
• Avoiding Deadlocks: The semantics of MPI Send and MPI Recv place
some restrictions on how we can mix and match send and receive op-
erations.

– For example, consider the following piece of code in which process
0 sends two messages with different tags to process 1, and process
1 receives them in the reverse order.

1 int a[10], b[10], myrank;

2 MPI_Status status;

3 ...

4 MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

5 if (myrank == 0) {

6 MPI_Send(a, 10, MPI_INT, 1, 1, MPI_COMM_WORLD);

7 MPI_Send(b, 10, MPI_INT, 1, 2, MPI_COMM_WORLD);

8 }

9 else if (myrank == 1) {

10 MPI_Recv(b, 10, MPI_INT, 0, 2, MPI_COMM_WORLD);

11 MPI_Recv(a, 10, MPI_INT, 0, 1, MPI_COMM_WORLD);

12 }

13 ...

– If MPI Send is implemented using buffering, then this code will
run correctly provided that sufficient buffer space is available.

– However, if MPI Send is implemented by blocking until the match-
ing receive has been issued, then neither of the two processes will
be able to proceed. This code fragment is not safe, as its be-
havior is implementation dependent. It is up to the programmer
to ensure that his or her program will run correctly on any MPI
implementation.

– The problem in this program can be corrected by matching the
order in which the send and receive operations are issued. Similar
deadlock situations can also occur when a process sends a message
to itself. Even though this is legal, its behavior is implementation
dependent and must be avoided.

– Improper use of MPI Send and MPI Recv can also lead to dead-
locks in situations when each processor needs to send and receive
a message in a circular fashion.

– Consider the following piece of code, in which process i sends a
message to process i + 1 (modulo the number of processes) and

1



receives a message from process i − 1(module the number of pro-
cesses).

1 int a[10], b[10], npes, myrank;

2 MPI_Status status;

3 ...

4 MPI_Comm_size(MPI_COMM_WORLD, &npes);

5 MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

6 MPI_Send(a, 10, MPI_INT, (myrank+1)%npes, 1, MPI_COMM_WORLD);

7 MPI_Recv(b, 10, MPI_INT, (myrank-1+npes)%npes, 1, MPI_COMM_WORLD);

8 ...

– When MPI Send is implemented using buffering, the program will
work correctly, since every call to MPI Send will get buffered,
allowing the call of the MPI Recv to be performed, which will
transfer the required data.

– However, if MPI Send blocks until the matching receive has been
issued, all processes will enter an infinite wait state, waiting for
the neighboring process to issue a MPI Recv operation.

– Note that the deadlock still remains even when we have only two
processes. Thus, when pairs of processes need to exchange data,
the above method leads to an unsafe program. The above example
can be made safe, by rewriting it as follows:

1 int a[10], b[10], npes, myrank;

2 MPI_Status status;

3 ...

4 MPI_Comm_size(MPI_COMM_WORLD, &npes);

5 MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

6 if (myrank%2 == 1) {

7 MPI_Send(a, 10, MPI_INT, (myrank+1)%npes, 1, MPI_COMM_WORLD);

8 MPI_Recv(b, 10, MPI_INT, (myrank-1+npes)%npes, 1, MPI_COMM_WORLD);

9 }

10 else {

11 MPI_Recv(b, 10, MPI_INT, (myrank-1+npes)%npes, 1, MPI_COMM_WORLD);

12 MPI_Send(a, 10, MPI_INT, (myrank+1)%npes, 1, MPI_COMM_WORLD);

13 }

14 ...

This new implementation partitions the processes into two groups.
One consists of the odd-numbered processes and the other of the
even-numbered processes.

2



• Sending and Receiving Messages Simultaneously: The above communi-
cation pattern appears frequently in many message-passing programs,
and for this reason MPI provides the MPI Sendrecv function that both
sends and receives a message.

– MPI Sendrecv does not suffer from the circular deadlock problems
of MPI Send and MPI Recv.

– You can think of MPI Sendrecv as allowing data to travel for
both send and receive simultaneously. The calling sequence of
MPI Sendrecv is the following:

int MPI_Sendrecv(void *sendbuf, int sendcount,

MPI_Datatype senddatatype, int dest, int sendtag,

void *recvbuf, int recvcount, MPI_Datatype recvdatatype,

int source, int recvtag, MPI_Comm comm,

MPI_Status *status)

– The arguments of MPI Sendrecv are essentially the combination
of the arguments of MPI Send and MPI Recv.

– The send and receive buffers must be disjoint, and the source and
destination of the messages can be the same or different.

– The safe version of our earlier example using MPI Sendrecv is as
follows.

1 int a[10], b[10], npes, myrank;

2 MPI_Status status;

3 ...

4 MPI_Comm_size(MPI_COMM_WORLD, &npes);

5 MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

6 MPI_SendRecv(a, 10, MPI_INT, (myrank+1)%npes, 1,

7 b, 10, MPI_INT, (myrank-1+npes)%npes, 1,

8 MPI_COMM_WORLD, &status);

9 ...

– In many programs, the requirement for the send and receive buffers
of MPI Sendrecv be disjoint may force us to use a temporary
buffer. This increases the amount of memory required by the
program and also increases the overall run time due to the extra
copy.

– This problem can be solved by using that MPI Sendrecv replace
MPI function. This function performs a blocking send and receive,
but it uses a single buffer for both the send and receive operation.

3



Figure 1: Performance of Send/Receive on a Number of Message Passing
Machines.

That is, the received data replaces the data that was sent out of
the buffer.

• Figure 1 shows the performance of the send/receive on a number of
message passing machines. In this table, Ts represents the message
start-up cost, Tb represents the per-byte cost, and Tfp is the average
cost of a floating-point operation. It should be noted that the CM-5
is blocking and uses a three-phase protocol. The iPSC long messages
also use a three-phase protocol in order to guarantee that enough buffer
space is available at the receiving node.

0.1 Overlapping Communication with Computation

• The MPI programs we developed so far used blocking send and receive
operations whenever they needed to perform point-to-point communi-
cation. Recall that a blocking send operation remains blocked until the
message has been copied out of the send buffer (either into a system
buffer at the source process or sent to the destination process).

• Similarly, a blocking receive operation returns only after the message
has been received and copied into the receive buffer.

• It will be preferable if we can overlap the transmission of the data with
the computation, as many recent distributed-memory parallel comput-
ers have dedicated communication controllers that can perform the
transmission of messages without interrupting the CPUs.

4



0.1.1 Non-Blocking Communication Operations

• In order to overlap communication with computation, MPI provides a
pair of functions for performing non-blocking send and receive opera-
tions. These functions are MPI Isend and MPI Irecv.

• MPI Isend starts a send operation but does not complete, that is, it
returns before the data is copied out of the buffer.

• Similarly, MPI Irecv starts a receive operation but returns before the
data has been received and copied into the buffer.

• With the support of appropriate hardware, the transmission and re-
ception of messages can proceed concurrently with the computations
performed by the program upon the return of the above functions.

• However, at a later point in the program, a process that has started a
non-blocking send or receive operation must make sure that this oper-
ation has completed before it proceeds with its computations. This is
because a process that has started a non-blocking send operation may
want to overwrite the buffer that stores the data that are being sent, or
a process that has started a non-blocking receive operation may want
to use the data it requested.

• To check the completion of non-blocking send and receive operations,
MPI provides a pair of functions MPI Test and MPI Wait. The first
tests whether or not a non-blocking operation has finished and the
second waits (i.e., gets blocked) until a non-blocking operation actually
finishes.

int MPI_Isend(void *buf, int count, MPI_Datatype datatype,

int dest, int tag, MPI_Comm comm, MPI_Request *request)

int MPI_Irecv(void *buf, int count, MPI_Datatype datatype,

int source, int tag, MPI_Comm comm, MPI_Request *request)

• MPI Isend and MPI Irecv functions allocate a request object and re-
turn a pointer to it in the request variable. This request object is used
as an argument in the MPI Test and MPI Wait functions to identify the
operation whose status we want to query or to wait for its completion.

• Note that the MPI Irecv function does not take a status argument
similar to the blocking receive function, but the status information
associated with the receive operation is returned by the MPI Test and
MPI Wait functions.

5



int MPI_Test(MPI_Request *request, int *flag, MPI_Status *status)

int MPI_Wait(MPI_Request *request, MPI_Status *status)

• MPI Test tests whether or not the non-blocking send or receive opera-
tion identified by its request has finished.

– It returns flag = true (non-zero value in C) if it completed, oth-
erwise it returns false (a zero value in C).

– In the case that the non-blocking operation has finished, the re-

quest object pointed to by request is deallocated and request is set
to MPI REQUEST NULL. Also the status object is set to contain
information about the operation.

– If the operation has not finished, request is not modified and the
value of the status object is undefined. The MPI Wait function
blocks until the non-blocking operation identified by request com-
pletes.

• For the cases that the programmer wants to explicitly deallocate a
request object, MPI provides the following function.

int MPI_Request_free(MPI_Request *request)

Note that the deallocation of the request object does not have any effect
on the associated non-blocking send or receive operation. That is, if it
has not yet completed it will proceed until its completion. Hence, one
must be careful before explicitly deallocating a request object, since
without it, we cannot check whether or not the non-blocking operation
has completed.

• A non-blocking communication operation can be matched with a cor-
responding blocking operation. For example, a process can send a
message using a non-blocking send operation and this message can be
received by the other process using a blocking receive operation.

• Avoiding Deadlocks; by using non-blocking communication operations
we can remove most of the deadlocks associated with their blocking
counterparts. For example, the following piece of code is not safe.

1 int a[10], b[10], myrank;

2 MPI_Status status;

3 ...

6



4 MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

5 if (myrank == 0) {

6 MPI_Send(a, 10, MPI_INT, 1, 1, MPI_COMM_WORLD);

7 MPI_Send(b, 10, MPI_INT, 1, 2, MPI_COMM_WORLD);

8 }

9 else if (myrank == 1) {

10 MPI_Recv(b, 10, MPI_INT, 0, 2, &status, MPI_COMM_WORLD);

11 MPI_Recv(a, 10, MPI_INT, 0, 1, &status, MPI_COMM_WORLD);

12 }

13 ...

However, if we replace either the send or receive operations with their
non-blocking counterparts, then the code will be safe, and will correctly
run on any MPI implementation.

1 int a[10], b[10], myrank;

2 MPI_Status status;

3 MPI_Request requests[2];

4 ...

5 MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

6 if (myrank == 0) {

7 MPI_Send(a, 10, MPI_INT, 1, 1, MPI_COMM_WORLD);

8 MPI_Send(b, 10, MPI_INT, 1, 2, MPI_COMM_WORLD);

9 }

10 else if (myrank == 1) {

11 MPI_Irecv(b, 10, MPI_INT, 0, 2, &requests[0], MPI_COMM_WORLD);

12 MPI_Irecv(a, 10, MPI_INT, 0, 1, &requests[1], MPI_COMM_WORLD);

13 }

14 ...

This example also illustrates that the non-blocking operations started
by any process can finish in any order depending on the transmission
or reception of the corresponding messages. For example, the second
receive operation will finish before the first does.

0.2 Collective Communication and Computation Op-

erations

• MPI provides an extensive set of functions for performing many com-
monly used collective communication operations. All of the collective

7



communication functions provided by MPI take as an argument a com-
municator that defines the group of processes that participate in the
collective operation.

• All the processes that belong to this communicator participate in the
operation, and all of them must call the collective communication func-
tion.

• Even though collective communication operations do not act like barri-
ers, these act like a virtual synchronization step in the following sense:
the parallel program should be written such that it behaves correctly
even if a global synchronization is performed before and after the col-
lective call.

– Barrier; the barrier synchronization operation is performed in
MPI using the MPI Barrier function.

int MPI_Barrier(MPI_Comm comm)

The only argument of MPI Barrier is the communicator that de-
fines the group of processes that are synchronized. The call to
MPI Barrier returns only after all the processes in the group have
called this function.

– Broadcast; the one-to-all broadcast operation is performed in MPI
using the MPI Bcast function.

int MPI_Bcast(void *buf, int count, MPI_Datatype datatype,

int source, MPI_Comm comm)

MPI Bcast sends the data stored in the buffer buf of process source

to all the other processes in the group. The data received by each
process is stored in the buffer buf. The data that is broadcast
consist of count entries of type datatype.

• Since the operations are virtually synchronous, they do not require
tags.

• In some of the collective functions data is required to be sent from
a single process (source-process) or to be received by a single process
(target-process). In these functions, the source- or target-process is one
of the arguments supplied to the routines. All the processes in the group
(i.e., communicator) must specify the same source- or target-process.

8



Table 1: Predefined reduction operations.

Operation Meaning Datatypes
MPI MAX Maximum C integers and floating point
MPI MIN Minimum C integers and floating point
MPI SUM Sum C integers and floating point
MPI PROD Product C integers and floating point
MPI LAND Logical AND C integers
MPI BAND Bit-wise AND C integers and byte
MPI LOR Logical OR C integers
MPI BOR Bit-wise OR C integers and byte
MPI LXOR Logical XOR C integers
MPI BXOR Bit-wise XOR C integers and byte
MPI MAXLOC max-min value-location Data-pairs
MPI MINLOC min-min value-location Data-pairs

0.2.1 Reduction

• The all-to-one reduction operation is performed in MPI using the MPI Reduce
function.

int MPI_Reduce(void *sendbuf, void *recvbuf, int count,

MPI_Datatype datatype, MPI_Op op, int target,

MPI_Comm comm)

• MPI Reduce combines the elements stored in the buffer sendbuf of each
process in the group, using the operation specified in op, and returns
the combined values in the buffer recvbuf of the process with rank
target.

• Both the sendbuf and recvbuf must have the same number of count

items of type datatype. Note that all processes must provide a recvbuf

array, even if they are not the target of the reduction operation.

• When count is more than one, then the combine operation is applied
element-wise on each entry of the sequence.

• MPI provides a list of predefined operations that can be used to com-
bine the elements stored in sendbuf (See Table 1). MPI also allows
programmers to define their own operations.

9



0.2.2 Gather

• The gather operation is performed in MPI using the MPI Gather func-
tion.

int MPI_Gather(void *sendbuf, int sendcount,

MPI_Datatype senddatatype, void *recvbuf, int recvcount,

MPI_Datatype recvdatatype, int target, MPI_Comm comm)

• Each process, including the target process, sends the data stored in the
array sendbuf to the target process. As a result, if p is the number of
processors in the communication comm, the target process receives a
total of p buffers.

• The data is stored in the array recvbuf of the target process, in a rank
order. That is, the data from process with rank i are stored in the
recvbuf starting at location i * sendcount (assuming that the array
recvbuf is of the same type as recvdatatype).

• The data sent by each process must be of the same size and type. That
is, MPI Gather must be called with the sendcount and senddatatype

arguments having the same values at each process.

• The information about the receive buffer, its length and type applies
only for the target process and is ignored for all the other processes.
The argument recvcount specifies the number of elements received by
each process and not the total number of elements it receives. So,
recvcount must be the same as sendcount and their datatypes must be
matching.

• MPI also provides the MPI Allgather function in which the data are
gathered to all the processes and not only at the target process.

int MPI_Allgather(void *sendbuf, int sendcount,

MPI_Datatype senddatatype, void *recvbuf, int recvcount,

MPI_Datatype recvdatatype, MPI_Comm comm)

The meanings of the various parameters are similar to those for MPI Gather;
however, each process must now supply a recvbuf array that will store
the gathered data.

10



• In addition to the above versions of the gather operation, in which the
sizes of the arrays sent by each process are the same, MPI also provides
versions in which the size of the arrays can be different. MPI refers to
these operations as the vector variants.

int MPI_Gatherv(void *sendbuf, int sendcount,

MPI_Datatype senddatatype, void *recvbuf,

int *recvcounts, int *displs,

MPI_Datatype recvdatatype, int target, MPI_Comm comm)

int MPI_Allgatherv(void *sendbuf, int sendcount,

MPI_Datatype senddatatype, void *recvbuf,

int *recvcounts, int *displs, MPI_Datatype recvdatatype,

MPI_Comm comm)

These functions allow a different number of data elements to be sent
by each process by replacing the recvcount parameter with the array
recvcounts.

0.2.3 Scatter

• The scatter operation is performed in MPI using the MPI Scatter func-
tion.

int MPI_Scatter(void *sendbuf, int sendcount,

MPI_Datatype senddatatype, void *recvbuf, int recvcount,

MPI_Datatype recvdatatype, int source, MPI_Comm comm)

• The source process sends a different part of the send buffer sendbuf to
each processes, including itself.

• The data that are received are stored in recvbuf. Process i receives
sendcount contiguous elements of type senddatatype starting from the
i * sendcount location of the sendbuf of the source process (assuming
that sendbuf is of the same type as senddatatype).

• Similarly to the gather operation, MPI provides a vector variant of the
scatter operation, called MPI Scatterv, that allows different amounts
of data to be sent to different processes.

11



0.2.4 All-to-All

• The all-to-all personalized communication operation is performed in
MPI by using the MPI Alltoall function.

int MPI_Alltoall(void *sendbuf, int sendcount,

MPI_Datatype senddatatype, void *recvbuf, int recvcount,

MPI_Datatype recvdatatype, MPI_Comm comm)

• Each process sends a different portion of the sendbuf array to each
other process, including itself.

• Each process sends to process i sendcount contiguous elements of type
senddatatype starting from the i * sendcount location of its sendbuf

array.

• The data that are received are stored in the recvbuf array. Each process
receives from process i recvcount elements of type recvdatatype and
stores them in its recvbuf array starting at location i * recvcount.

• MPI also provides a vector variant of the all-to-all personalized commu-
nication operation called MPI Alltoallv that allows different amounts
of data to be sent to and

0.3 Groups and Communicators

• In many parallel algorithms, communication operations need to be re-
stricted to certain subsets of processes. MPI provides several mecha-
nisms for partitioning the group of processes that belong to a commu-
nicator into subgroups each corresponding to a different communica-
tor. A general method for partitioning a graph of processes is to use
MPI Comm split that is defined as follows:

int MPI_Comm_split(MPI_Comm comm, int color, int key,

MPI_Comm *newcomm)

• This function is a collective operation, and thus needs to be called by
all the processes in the communicator comm.

• The function takes color and key as input parameters in addition to
the communicator, and partitions the group of processes in the com-
municator comm into disjoint subgroups.

12



Figure 2: Using MPI Comm split to split a group of processes in a commu-
nicator into subgroups.

• Each subgroup contains all processes that have supplied the same value
for the color parameter.

• Within each subgroup, the processes are ranked in the order defined
by the value of the key parameter, with ties broken according to their
rank in the old communicator (i.e., comm).

• A new communicator for each subgroup is returned in the newcomm

parameter.

• Figure 2 shows an example of splitting a communicator using the
MPI Comm split function. If each process called MPI Comm split us-
ing the values of parameters color and key as shown in Fig 2, then
three communicators will be created, containing processes 0, 1, 2, 3, 4,
5, 6, and 7, respectively.

13


	Overlapping Communication with Computation
	Non-Blocking Communication Operations

	Collective Communication and Computation Operations
	Reduction
	Gather
	Scatter
	All-to-All

	Groups and Communicators

