
1 Exception Handling

1.1 Introduction

• Exceptions

– Indicates problem occurred in program

– Not common; An exception to a program that usually works

• Exception Handling

– Resolve exceptions

– Program may be able to continue; Controlled termination

– Write fault-tolerant programs; As an example, we will handle a
divide-by-zero error

1.2 Exception-Handling Overview

• Consider pseudocode
Perform a task

If the preceding task did not execute correctly

Perform error processing

Perform next task

If the preceding task did not execute correctly

Perform error processing

• Mixing logic and error handling

– Can make program difficult to read/debug

– Exception handling removes error correction from main line of
program

• Exception handling

– For synchronous errors (divide by zero, null pointer)

∗ Cannot handle asynchronous errors (independent of program)

∗ Disk I/O, mouse, keyboard, network messages

– Easy to handle errors

• Terminology

1

– Function that has error throws an exception

– Exception handler (if it exists) can deal with problem; Catches

and handles exception

– If no exception handler, uncaught exception; Could terminate pro-
gram

• C++ code

try{

code that may raise exception

}

catch(exceptionType){

code to handle exception

}

• try block encloses code that may raise exception

• One or more catch blocks follow

– Catch and handle exception, if appropriate

– Take parameter; if named, can access exception object

• Throw point

– Location in try block where exception occurred

– If exception handled

∗ Program skips remainder of try block

∗ Resumes after catch blocks

– If not handled

∗ Function terminates

∗ Looks for enclosing catch block (stack unwinding, 13.8)

• If no exception

– Program skips catch blocks

2

1.3 Other Error-Handling Techniques

• Ignore exception

– Typical for personal (not commercial) software

– Program may fail

• Abort program

– Usually appropriate

– Not appropriate for mission-critical software

• Set error indicators

– Unfortunately, may not test for these when necessary

• Test for error condition

– Call exit (<cstdlib>) and pass error code

• setjump and longjump

– <csetjmp>

– Jump from deeply nested function to call error handler

– Can be dangerous

• Dedicated error handling

– new can have a special handler

– Discussed 13.11

1.4 Simple Exception-Handling Example: Divide by

Zero

• Keyword throw

– Throws an exception; Use when error occurs

– Can throw almost anything (exception object, integer, etc.); throw
myObject;, throw 5;

• Exception objects

– Base class exception (<exception>)

3

– Constructor can take a string (to describe exception)

– Member function what() returns that string

• Upcoming example

– Handle divide-by-zero errors

– Define new exception class

∗ DivideByZeroException

∗ Inherit from exception

– In division function

∗ Test denominator

∗ If zero, throw exception (throw object)

– In try block

∗ Attempt to divide

∗ Have enclosing catch block; Catch DivideByZeroExcep-
tion objects

4

Figure 1: Exception-handling example that throws exceptions on attempts
to divide by zero. (Part 1 of 2)

5

Figure 2: Exception-handling example that throws exceptions on attempts
to divide by zero. (Part 2 of 2)

6

1.5 Rethrowing an Exception

• Rethrowing exceptions

– Use when exception handler cannot process exception; Can still
rethrow if handler did some processing

– Can rethrow exception to another handler

∗ Goes to next enclosing try block

∗ Corresponding catch blocks try to handle

• To rethrow

– Use statement throw;

∗ No arguments

∗ Terminates function

7

Figure 3: Rethrowing an exception. (Part 1 of 2)

8

Figure 4: Rethrowing an exception. (Part 2 of 2)

9

	Exception Handling
	Introduction
	Exception-Handling Overview
	Other Error-Handling Techniques
	Simple Exception-Handling Example: Divide by Zero
	Rethrowing an Exception

