exist status can be also used.

– An expression is nothing but combination of values, relational
operator (such as >, <, <> etc) and mathematical operators (such
as +,−, / etc). showfile

#!/bin/sh

#

#Script to print file

#

if cat $1

then

echo -e "\n\nFile $1, found and successfully echoed"

fi

• test command or [expr]

– test command or [expr] is used to see if an expression is true,
and if it is true it return zero (0), otherwise returns nonzero for
false.
Syntax:

test expression OR [expression]

8

http://siber.cankaya.edu.tr/SystemsProgramming/cfiles/showfile

– Following script determine whether given argument number is pos-
itive. ispositive

#!/bin/sh

#

Script to see whether argument is positive

#

if test $1 -gt 0

then

echo "$1 number is positive"

fi

– test or [expr] works with

1. Integer (Number without decimal point)

2. File types

3. Character strings

• if...else...fi

– If given condition is true then command1 is executed otherwise
command2 is executed. Syntax:

if condition

then

condition is zero (true - 0)

execute all commands up to else statement

else

if condition is not true then

execute all commands up to fi

fi

– Script to see whether argument is positive or negative; isnumpn

#!/bin/sh

#

Script to see whether argument is positive or negative

#

if [$# -eq 0]

then

echo "$0 : You must give/supply one integers"

exit 1

fi

if test $1 -gt 0

then

9

http://siber.cankaya.edu.tr/SystemsProgramming/cfiles/ispositive
http://siber.cankaya.edu.tr/SystemsProgramming/cfiles/isnumpn

echo "$1 number is positive"

else

echo "$1 number is negative"

fi

• Nested if-else-fi

– You can write the entire if-else construct within either the body
of the if statement of the body of an else statement. This is called
the nesting of ifs. Syntax:

if condition

then

if condition

then

do this

else

do this

fi

else

do this

fi

nestedif

#!/bin/sh

#

Script to see nesting of ifs

#

osch=0

echo "1. Unix (Sun Os)"

echo "2. Linux (Red Hat)"

echo -n "Select your os choice [1 or 2]? "

read osch

if [$osch -eq 1] ;

then

echo "You Pick up Unix (Sun Os)"

else # nested if i.e. if within if #

if [$osch -eq 2] ;

then

echo "You Pick up Linux (Red Hat)"

else

echo "What you don’t like Unix/Linux OS."

10

http://siber.cankaya.edu.tr/SystemsProgramming/cfiles/nestedif

fi

fi

• Multilevel if-then-else Syntax:

if condition

then

condition is zero (true - 0)

execute all commands up to elif statement

elif condition1

then

condition1 is zero (true - 0)

execute all commands up to elif statement

elif condition2

then

condition2 is zero (true - 0)

execute all commands up to elif statement

else

None of the above condition,condition1,condition2 are true (i.e.

all of the above nonzero or false)

execute all commands up to fi

fi

For multilevel if-then-else statement try the following script: elf

#!/bin/sh

Script to test if..elif...else

#

if [$1 -gt 0];

then

echo "$1 is positive"

elif [$1 -lt 0]

then

echo "$1 is negative"

elif [$1 -eq 0]

then

echo "$1 is zero"

else

echo "Opps! $1 is not number, give number"

fi

Integer comparison is expected.

1.4.2 Loops

• Loops in Shell Scripts

11

http://siber.cankaya.edu.tr/SystemsProgramming/cfiles/elf

– Loop defined as: Computer can repeat particular instruction again
and again, until particular condition satisfies. A group of instruc-
tion that is executed repeatedly is called a loop.

– Bash supports:

1. for loop

2. while loop

– Note that in each and every loop,

∗ First, the variable used in loop condition must be initialized,
then execution of the loop begins.

∗ A test (condition) is made at the beginning of each iteration.

∗ The body of loop ends with a statement that modifies the
value of the test (condition) variable.

• for Loop
Syntax:

for { variable name } in { list }

do

execute one for each item in the list until the list is

not finished (And repeat all statement between do and done)

done

Try the following script: testfor

for i in 1 2 3 4 5

do

echo "Welcome $i times"

done

Also try the following script: mtable

#!/bin/sh

#

#Script to test for loop

#

#

if [$# -eq 0]

then

echo "Error - Number missing form command line argument"

echo "Syntax : $0 number"

echo "Use to print multiplication table for given number"

exit 1

12

http://siber.cankaya.edu.tr/SystemsProgramming/cfiles/testfor
http://siber.cankaya.edu.tr/SystemsProgramming/cfiles/mtable

fi

n=$1

for i in 1 2 3 4 5 6 7 8 9 10

do

echo "$n * $i = ‘expr $i * $n‘"

done

Syntax:

for ((expr1; expr2; expr3))

do

repeat all statements between do and

done until expr2 is TRUE

Done

testfor2

#!/bin/sh

#

#Script to test for loop 2

#

#

for ((i = 0 ; i <= 5; i++))

do

echo "Welcome $i times"

done

• Nesting of for Loop

– As you see the if statement can nested, similarly loop statement
can be nested.

– To understand the nesting of for loop see the following shell script.
nestedfor

#!/bin/sh

#

Nesting of for loop

#

#

for ((i = 1; i <= 5; i++)) ### Outer for loop ###

do

for ((j = 1 ; j <= 5; j++)) ### Inner for loop ###

do

13

http://siber.cankaya.edu.tr/SystemsProgramming/cfiles/testfor2
http://siber.cankaya.edu.tr/SystemsProgramming/cfiles/nestedfor

echo -n "$i "

done

echo "" #### print the new line ###

done

Here, for each value of i the inner loop is cycled through 5 times,
with the variable j taking values from 1 to 5. The inner for loop
terminates when the value of j exceeds 5, and the outer loop ter-
minates when the value of i exceeds 5.

– Following script is quite interesting, it prints the chess board on
screen. chessboard

#!/bin/sh

#

Chessboard

#

#

for ((i = 1; i <= 9; i++)) ### Outer for loop ###

do

for ((j = 1 ; j <= 9; j++)) ### Inner for loop ###

do

tot=‘expr $i + $j‘

tmp=‘expr $tot % 2‘

if [$tmp -eq 0];

then

echo -e -n "\033[47m "

else

echo -e -n "\033[40m "

fi

done

echo -e -n "\033[40m " #### set back background color to black

echo "" #### print the new line ###

done

echo -e -n "\033[47m " #### set back background color to white

echo "" #### print the new line ###

echo "" #### print the new line ###

echo "" #### print the new line ###

echo "" #### print the new line ###

• while loop

– Syntax:

while [condition]

do

command1

command2

command3

14

http://siber.cankaya.edu.tr/SystemsProgramming/cfiles/chessboard

..

..

done

– Loop is executed as long as given condition is true. Above for loop
program (shown in last section of for loop) can be written using
while loop as; nt1

#!/bin/sh

#

#Script to test while statement

#

#

if [$# -eq 0]

then

echo "Error - Number missing form command line argument"

echo "Syntax : $0 number"

echo " Use to print multiplication table for given number"

exit 1

fi

n=$1

i=1

while [$i -le 10]

do

echo "$n * $i = ‘expr $i * $n‘"

i=‘expr $i + 1‘

done

• The case Statement

– The case statement is good alternative to multilevel if-then-else-
fi statement.

– It enable you to match several values against one variable. Its
easier to read and write. Syntax:

case $variable-name in

pattern1) command

..

command;;

pattern2) command

..

command;;

patternN) command

..

command;;

*) command

..

15

http://siber.cankaya.edu.tr/SystemsProgramming/cfiles/nt1

command;;

esac

– The $variable-name is compared against the patterns until a match
is found.

– The shell then executes all the statements up to the two semicolons
that are next to each other.

– The default is *) and its executed if no match is found. Example;
car

#!/bin/sh

#

if no vehicle name is given

i.e. -z $1 is defined and it is NULL

#

if no command line arg

if [-z $1]

then

rental="*** Unknown vehicle ***"

elif [-n $1]

then

otherwise make first arg as rental

rental=$1

fi

case $rental in

"car") echo "For $rental Rs.20 per k/m";;

"van") echo "For $rental Rs.10 per k/m";;

"jeep") echo "For $rental Rs.5 per k/m";;

"bicycle") echo "For $rental 20 paisa per k/m";;

*) echo "Sorry, I can not get a $rental for you";;

esac

How to de-bug the shell script?

• While programming shell sometimes you need to find the errors (bugs)
in shell script and correct the errors (remove errors - debug).

• For this purpose you can use -v and -x option with sh or bash command
to debug the shell script. Syntax:

sh option { shell-script-name }

OR

bash option { shell-script-name }

Option can be

-v Print shell input lines as they are read.

-x After expanding each simple-command, bash displays the expanded

value of system variable,followed by the command and its expanded

arguments.

16

http://siber.cankaya.edu.tr/SystemsProgramming/cfiles/car

Example; dsh1

#!/bin/sh

#

Script to show debug of shell

#

tot=‘expr $1 + $2‘

echo $tot

execute as

$./dsh1 4 5

9

$ sh -x dsh1 4 5

++ expr 4 + 5

+ tot=9

+ echo 9

9

$ sh -v dsh1 4 5

#!/bin/sh

#

Script to show debug of shell

#

tot=‘expr $1 + $2‘

expr $1 + $2

echo $tot

9

1.5 Advanced Shell Scripting Commands

After learning basis of shell scripting, its time to learn more advance features
of shell scripting/command.

Local and Global Shell variable (export command)

• Normally all our variables are local.

• Local variable can be used in same shell, if you load another copy of
shell (by typing the /bin/bash at the $ prompt) then new shell ignored
all old shell’s variable.

• Global shell defined as: ”You can copy old shell’s variable to new shell
(i.e. first shells variable to seconds shell), such variable is know as
Global Shell variable.”

• To set global varible you have to use export command. Syntax:

17

http://siber.cankaya.edu.tr/SystemsProgramming/cfiles/dsh1

export variable1, variable2,.....variableN

Examples:

$ vech=Bus

$ echo $vech

Bus

$ export vech

$ /bin/bash

$ echo $vech

Bus

$ exit

$ echo $vech

Bus

Conditional execution i.e. && and ||

• The control operators are && (read as AND) and || (read as OR). The
syntax for AND list is as follows;

command1 && command2

command2 is executed if, and only if, command1 returns an exit status
of zero.

• The syntax for OR list as follows

command1 || command2

command2 is executed if and only if command1 returns a non-zero exit
status.

• You can use both as follows

command1 && comamnd2 (if exist status is zero) || command3

(if exit status is non-zero)

if command1 is executed successfully then shell will run command2 and
if command1 is not successful then command3 is executed. Example:

$ rm myf && echo "File is removed successfully" || echo "File

is not removed"

18

1.5.1 User Interface and dialog utility

• Good program/shell script must interact with users. You can accomplish
this as follows:

1. Use command line arguments (args) to script when you want interac-
tion i.e. pass command line args to script as :

$./sutil foo 4

where foo and 4 are command line args passed to shell script sutil.

2. Use statement like echo and read to read input into variable from
the prompt. userinte,

3. Even you can create menus to interact with user, first show menu
option, then ask user to choose menu item, and take appropriate
action according to selected menu item, this technique is show in
following script; menuui.

Dialog Utility

• User interface usually includes, menus, different type of boxes like info box,
message box, Input box etc.

• In Linux shell (i.e. bash) there is no built-in facility available to create such
user interface, But there is one utility supplied with Red Hat Linux version
6.0 called dialog, which is used to create different type of boxes like info
box, message box, menu box, Input box etc.

• To show some information on screen; dial.

#!/bin/sh

#

Script to show some information on screen

#

dialog --title "Linux Dialog Utility Infobox" --backtitle "Linux

Shell Script Tutorial" --infobox "This is dialog box called infobox,

which is used\

to show some information on screen, Press any key. . . " 7 50 ;

read

– Here 7 and 50 are height-of-box and width-of-box respectively.

– ”Linux Shell Script Tutorial” is the backtitle of dialog show on
upper left side of screen and below that line is drawn.

Use dialog utility to Display dialog boxes from shell scripts. Syntax:

19

http://siber.cankaya.edu.tr/SystemsProgramming/cfiles/userinte
http://siber.cankaya.edu.tr/SystemsProgramming/cfiles/menuui
http://siber.cankaya.edu.tr/SystemsProgramming/cfiles/dial

dialog --title {title} --backtitle {backtitle} {Box options}

where Box options can be any one of following

--yesno {text} {height} {width}

--msgbox {text} {height} {width}

--infobox {text} {height} {width}

--inputbox {text} {height} {width} [{init}]

--textbox {file} {height} {width}

--menu {text} {height} {width} {menu} {height} {tag1} item1}...

• To show some information on screen which has also Ok button; dial2.

!/bin/sh

#

Script to show some information on screen which has also Ok button

#

dialog --title "Linux Dialog Utility Msgbox" --backtitle "Linux Shell

Script Tutorial" --msgbox "This is dialog box called msgbox, which is

used\ to show some information on screen which has also Ok button,

Press any key. . . " 9 50

• yesno box using dialog utility; dial3.

• Input Box (inputbox) using dialog utility; dial4.

• Putting it all together. Its time to write script to create menus using
dialog utility, following are menu items

– Date/time

– Calendar

– Editor

1.5.2 getopts command

• This command is used to check valid command line argument are passed to
script. Usually used in while loop. Syntax:

getopts {optstring} {variable1}

getopts is used by shell to parse command line argument.

• Each time it is invoked,getopts places the next option in the shell vari-
able variable1,

• When an option requires an argument, getopts places that argument
into the variable OPTARG.

20

http://siber.cankaya.edu.tr/SystemsProgramming/cfiles/dial2
http://siber.cankaya.edu.tr/SystemsProgramming/cfiles/dial3
http://siber.cankaya.edu.tr/SystemsProgramming/cfiles/dial4

• Example; We have script called ani. which has syntax as

ani -n -a -s -w -d

Options: These are optional argument

-n name of animal

-a age of animal

-s sex of animal

-w weight of animal

-d demo values (if any of the above options are used their values

are not taken)

For executing;

$ ani -n Lassie -a 4 -s Female -w 20Kg

$ ani -a 4 -s Female -n Lassie -w 20Kg

$ ani -n Lassie -s Female -w 20Kg -a 4

$ ani -w 20Kg -s Female -n Lassie -a 4

$ ani -w 20Kg -s Female

$ ani -n Lassie -a 4

$ ani -n Lassie

$ ani -a 2

• See because of getopts, we can pass command line argument in differ-
ent style

21

http://siber.cankaya.edu.tr/SystemsProgramming/cfiles/ani

Table 2: Operator in Shell Script

Mathematical Operator in Shell
-eq is equal to 5 == 6; if test 5 -eq 6 ; if [5 -eq

6]
-ne is not equal to 5! = 6; if test 5 -ne 6; if [5

-ne 6]
-lt is less than 5 < 6; if test 5 -lt 6; if [5 -lt 6]
-le is less than or equal to 5 <= 6; if test 5 -le

6; if [5 -le 6]
-gt is greater than 5 > 6; if test 5 -gt 6; if [5 -gt

6]
-ge is greater than or equal to 5 >= 6; if test 5

-ge 6; if [5 -ge 6]
String Comparisons Operator Meaning
string1 = string2 string1 is equal to string2
string1 != string2 string1 is NOT equal to string2
string1 string1 is NOT NULL or not defined
-n string1 string1 is NOT NULL and does exist
-z string1 string1 is NULL and does exist
File and directory Test Meaning
-s file Non empty file
-f file Is File exist or normal file and not a directory
-d dir Is Directory exist and not a file
-w file Is writeable file
-r file Is read-only file
-x file Is file is executable
Logical Operators Operator Meaning
! expression Logical NOT
expression1 -a expression2 Logical AND
expression1 -o expression2 Logical OR

22

	Introduction to Shell Programming
	What is Linux Shell?
	What is Shell Script ?
	Getting started with Shell Programming
	Shells (bash) structured Language Constructs
	Decision making
	Loops

	Advanced Shell Scripting Commands
	User Interface and dialog utility
	getopts command

