
1 Linux System Calls

• Your program can invoke to perform system-related functions.

• These functions fall into two categories, based on how they are imple-
mented.

– A library function is an ordinary function that resides in a library
external to your program.

∗ Most of the library functions we’ve presented so far are in the
standard C library, libc.

∗ A call to a library function is just like any other function
call. The arguments are placed in processor registers or onto
the stack, and execution is transferred to the start of the
function’s code, which typically resides in a loaded shared
library.

– A system call is implemented in the Linux kernel.

∗ When a program makes a system call, the arguments are pack-
aged up and handed to the kernel, which takes over execution
of the program until the call completes.

∗ A system call isn’t an ordinary function call, and a special
procedure is required to transfer control to the kernel.

∗ Low-level I/O functions such as open and read are examples
of system calls on Linux.

• Note that a library function may invoke one or more other library
functions or system calls as part of its implementation.

• Linux currently provides about 200 different system calls. A listing of
system calls for your version of the Linux kernel is in
/usr/include/asm/unistd.h. Some of these are for internal use by
the system, and others are used only in implementing specialized library
functions.

1.1 Using strace

• Before we start discussing system calls, it will be useful to present a
command with which you can learn about and debug system calls.

• The strace command traces the execution of another program, listing
any system calls the program makes and any signals it receives.

1

$ strace hostname

• This produces a couple screens of output. Each line corresponds to
a single system call. For each call, the system call’s name is listed,
followed by its arguments and its return value.

• In the output from ”strace hostname”, the first line shows the execve
system call that invokes the hostname program:

execve("/bin/hostname",["hostname"], [/* 49 vars */]) = 0

• The first argument is the name of the program to run; the second is
its argument list, consisting of only a single element; and the third is
its environment list, which strace omits for brevity.The next 30 or so
lines are part of the mechanism that loads the standard C library from
a shared library file.

• Toward the end are system calls that actually help do the program’s
work. The uname system call is used to obtain the system’s hostname
from the kernel,

uname({sys="Linux",node="myhostname", ...}) = 0

• Finally, the write system call produces output.

write(1,"myhostname\n",11) = 11

1.2 access: Testing File Permissions

• The access system call determines whether the calling process has ac-
cess permission to a file.

• It can check any combination of read, write, and execute permission,
and it can also check for a file’s existence.

• The access call takes two arguments.

• The return value is 0 if the process has all the specified permissions.

• If the file exists but the calling process does not have the specified
permissions, access returns 1 and sets errno to EACCES (or EROFS,
if write permission was requested for a file on a read-only file system).

• The program shown in Fig. 1 uses access to check for a file’s existence
and to determine read and write permissions.

$./check-access /mnt/cdrom/README

2

http://siber.cankaya.edu.tr/SystemsProgramming/cfiles/check-access.c

#include <errno.h>

#include <stdio.h>

#include <unistd.h>

int main (int argc, char* argv[])

{

char* path = argv[1];

int rval;

/* Check file existence. */

rval = access (path, F_OK);

if (rval == 0)

printf ("%s exists\n", path);

else {

if (errno == ENOENT)

printf ("%s does not exist\n", path);

else if (errno == EACCES)

printf ("%s is not accessible\n", path);

return 0;

}

/* Check read access. */

rval = access (path, R_OK);

if (rval == 0)

printf ("%s is readable\n", path);

else

printf ("%s is not readable (access denied)\n", path);

/* Check write access. */

rval = access (path, W_OK);

if (rval == 0)

printf ("%s is writable\n", path);

else if (errno == EACCES)

printf ("%s is not writable (access denied)\n", path);

else if (errno == EROFS)

printf ("%s is not writable (read-only filesystem)\n", path);

return 0;

}

Figure 1: Check File Access Permissions.

3

1.3 fcntl: Locks and Other File Operations

• The fcntl system call is the access point for several advanced operations
on file descriptors.

• The first argument to fcntl is an open file descriptor, and the second is
a value that indicates which operation is to be performed.

• The fcntl system call allows a program to place a read lock or a write
lock on a file, somewhat analogous to the mutex locks.

• A read lock is placed on a readable file descriptor, and a write lock is
placed on a writable file descriptor.

• More than one process may hold a read lock on the same file at the
same time, but only one process may hold a write lock, and the same
file may not be both locked for read and locked for write.

• Note that placing a lock does not actually prevent other processes from
opening the file, reading from it, or writing to it, unless they acquire
locks with fcntl as well. The program in Fig. 2 opens a file for writing
whose name is provided on the command line, and then places a write
lock on it.

$ gcc -o lock-file lock-file.c

$ touch /tmp/test-file

$./lock-file /tmp/test-file

Now, in another window, try running it again on the same file.

$./lock-file /tmp/test-file

opening /tmp/test-file

• Linux provides another implementation of file locking with the flock

call. The fcntl version has a major advantage: It works with files on
NFS file systems.

4

http://siber.cankaya.edu.tr/SystemsProgramming/cfiles/lock-file.c

#include <fcntl.h>

#include <stdio.h>

#include <string.h>

#include <unistd.h>

int main (int argc, char* argv[])

{

char* file = argv[1];

int fd;

struct flock lock;

printf ("opening %s\n", file);

/* Open a file descriptor to the file. */

fd = open (file, O_WRONLY);

printf ("locking\n");

/* Initialize the flock structure. */

memset (&lock, 0, sizeof(lock));

lock.l_type = F_WRLCK;

/* Place a write lock on the file. */

fcntl (fd, F_SETLKW, &lock);

printf ("locked; hit enter to unlock... ");

/* Wait for the user to hit enter. */

getchar ();

printf ("unlocking\n");

/* Release the lock. */

lock.l_type = F_UNLCK;

fcntl (fd, F_SETLKW, &lock);

close (fd);

return 0;

}

Figure 2: Create a Write Lock with fcntl.

5

1.4 fsync: Flushing Disk Buffers

• On most operating systems, when you write to a file, the data is not
immediately written to disk. Instead, the operating system caches the
written data in a memory buffer, to reduce the number of required disk
writes and improve program responsiveness.

• When the buffer fills or some other condition occurs (for instance,
enough time elapses), the system writes the cached data to disk all
at one time.

• However, this behavior can make programs that depend on the integrity
of disk-based records unreliable.

• For example, suppose that you are writing a transaction-processing
program that keeps a journal file.

– The journal file contains records of all transactions that have been
processed so that if a system failure occurs, the state of the trans-
action data can be reconstructed.

– It is obviously important to preserve the integrity of the journal
file whenever a transaction is processed, its journal entry should
be sent to the disk drive immediately.

• To help you implement this, Linux provides the fsync system call.

• The fsync call doesn’t return until the data has physically been written.

• The function in Fig. 3 illustrates the use of fsync. It writes a single-line
entry to a journal file.

• The fsync system call enables you to force a buffer write explicitly. You
can also open a file for synchronous I/O, which causes all writes to be
committed to disk immediately. To do this, specify the O SYNC flag
when opening the file with the open call.

1.5 getrlimit and setrlimit: Resource Limits

• The getrlimit and setrlimit system calls allow a process to read and set
limits on the system resources that it can consume.

• You may be familiar with the ulimit shell command, which enables you
to restrict the resource usage of programs you run; these system calls
allow a program to do this programmatically.

6

http://siber.cankaya.edu.tr/SystemsProgramming/cfiles/write_journal_entry.c

#include <fcntl.h>

#include <string.h>

#include <sys/stat.h>

#include <sys/types.h>

#include <unistd.h>

const char* journal_filename = "journal.log";

void write_journal_entry (char* entry)

{

int fd = open (journal_filename, O_WRONLY | O_CREAT | O_APPEND, 0660);

write (fd, entry, strlen (entry));

write (fd, "\n", 1);

fsync (fd);

close (fd);

}

Figure 3: Write and Sync a Journal Entry.

• For each resource there are two limits, the hard limit and the soft
limit.

• Both getrlimit and setrlimit take as arguments a code specifying the
resource limit type and a pointer to a structrlimit variable.

• The rlimit structure has two fields: rlim cur is the soft limit, and
rlim max is the hard limit.

• Some of the most useful resource limits that may be changed are listed
here, with their codes:

– RLIMIT CPU: The maximum CPU time, in seconds, used by a
program. This is the amount of time that the program is actually
executing on the CPU, which is not necessarily the same as wall-
clock time. If the program exceeds this time limit, it is terminated
with a SIGXCPU signal.

– RLIMIT DATA: The maximum amount of memory that a pro-
gram can allocate for its data. Additional allocation beyond this
limit will fail.

– RLIMIT NPROC: The maximum number of child processes that
can be running for this user. If the process calls fork and too many
processes belonging to this user are running on the system, fork

fails.

7

#include <sys/resource.h>

#include <sys/time.h>

#include <unistd.h>

int main ()

{

struct rlimit rl;

/* Obtain the current limits. */

getrlimit (RLIMIT_CPU, &rl);

printf("%d \n",RLIMIT_CPU);

/* Set a CPU limit of one second. */

rl.rlim_cur = 1;

setrlimit (RLIMIT_CPU, &rl);

/* Do busy work. */

while (1);

return 0;

}

Figure 4: CPU Time Limit Demonstration.

– RLIMIT NOFILE: The maximum number of file descriptors that
the process may have open at one time.

• The program in Fig. 4 illustrates setting the limit on CPU time con-
sumed by a program. It sets a 1-second CPU time limit and then spins
in an infinite loop. Linux kills the process soon afterward, when it
exceeds 1 second of CPU time.

$./limit_cpu

CPU time limit exceeded

1.6 getrusage: Process Statistics

• The getrusage system call retrieves process statistics from the kernel.

– It can be used to obtain statistics either for the current process
by passing RUSAGE SELF as the first argument,

– or for all terminated child processes that were forked by this pro-
cess and its children by passing RUSAGE CHILDREN.

• A few of the more interesting fields in struct rusage are listed here:

8

http://siber.cankaya.edu.tr/SystemsProgramming/cfiles/limit-cpu.c

#include <stdio.h>

#include <sys/resource.h>

#include <sys/time.h>

#include <unistd.h>

void print_cpu_time()

{

struct rusage usage;

getrusage (RUSAGE_SELF, &usage);

printf ("CPU time: %ld.%06ld sec user, %ld.%06ld sec system\n",

usage.ru_utime.tv_sec, usage.ru_utime.tv_usec,

usage.ru_stime.tv_sec, usage.ru_stime.tv_usec);

}

Figure 5: Display Process User and System Times.

– ru utime A struct timevalue field containing the amount of user
time, in seconds, that the process has used. User time is CPU
time spent executing the user program, rather than in kernel sys-
tem calls.

– ru stime A struct timevalue field containing the amount of sys-
tem time, in seconds, that the process has used. System time
is the CPU time spent executing system calls on behalf of the
process.

– ru maxrss The largest amount of physical memory occupied by
the process’s data at one time over the course of its execution.

• The function in Fig. 5 prints out the current process’s user and system
time.

1.7 The mlock Family: Locking Physical Memory

• The mlock family of system calls allows a program to lock some or all
of its address space into physical memory. This prevents Linux from
paging this memory to swap space, even if the program hasn’t accessed
it for a while.

• A time-critical program might lock physical memory because the time
delay of paging memory out and back may be too long or too unpre-
dictable.

• High-security applications may also want to prevent sensitive data from

9

http://siber.cankaya.edu.tr/SystemsProgramming/cfiles/print-cpu-times.c

being written out to a swap file, where they might be recovered by an
intruder after the program terminates.

• Locking a region of memory is as simple as calling mlock with a pointer
to the start of the region and the region’s length.

• For example, to allocate 32MB of address space and lock it into RAM,
you would use this code:

const int alloc_size = 32 * 1024 * 1024;

char* memory = malloc(alloc_size);

mlock(memory,alloc_size);

• To unlock a region, call munlock, which takes the same arguments as
mlock.

• Only processes with superuser privilege may lock memory with mlock.

• In the output from the command top, the SIZE column displays the
virtual address space size of each program (the total size of your pro-
gram’s code, data, and stack, some of which may be paged out to
swap space). The RSS column (for resident set size) shows the size of
physical memory that each program currently resides in.

• Include < sys/mman.h > if you use any of the mlock system calls.

1.8 mprotect: Setting Memory Permissions

• We showed how to use the mmap system call to map a file into memory.
Recall that the third argument to mmap is a bitwise or of memory
protection flags PROT READ, PROT WRITE, and PROT EXEC for
read, write, and execute permission, respectively, or PROT NONE for
no memory access.

• If a program attempts to perform an operation on a memory loca-
tion that is not allowed by these permissions, it is terminated with a
SIGSEGV (segmentation violation) signal.

• After memory has been mapped, these permissions can be modified
with the mprotect system call.

• Obtaining Page-Aligned Memory; Note that memory regions returned
by malloc are typically not page-aligned, even if the size of the memory

10

is a multiple of the page size. If you want to protect memory obtained
from malloc, you will have to allocate a larger memory region and find
a page-aligned region within it.

int fd = open ("/dev/zero",O_RDONLY);

char* memory = mmap (NULL, page_size, PROT_READ | PROT_WRITE,

MAP_PRIVATE, fd, 0);

close (fd);

mprotect (memory, page_size, PROT_READ);

• An advanced technique to monitor memory access is to protect the re-
gion of memory using mmap or mprotect and then handle the SIGSEGV
signal that Linux sends to the program when it tries to access that
memory.

• The example in Fig. 6 illustrates this technique.

1.9 readlink: Reading Symbolic Links

• The readlink system call retrieves the target of a symbolic link.

• Unusually, readlink does not NUL-terminate the target path that it
fills into the buffer. It does, however, return the number of characters
in the target path, so NUL-terminating the string is simple.

• The small program in Fig. 7 prints the target of the symbolic link
specified on its command line.

$ ln -s /usr/bin/wc my_link

$./print-symlink my_link

1.10 sysinfo: Obtaining System Statistics

• The sysinfo system call fills a structure with system statistics. Its only
argument is a pointer to a struct sysinfo.

• Some of the more interesting fields of struct sysinfo that are filled in-
clude these:

– uptime Time elapsed since the system booted, in seconds.

– totalram Total available physical RAM

– freeram Free physical RAM

11

http://siber.cankaya.edu.tr/SystemsProgramming/cfiles/mprotect.c
http://siber.cankaya.edu.tr/SystemsProgramming/cfiles/print-symlink.c

#include <fcntl.h>

#include <signal.h>

#include <stdio.h>

#include <string.h>

#include <sys/mman.h>

#include <sys/stat.h>

#include <sys/types.h>

#include <unistd.h>

static int alloc_size;

static char* memory;

void segv_handler (int signal_number)

{

printf ("memory accessed!\n");

mprotect (memory, alloc_size, PROT_READ | PROT_WRITE);

}

int main ()

{

int fd;

struct sigaction sa;

/* Install segv_handler as the handler for SIGSEGV. */

memset (&sa, 0, sizeof (sa));

sa.sa_handler = &segv_handler;

sigaction (SIGSEGV, &sa, NULL);

/* Allocate one page of memory by mapping /dev/zero. Map the memory

as write-only, intially. */

alloc_size = getpagesize ();

fd = open ("/dev/zero", O_RDONLY);

memory = mmap (NULL, alloc_size, PROT_WRITE, MAP_PRIVATE, fd, 0);

close (fd);

/* Write to the page to obtain a private copy. */

memory[0] = 0;

/* Make the the memory unwritable. */

mprotect (memory, alloc_size, PROT_NONE);

/* Write to the allocated memory region. */

memory[0] = 1;

/* All done; unmap the memory. */

printf ("all done\n");

munmap (memory, alloc_size);

return 0;

}

Figure 6: Detect Memory Access Using mprotect.

12

#include <errno.h>

#include <stdio.h>

#include <unistd.h>

int main (int argc, char* argv[])

{

char target_path[256];

char* link_path = argv[1];

/* Attempt to read the target of the symbolic link. */

int len = readlink (link_path, target_path, sizeof (target_path) - 1);

if (len == -1) {

/* The call failed. */

if (errno == EINVAL)

/* It’s not a symbolic link; report that. */

fprintf (stderr, "%s is not a symbolic link\n", link_path);

else

/* Some other problem occurred; print the generic message. */

perror ("readlink");

return 1;

}

else {

/* NUL-terminate the target path. */

target_path[len] = ’\0’;

/* Print it. */

printf ("%s\n", target_path);

return 0;

}

}

Figure 7: Print the Target of a Symbolic Link.

13

#include <linux/kernel.h>

#include <linux/sys.h>

#include <stdio.h>

#include <sys/sysinfo.h>

int main ()

{

/* Conversion constants. */

const long minute = 60;

const long hour = minute * 60;

const long day = hour * 24;

const double megabyte = 1024 * 1024;

/* Obtain system statistics. */

struct sysinfo si;

sysinfo (&si);

/* Summarize intersting values. */

printf ("system uptime : %ld days, %ld:%02ld:%02ld\n",

si.uptime / day, (si.uptime % day) / hour,

(si.uptime % hour) / minute, si.uptime % minute);

printf ("total RAM : %5.1f MB\n", si.totalram / megabyte);

printf ("free RAM : %5.1f MB\n", si.freeram / megabyte);

printf ("process count : %d\n", si.procs);

return 0;

}

Figure 8: Print System Statistics.

– procs Number of processes on the system

• The program in Fig. 8 prints some statistics about the current system.

1.11 uname

• The uname system call fills a structure with various system informa-
tion, including the computer’s network name and domain name, and
the operating system version it’s running.

• The call to uname fills in these fields:

– sysname The name of the operating system (such as Linux).

– release, version The Linux kernel release number and version level.

14

http://siber.cankaya.edu.tr/SystemsProgramming/cfiles/sysinfo.c

#include <stdio.h>

#include <sys/utsname.h>

int main ()

{

struct utsname u;

uname (&u);

printf ("%s release %s (version %s) on %s\n", u.sysname,

u.release,u.version, u.machine);

return 0;

}

Figure 9: Print Linux Version Number and Hardware Information.

– machine Some information about the hardware platform running
Linux. For x86 Linux, this is i386 or i686, depending on the
processor.

– node The computer’s unqualified hostname.

– domain The computer’s domain name.

• The small program in Fig. 9 prints the Linux release and version num-
ber and the hardware information.

2 Inline Assembly Code

• Higher-level languages such as C and C++ run on nearly all archi-
tectures and yield higher productivity when writing and maintaining
code.

• GNU Compiler Collection permits programmers to add architecture-
dependent assembly language instructions to their programs. For ex-
ample, programs using x86 instructions cannot be compiled on Power
PC computers.

• Inline assembly statements permit you to access hardware directly and
can also yield faster code.

• An asm instruction allows you to insert assembly instructions into C
and C++ programs. For example, this instruction

asm ("fsin" :"=t" (answer) : "0" (angle));

15

http://siber.cankaya.edu.tr/SystemsProgramming/cfiles/print-uname

is an x86-specific way of coding this C statement:

answer = sin (angle);

• The expression sin (angle) is usually implemented as a function call into
the math library, but if you specify the −O1 or higher optimization
flag, GCC is smart enough to replace the function call with a single
fsin assembly instruction.

2.1 When to Use Assembly Code

• Although asm statements can be abused, they allow your programs to
access the computer hardware directly, and they can produce programs
that execute quickly.

• You can use them when writing operating system code that directly
needs to interact with hardware.

• For example, /usr/include/asm/io.h contains assembly instructions
to access input/output ports directly.

• The Linux source code file /usr/src/linux/arch/i386/kernel/process.c
provides another example, using hlt in idle loop code.

• You should use inline assembly to speed up code only as a last resort.
Current compilers are quite sophisticated and know a lot about the
details of the processors for which they generate code.

• Unless you understand the instruction set and scheduling attributes of
your target processor very well, you’re probably better off letting the
compiler’s optimizers generate assembly code for you for most opera-
tions.

• Occasionally, one or two assembly instructions can replace several lines
of higher level language code.

• For example, determining the position of the most significant nonzero
bit of a nonzero integer using the C programming languages requires a
loop or floating-point computations.

• Many architectures, including the x86, have a single assembly instruc-
tion (bsr) to compute this bit position.

16

2.2 Simple Inline Assembly

• Here we introduce the syntax of asm assembler instructions with an
x86 example to shift a value 8 bits to the right:

asm ("shrl $8, %0" : "=r" (answer) : "r" (operand) : "cc");

– The first section contains an assembler instruction and its operands.
In this example, shrl right-shifts the bits in its first operand.

∗ Its first operand is represented by %0.

∗ Its second operand is the immediate constant $8.

– The second section specifies the outputs.

∗ The instruction’s one output will be placed in the C variable
answer, which must be an lvalue. The string ”=r” contains
an equals sign indicating an output operand and an r indi-
cating that answer is stored in a register.

– The third section specifies the inputs. The C variable operand
specifies the value to shift.

∗ The string ”r” indicates that it is stored in a register but
omits an equals sign because it is an input operand, not an
output operand.

– The fourth section indicates that the instruction changes the value
in the condition code cc register.

2.2.1 Converting an asm to Assembly Instructions

• GCC’s treatment of asm statements is very simple. It produces as-
sembly instructions to deal with the asm’s operands, and it replaces
the asm statement with the instruction that you specify. It does not
analyze the instruction in any way.

• For example, GCC converts this program fragment

double foo, bar;

asm ("mycool_asm %1, %0" : "=r" (bar) : "r" (foo));

to these x86 assembly instructions:

17

movl -8(%ebp),%edx

movl -4(%ebp),%ecx

#APP

mycool_asm %edx, %edx

#NO_APP

movl %edx,-16(%ebp)

movl %ecx,-12(%ebp)

• foo and bar each require two words of stack storage on a 32-bit x86
architecture.The register ebp points to data on the stack.

• The first two instructions copy foo into registers EDX and ECX on
which mycool asm operates.

• The compiler decides to use the same registers to store the answer,
which is copied into bar by the final two instructions. It chooses ap-
propriate registers, even reusing the same registers, and copies operands
to and from the proper locations automatically.

2.3 Example

• The x86 architecture includes instructions that determine the positions
of the least significant set bit and the most significant set bit in a word.

• The processor can execute these instructions quite efficiently. In con-
trast, implementing the same operation in C requires a loop and a bit
shift.

• The bsrl assembly instruction computes the position of the most sig-
nificant bit set in its first operand, and places the bit position (counting
from 0, the least significant bit) into its second operand.

• To place the bit position for number into position, we could use this
asm statement:

asm ("bsrl %1, %0" : "=r" (position) : "r" (number));

One way you could implement the same operation in C is using this
loop:

long i;

for (i = (number >> 1), position = 0; i != 0; ++position)

i >>= 1;

18

#include <stdio.h>

#include <stdlib.h>

int main (int argc, char* argv[])

{

long max = atoi (argv[1]);

long number;

long i;

unsigned position;

volatile unsigned result;

/* Repeat the operation for a large number of values. */

for (number = 1; number <= max; ++number) {

/* Repeatedly shift the number to the right, until the result is

zero. Keep count of the number of shifts this requires. */

for (i = (number >> 1), position = 0; i != 0; ++position)

i >>= 1;

/* The position of the most significant set bit is the number of

shifts we needed after the first one. */

result = position;

}

return 0;

}

Figure 10: Find Bit Position Using a Loop.

• To test the relative speeds of these two versions, we’ll place them in a
loop that computes the bit positions for a large number of values.

• The program in Fig. 10 does this using the C loop implementation.The
program loops over integers, from 1 up to the value specified on the
command line. For each value of number, it computes the most signif-
icant bit that is set.

• The program in Fig. 11 does the same thing using the inline assembly
instruction.

– Note that in both versions, we assign the computed bit position
to a volatile variable result.

– This is to enforce the compiler’s optimizer so that it does not elim-
inate the entire bit position computation; if the result is not used
or stored in memory, the optimizer eliminates the computation as
”dead code”.

$ gcc -O2 -o bit-pos-loop bit-pos-loop.c

$ gcc -O2 -o bit-pos-asm bit-pos-asm.c

19

http://siber.cankaya.edu.tr/SystemsProgramming/cfiles/bit-pos-loop.c
http://siber.cankaya.edu.tr/SystemsProgramming/cfiles/bit-pos-asm.c

#include <stdio.h>

#include <stdlib.h>

int main (int argc, char* argv[])

{

long max = atoi (argv[1]);

long number;

unsigned position;

volatile unsigned result;

/* Repeat the operation for a large number of values. */

for (number = 1; number <= max; ++number) {

/* Compute the position of the most significant set bit using the

bsrl assembly instruction. */

asm ("bsrl %1, %0" : "=r" (position) : "r" (number));

result = position;

}

return 0;

}

Figure 11: Find Bit Position Using bsrl.

$ time ./bit-pos-loop 250000000

$ time ./bit-pos-asm 250000000

• Notice that the version that uses inline assembly executes a great deal
faster.

20

	Linux System Calls
	Using strace
	access: Testing File Permissions
	fcntl: Locks and Other File Operations
	fsync: Flushing Disk Buffers
	getrlimit and setrlimit: Resource Limits
	getrusage: Process Statistics
	The mlock Family: Locking Physical Memory
	mprotect: Setting Memory Permissions
	readlink: Reading Symbolic Links
	sysinfo: Obtaining System Statistics
	uname

	Inline Assembly Code
	When to Use Assembly Code
	Simple Inline Assembly
	Converting an asm to Assembly Instructions

	Example

