
1 Threads

• Threads are a mechanism to allow a program to do more than one thing
at a time.

• A thread exists within a process. Threads are a finer-grained unit of
execution than processes.

• Thread can create additional threads; all these threads run the same
program in the same process, but each thread may be executing a
different part of the program at any given time.

• The child process can modify its memory, close file descriptors etc.,
without affecting its parent, and vice versa.

• Threads offer lower consumption of system resources and easier commu-
nication between processes. The creating and the created thread share
the same memory space, file descriptors, and other system resources as
the original.

• There are many potential pitfalls to using threads or any other envi-
ronment where the same memory space is shared by multiple processes.

– You must be careful about more than one process using the same
variables at the same time.

– Many functions are not reentrant ; that is, there cannot be more
than one copy of that function running at the same time (unless
they are using separate data segments).

– Static variables declared inside functions are often a problem.

– Returning a pointer to statically allocated storage inside the func-
tion is no good; another thread may execute that function and
overwrite the return value before the first one is through using it.

– Setting or using global variables may create problems in threads.

• Semaphores, mutexes, disabling interrupts, or similar means should
be used to protect variables, particularly aggregate variables, against
simultaneous access.

• POSIX threads (pthreads) provide a relatively portable implementation
of lightweight processes.

• All thread functions and data types are declared in the header file
< pthread.h >

1



• They are in libpthread, so you should add -lpthread to the command
line when you link your program.

1.1 Thread Creation

• Each thread in a process is identified by a thread ID, type pthread t.

• Upon creation, each thread executes a thread function. This is just an
ordinary function and contains the code that the thread should run.
When the function returns, the thread exits.

• The pthread create function creates a new thread. You provide it
with the following:

– A pointer to a pthread t variable, in which the thread ID of the
new thread is stored.

– A pointer to a thread attribute object. This object controls details
of how the thread interacts with the rest of the program. If you
pass NULL as the thread attribute, a thread will be created with
the default thread attributes.

– A pointer to the thread function. This is an ordinary function
pointer, of this type:

void* (*) (void*)

– A thread argument value of type void*. Whatever you pass is
simply passed as the argument to the thread function when the
thread begins executing.

• A call to pthread create returns immediately, and the original thread
continues executing the instructions following the call. Meanwhile, the
new thread begins executing the thread function. Linux schedules both
threads asynchronously. thread-create.c (see Fig. 1)

• Under normal circumstances, a thread exits in one of two ways;

– by returning from the thread function. The return value from the
thread function is taken to be the return value of the thread.

– a thread can exit explicitly by calling pthread exit.

2

http://siber.cankaya.edu.tr/SystemsProgramming/cfiles/thread-create.c


#include <pthread.h>

#include <stdio.h>

/* Prints x’s to stderr. The parameter is unused. Does not return. */

void* print_xs (void* unused)

{

while (1)

fputc (’x’, stderr);

return NULL;

}

/* The main program. */

int main ()

{

pthread_t thread_id;

/* Create a new thread. The new thread will run the print_xs

function. */

pthread_create (&thread_id, NULL, &print_xs, NULL);

/* Print o’s continuously to stderr. */

while (1)

fputc (’o’, stderr);

return 0;

}

Figure 1: Create a Thread

1.1.1 Passing Data to Threads

• Use the thread argument to pass a pointer to some structure or array
of data.

• Define a structure for each thread function, which contains the param-
eters that the thread function expects.

• Using the thread argument, it is easy to reuse the same thread function
for many threads. All these threads execute the same code, but on
different data.

• In the following program (see Fig. 2), the same thread function, char print,
is used by both threads, but each is configured differently using struct

char print parms. thread-create2.c

• A serious bug in it. The main thread creates the thread parameter
structures as local variables, and then passes pointers.

3

http://siber.cankaya.edu.tr/SystemsProgramming/cfiles/thread-create2.c


#include <pthread.h>

#include <stdio.h>

/* Parameters to print_function. */

struct char_print_parms

{

/* The character to print. */

char character;

/* The number of times to print it. */

int count;

};

/* Prints a number of characters to stderr, as given by PARAMETERS,

which is a pointer to a struct char_print_parms. */

void* char_print (void* parameters)

{

/* Cast the cookie pointer to the right type. */

struct char_print_parms* p = (struct char_print_parms*) parameters;

int i;

for (i = 0; i < p->count; ++i)

fputc (p->character, stderr);

return NULL;

}

/* The main program. */

int main ()

{

pthread_t thread1_id;

pthread_t thread2_id;

struct char_print_parms thread1_args;

struct char_print_parms thread2_args;

/* Create a new thread to print 30000 x’s. */

thread1_args.character = ’x’;

thread1_args.count = 30000;

pthread_create (&thread1_id, NULL, &char_print, &thread1_args);

/* Create a new thread to print 20000 o’s. */

thread2_args.character = ’o’;

thread2_args.count = 20000;

pthread_create (&thread2_id, NULL, &char_print, &thread2_args);

return 0;

}

Figure 2: Create Two Threads

4



• if main finishes executing before either of the other two threads are
done, the memory containing the thread parameter structures will be
deallocated while the other two threads are still accessing it.

1.1.2 Joining Threads

• The solution is to force main to wait until the other two threads are
done.

• That function is pthread join, which takes two arguments;

– the thread ID of the thread to wait for.

– a pointer to a void* variable that will receive the finished thread
s return value.

• If you don’t care about the thread return value, pass NULL as the
second argument.

• In the following code (see Fig. 3), main does not exit until threads are
no longer using the argument structures.

• Make sure that any data you pass to a thread by reference is not deal-
located;

– for local variables, which are deallocated when they go out of
scope.

– for heap-allocated variables, which you deallocate by calling free.

1.1.3 Thread Return Values

• If the second argument you pass to pthread join is non-null, the
thread’s return value will be placed in the location pointed to by that
argument.

• The thread return value, like the thread argument, is of type void*.

• The following program (see Fig. 4) computes the nth prime number in
a separate thread. That thread returns the desired prime number as
its thread return value. primes.c

• The pthread self function returns the thread ID of the thread in which
it is called. This thread ID may be compared with another thread ID
using the pthread equal function.

5

http://siber.cankaya.edu.tr/SystemsProgramming/cfiles/primes.c


int main ()

{

pthread_t thread1_id;

pthread_t thread2_id;

struct char_print_parms thread1_args;

struct char_print_parms thread2_args;

/* Create a new thread to print 30,000 x s. */

thread1_args.character = ’x’ ;

thread1_args.count = 30000;

pthread_create (&thread1_id, NULL, &char_print, &thread1_args);

/* Create a new thread to print 20,000 o s. */

thread2_args.character = ’o’ ;

thread2_args.count = 20000;

pthread_create (&thread2_id, NULL, &char_print, &thread2_args);

/* Make sure the first thread has finished. */

pthread_join (thread1_id, NULL);

/* Make sure the second thread has finished. */

pthread_join (thread2_id, NULL);

/* Now we can safely return. */

return 0;

}

Figure 3: Revised Main Function for thread-create2.c

if (!pthread_equal (pthread_self (), other_thread))

pthread_join (other_thread, NULL);

1.1.4 Thread Attributes

• Thread attributes provide a mechanism for fine-tuning the behavior of
individual threads.

• You may create and customize a thread attribute object to specify other
values for the attributes. To specify customized thread attributes, you
must follow these steps;

– Create a pthread attr t object. The easiest way is simply to
declare an automatic variable of this type.

– Call pthread attr init, passing a pointer to this object. This
initializes the attributes to their default values.

– Modify the attribute object to contain the desired attribute values.

6



#include <pthread.h>

#include <stdio.h>

/* Compute successive prime numbers (very inefficiently). Return the

Nth prime number, where N is the value pointed to by *ARG. */

void* compute_prime (void* arg)

{

int candidate = 2;

int n = *((int*) arg);

while (1) {

int factor;

int is_prime = 1;

/* Test primality by successive division. */

for (factor = 2; factor < candidate; ++factor)

if (candidate % factor == 0) {

is_prime = 0;

break;

}

/* Is this the prime number we’re looking for? */

if (is_prime) {

if (--n == 0)

/* Return the desired prime number as the thread return value. */

return (void*) candidate;

}

++candidate;

}

return NULL;

}

int main ()

{

pthread_t thread;

int which_prime = 5000;

int prime;

/* Start the computing thread, up to the 5000th prime number. */

pthread_create (&thread, NULL, &compute_prime, &which_prime);

/* Do some other work here... */

/* Wait for the prime number thread to complete, and get the result. */

pthread_join (thread, (void*) &prime);

/* Print the largest prime it computed. */

printf("The %dth prime number is %d.\n", which_prime, prime);

return 0;

}

Figure 4: Compute Prime Numbers in a Thread

7



– Pass a pointer to the attribute object when calling pthread create.

– Call pthread attr destroy to release the attribute object. The
pthread attr t variable itself is not deallocated; it may be reini-
tialized with pthread attr init.

• A single thread attribute object may be used to start several threads.
It is not necessary to keep the thread attribute object around after the
threads have been created.

• For most application programming tasks, only one thread attribute is
typically of interest. This attribute is the thread’s detach state.

• A thread may be created as a joinable thread (the default) or as a
detached thread.

– A joinable thread, like a process, is not automatically cleaned
up when it terminates. (until another thread calls pthread join

to obtain its return value. Only then are its resources released.)

– A detached thread is cleaned up automatically when it ter-
minates. Because a detached thread is immediately cleaned up,
another thread may not synchronize on its completion by using
pthread join or obtain its return value.

• The following code (see Fig. 5) creates a detached thread by setting
the detach state thread attribute for the thread. detached.c

• Even if a thread is created in a joinable state, it may later be turned
into a detached thread. To do this, call pthread detach. Once a
thread is detached, it cannot be made joinable again.

• Table 1 shows the thread attributes; the default values are marked with
an asterisk.

1.2 Thread Cancellation

• It is possible for a thread to request that another thread terminate.This
is called canceling a thread.

• To cancel a thread, call pthread cancel, passing the thread ID of the
thread to be canceled. A canceled thread may later be joined; in fact,
you should join a canceled thread to free up its resources, unless the
thread is detached.

8

http://siber.cankaya.edu.tr/SystemsProgramming/cfiles/detached.c


#include <pthread.h>

void* thread_function (void* thread_arg)

{

/* Do work here... */

return NULL;

}

int main ()

{

pthread_attr_t attr;

pthread_t thread;

pthread_attr_init (&attr);

pthread_attr_setdetachstate (&attr, PTHREAD_CREATE_DETACHED);

pthread_create (&thread, &attr, &thread_function, NULL);

pthread_attr_destroy (&attr);

/* Do work here... */

/* No need to join the second thread. */

return 0;

}

Figure 5: Skeleton Program That Creates a Detached Thread

• Often a thread may be in some code that must be executed in an all-
or-nothing fashion.

• If the thread is canceled in the middle of this code, it may not have the
opportunity to deallocate the resources, and thus the resources will be
leaked.

• A thread may be in one of three states with regard to thread cancella-
tion.

– asynchronously cancelable. The thread may be canceled at
any point in its execution.

– synchronously cancelable. The thread may be canceled, but
not at just any point in its execution. Instead, cancellation re-
quests are queued, and the thread is canceled only when it reaches
specific points in its execution. These points are called cancella-

tion points.

– uncancelable. Attempts to cancel the thread are quietly ignored.

• When initially created, a thread is synchronously cancelable.

9



Table 1: Thread Attributes

Attribute Value Meaning
detachstate PTHREAD CREATE JOINABLE* Joinable state

PTHREAD CREATE DETACHED Detached state
schedpolicy SCHED OTHER* Normal, non-realtime

SCHED RR Realtime, round-robin
SCHED FIFO Realtime, first in first out

schedparam policy specific
inheritsched PTHREAD EXPLICIT SCHED* Set by schedpolicy and

schedparam

PTHREAD INHERIT SCHED Inherited from parent pro-
cess

scope PTHREAD SCOPE SYSTEM* One system timeslice for
each thread

PTHREAD SCOPE PROCESS Threads share same system
timeslice (not supported un-
der Linux)

1.2.1 Synchronous and Asynchronous Threads

• To make a thread asynchronously cancelable, use pthread setcanceltype.

• The first argument should be
PTHREAD CANCEL ASYNCHRONOUS to make the thread
asynchronously cancelable, or
PTHREAD CANCEL DEFERRED to return it to the synchronously
cancelable state.

• The second argument, if not null, is a pointer to a variable that will
receive the previous cancellation type for the thread.

pthread_setcanceltype (PTHREAD_CANCEL_ASYNCHRONOUS, NULL);

• To create a cancellation point is to call pthread testcancel. You
should call pthread testcancel periodically during lengthy computa-
tions in a thread function, at points where the thread can be canceled
without leaking any resources or producing other ill effects.

10



1.2.2 Uncancelable Critical Sections

• A thread may disable cancellation of itself altogether with the
pthread setcancelstate function. Like pthread setcanceltype, this
affects the calling thread.

– The first argument is PTHREAD CANCEL DISABLE to dis-
able cancellation, or PTHREAD CANCEL ENABLE to re-
enable cancellation.

– The second argument, if not null, points to a variable that will
receive the previous cancellation state.

pthread_setcancelstate (PTHREAD_CANCEL_DISABLE, NULL);

• Using pthread setcancelstate enables you to implement critical sec-

tions.

• If a thread begins executing the critical section, it must continue until
the end of the critical section without being canceled. critical-section.c
(see Fig. 6)

• Note that it s important to restore the old cancel state at the end of
the critical section rather than setting it unconditionally to
PTHREAD CANCEL ENABLE.

1.3 Thread-Specific Data

• Unlike processes, all threads in a single program share the same address
space. This means that if one thread modifies a location in memory,
the change is visible to all other threads.

• This allows multiple threads to operate on the same data without the
use interprocess communication mechanisms.

• Each thread has its own call stack, however. As in a single-threaded
program, each invocation of a subroutine in each thread has its own
set of local variables, which are stored on the stack for that thread.

• Sometimes, however, it is desirable to duplicate a certain variable so
that each thread has a separate copy (thread-specific data area). The
variables stored in this area are duplicated.

11

http://siber.cankaya.edu.tr/SystemsProgramming/cfiles/critical-section.c


#include <pthread.h>

#include <stdio.h>

#include <string.h>

/* An array of balances in accounts, indexed by account number. */

float* account_balances;

/* Transfer DOLLARS from account FROM_ACCT to account TO_ACCT. Return

0 if the transaction succeeded, or 1 if the balance FROM_ACCT is

too small. */

int process_transaction (int from_acct, int to_acct, float dollars)

{

int old_cancel_state;

/* Check the balance in FROM_ACCT. */

if (account_balances[from_acct] < dollars)

return 1;

/* Begin critical section. */

pthread_setcancelstate (PTHREAD_CANCEL_DISABLE, &old_cancel_state);

/* Move the money. */

account_balances[to_acct] += dollars;

account_balances[from_acct] -= dollars;

/* End critical section. */

pthread_setcancelstate (old_cancel_state, NULL);

return 0;

}

Figure 6: Protect a Bank Transaction with a Critical Section

• Special functions for setting and retrieving values from the thread-
specific data area.

• You may create as many thread-specific data items as you want, each
of type void*.

• Each item is referenced by a key. To create a new key, and thus a new
data item for each thread, use pthread key create.

– The first argument is a pointer to a pthread key t variable.

– The second argument to pthread key t is a cleanup function.

• After you’ve created a key, each thread can set its thread-specific value
corresponding to that key by calling pthread setspecific.

• To retrieve a thread-specific data item, call pthread getspecific, pass-
ing the key as its argument. tsd.c (see Fig. 7)

12

http://siber.cankaya.edu.tr/SystemsProgramming/cfiles/tsd.c


#include <malloc.h>

#include <pthread.h>

#include <stdio.h>

/* The key used to associate a log file pointer with each thread. */

static pthread_key_t thread_log_key;

/* Write MESSAGE to the log file for the current thread. */

void write_to_thread_log (const char* message)

{

FILE* thread_log = (FILE*) pthread_getspecific (thread_log_key);

fprintf (thread_log, "%s\n", message);

}

/* Close the log file pointer THREAD_LOG. */

void close_thread_log (void* thread_log)

{

fclose ((FILE*) thread_log);

}

void* thread_function (void* args)

{

char thread_log_filename[20];

FILE* thread_log;

/* Generate the filename for this thread’s log file. */

sprintf (thread_log_filename, "thread%d.log", (int) pthread_self ());

/* Open the log file. */

thread_log = fopen (thread_log_filename, "w");

/* Store the file pointer in thread-specific data under thread_log_key. */

pthread_setspecific (thread_log_key, thread_log);

write_to_thread_log ("Thread starting.");

/* Do work here... */

return NULL;

}

int main ()

{

int i;

pthread_t threads[5];

/* Create a key to associate thread log file pointers in

thread-specific data. Use close_thread_log to clean up the file

pointers. */

pthread_key_create (&thread_log_key, close_thread_log);

/* Create threads to do the work. */

for (i = 0; i < 5; ++i)

pthread_create (&(threads[i]), NULL, thread_function, NULL);

/* Wait for all threads to finish. */

for (i = 0; i < 5; ++i)

pthread_join (threads[i], NULL);

return 0;

}

Figure 7: Per-Thread Log Files Implemented with Thread-Specific Data

13



• Observe that thread function does not need to close the log file.
close thread log was specified as the cleanup function for that key.
Whenever a thread exits, that function is called to pass the thread-
specific value for the thread log key.

1.4 Synchronization and Critical Sections

• There’s no way to know when the system will schedule one thread to
run and when it will run another.

• If one thread is only partway through updating a data structure when
another thread accesses the same data structure, chaos.

• These bugs are called race conditions; the threads are racing one
another to change the same data structure.

1.4.1 Race Conditions

• Suppose that your program has a series of queued jobs that are pro-
cessed by several concurrent threads. The queue of jobs is represented
by a linked list of struct job objects. job-queue1.c (see Fig. 8)

– Now suppose that two threads happen to finish a job at about the
same time, but only one job remains in the queue. By unfortunate
coincidence, we may have two threads executing the same job.

– To make matters worse, one thread will unlink the job object
from the queue, leaving job queue containing null. When the
other thread evaluates job queue->next, a segmentation fault
will result.

• This is an example of a race condition. Under lucky circumstances, this
particular schedule of the two threads may never occur, and the race
condition may never exhibit itself. Only under different circumstances,
may the bug exhibit itself.

• To eliminate race conditions, you need a way to make operations atomic.

• In this particular example, you want to check job queue; if it s not
empty, remove the first job, all as a single atomic operation.

14

http://siber.cankaya.edu.tr/SystemsProgramming/cfiles/job-queue1.c


#include <malloc.h>

struct job {

/* Link field for linked list. */

struct job* next;

/* Other fields describing work to be done... */

};

/* A linked list of pending jobs. */

struct job* job_queue;

extern void process_job (struct job*);

/* Process queued jobs until the queue is empty. */

void* thread_function (void* arg)

{

while (job_queue != NULL) {

/* Get the next available job. */

struct job* next_job = job_queue;

/* Remove this job from the list. */

job_queue = job_queue->next;

/* Carry out the work. */

process_job (next_job);

/* Clean up. */

free (next_job);

}

return NULL;

}

Figure 8: Thread Function to Process Jobs from the Queue

1.4.2 Mutexes

• The solution to the job queue race condition problem is to let only one
thread access the queue of jobs at a time.

• Implementing this requires support from the operating system, mu-

texes, short for MUTual EXclusion locks.

• A mutex is a special lock that only one thread may lock at a time. If
a thread locks a mutex and then a second thread also tries to lock the
same mutex, the second thread is blocked, or put on hold.

• To create a mutex, create a variable of type pthread mutex t and
pass a pointer to it to pthread mutex init.

• The second argument to pthread mutex init is a pointer to a mutex
attribute object, which specifies attributes of the mutex.

15



• The mutex variable should be initialized only once.

pthread_mutex_t mutex;

pthread_mutex_init (&mutex, NULL);

• Another simpler way to create a mutex with default attributes is to ini-
tialize it with the special value PTHREAD MUTEX INITIALIZER.
No additional call to pthread mutex init is necessary.

pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

• A thread may attempt to lock a mutex by calling pthread mutex lock

on it. If the mutex was unlocked, it becomes locked and the function
returns immediately.

• More than one thread may be blocked on a locked mutex at one time.
When the mutex is unlocked, only one of the blocked threads (chosen
unpredictably) is unblocked and allowed to lock the mutex; the other
threads stay blocked.

• A call to pthread mutex unlock unlocks a mutex. This function
should always be called from the same thread that locked the mutex.

• The following code (see Fig. 9) shows another version of the job queue
example. Now the queue is protected by a mutex. job-queue2.c

• Note that if the queue is empty (that is, job queue is null), we don’t
break out of the loop immediately because this would leave the mutex
permanently locked and would prevent any other thread from accessing
the job queue ever again.

1.4.3 Mutex Deadlocks

• Mutexes provide a mechanism for allowing one thread to block the
execution of another.This opens up the possibility of a new class of
bugs, called deadlocks.

• A deadlock occurs when one or more threads are stuck waiting for
something that never will occur.

• A simple type of deadlock may occur when the same thread attempts
to lock a mutex twice. The behavior in this case depends on what kind
of mutex is being used. Three kinds of mutexes exist;

16

http://siber.cankaya.edu.tr/SystemsProgramming/cfiles/job-queue2.c


#include <malloc.h>

#include <pthread.h>

struct job {

/* Link field for linked list. */

struct job* next;

/* Other fields describing work to be done... */

};

/* A linked list of pending jobs. */

struct job* job_queue;

extern void process_job (struct job*);

/* A mutex protecting job_queue. */

pthread_mutex_t job_queue_mutex = PTHREAD_MUTEX_INITIALIZER;

/* Process queued jobs until the queue is empty. */

void* thread_function (void* arg)

{

while (1) {

struct job* next_job;

/* Lock the mutex on the job queue. */

pthread_mutex_lock (&job_queue_mutex);

/* Now it’s safe to check if the queue is empty. */

if (job_queue == NULL)

next_job = NULL;

else {

/* Get the next available job. */

next_job = job_queue;

/* Remove this job from the list. */

job_queue = job_queue->next;

}

/* Unlock the mutex on the job queue, since we’re done with the

queue for now. */

pthread_mutex_unlock (&job_queue_mutex);

/* Was the queue empty? If so, end the thread. */

if (next_job == NULL)

break;

/* Carry out the work. */

process_job (next_job);

/* Clean up. */

free (next_job);

}

return NULL;

}

Figure 9: Job Queue Thread Function, Protected by a Mutex

17



– Locking a fast mutex (the default kind) will cause a deadlock to
occur.

– Locking a recursive mutex does not cause a deadlock. The mu-
tex remembers how many times pthread mutex lock was called
on it by the thread that holds the lock; that thread must make
the same number of calls to pthread mutex unlock before the
mutex is actually unlocked and another thread is allowed to lock
it.

– GNU/Linux will detect and flag a double lock on an error-checking

mutex.

• By default, a GNU/Linux mutex is of the fast kind.To create a mutex
of one of the other two kinds, first create a mutex attribute object by
declaring a pthread mutexattr t variable and calling
pthread mutexattr init on a pointer to it. Then set the mutex kind
by calling pthread mutexattr setkind np;

– the first argument is a pointer to the mutex attribute object.

– the second is PTHREAD MUTEX RECURSIVE NP for a
recursive mutex, or PTHREAD MUTEX ERRORCHECK NP

for an error-checking mutex.

• Pass a pointer to this attribute object to pthread mutex init to cre-
ate a mutex of this kind, and then destroy the attribute object with
pthread mutexattr destroy.

pthread_mutexattr_t attr;

pthread_mutex_t mutex;

pthread_mutexattr_init (&attr);

pthread_mutexattr_setkind_np (&attr, PTHREAD_MUTEX_ERRORCHECK_NP);

pthread_mutex_init (&mutex, &attr);

pthread_mutexattr_destroy (&attr);

18


	Threads
	Thread Creation
	Passing Data to Threads
	Joining Threads
	Thread Return Values
	Thread Attributes

	Thread Cancellation
	Synchronous and Asynchronous Threads
	Uncancelable Critical Sections

	Thread-Specific Data
	Synchronization and Critical Sections
	Race Conditions
	Mutexes
	Mutex Deadlocks



