
1 Shared Memory I; Processes, Threads

1. Processes; the following program determines the sum the elements of
an array A[1000], we also need lockinit, lock, unlock.

• The sequential structure is

int sum, A[1000];

sum = 0;

for (i = 0, i < 1000; i++) sum += A[i];

• Division Into two processes; in this method, we will divide the
program into two parts, one doing the even i and one doing the
odd i.

– Running the two processes, sum will need to be shared.

• For demonstration purpose; creating a library is also presented.

– After creating the C source files, compile the files into object
files.

gcc -c -fPIC lock.c

gcc -c -fPIC lockinit.c

gcc -c -fPIC unlock.c

– Static library

∗ Create a static library called libspin.a. Then, create an
index inside the library.

ar rc libspin.a lock.o lockinit.o unlock.o

ranlib libspin.a

∗ Remember to prototype your library function calls so that
you do not get implicit declaration errors.

∗ When linking your program to the libraries, make sure
you specify where the library can be found:

gcc -o process process.c -L. -lspin

The −L. piece tells gcc to look in the current directory
in addition to the other library directories for finding
libspina.a.

– Shared library

∗ To create a shared library

gcc -shared -fPIC -o libspin.so lock.o lockinit.o unlock.o

∗ The −fPIC option is to tell the compiler to create Po-
sition Independent Code (create libraries using relative

1

http://siber.cankaya.edu.tr/ParallelComputing/cfiles/process.c
http://siber.cankaya.edu.tr/ParallelComputing/cfiles/lockinit.c
http://siber.cankaya.edu.tr/ParallelComputing/cfiles/lock.c
http://siber.cankaya.edu.tr/ParallelComputing/cfiles/unlock.c


addresses rather than absolute addresses because these
libraries can be loaded multiple times)

∗ To compile the actual program using the libraries

gcc -o process1 process.c -L. -lspin

∗ The key to making your program work with dynamic li-
braries is through the LD LIBRARY PATH environ-
ment variable.

∗ Append to the variable

export LD_LIBRARY_PATH=/path/to/library:${LD_LIBRARY_PATH}

– Notice they are exactly the same as creating. Although, it
is compiled in the same way, none of the actual library code
is inserted into the executable, hence the dynamic/shared li-
brary.

– Shared libraries dynamically access libraries at run-time thus
the program needs to know where the shared library is stored.

– The executable is much smaller than with static libraries. If
it is a standard library that can be installed, there is no need
to compile it into the executable at compile time!

2. Threads;

• The following program determines the sum by using threads;

– Compile the code as

gcc -o sumthread sumthread.c -lpthread

– Increase the number of the threads and change the size of
array. Observe if the all the threads have the partial sum all
the time. Why not?

• The following code segment is for finding the minimum of a list of
integers.

– The list is partitioned equally among the threads.

– The size of each thread’s partition is stored in the variable
partial list size.

– The pointer to the start of each thread’s partial list is passed
to it as the pointer list ptr.

Complete the program, compile and execute.

1 #include <pthread.h>

2 void *find_min(void *list_ptr);

3 pthread_mutex_t minimum_value_lock;

2

http://siber.cankaya.edu.tr/ParallelComputing/cfiles/sumthread.c


4 int minimum_value, partial_list_size;

5

6 main() {

7 /* declare and initialize data structures and list */

8 minimum_value = MIN_INT;

9 pthread_init();

10 pthread_mutex_init(&minimum_value_lock, NULL);

11

12 /* initialize lists, list_ptr, and partial_list_size */

13 /* create and join threads here */

14 }

15

16 void *find_min(void *list_ptr) {

17 int *partial_list_pointer, my_min, i;

18 my_min = MIN_INT;

19 partial_list_pointer = (int *) list_ptr;

20 for (i = 0; i < partial_list_size; i++)

21 if (partial_list_pointer[i] < my_min)

22 my_min = partial_list_pointer[i];

23 /* lock the mutex associated with minimum_value and

24 update the variable as required */

25 pthread_mutex_lock(&minimum_value_lock);

26 if (my_min < minimum_value)

27 minimum_value = my_min;

28 /* and unlock the mutex */

29 pthread_mutex_unlock(&minimum_value_lock);

30 pthread_exit(0);

31 }

• For computing the value of π; the following program computes the
value of the π number by a given number of threads;

– Analyze the code for the possible synchronization issues.

– Compile and execute the code by increasing the number of the
threads and sample points.

– Make the following procedures:

∗ Draw a figure as Execution Time vs Number of Threads. If
you increase the number of threads as the multiple of 2, then
take the ln. If you increase the number of threads as the
multiple of 10, then take the log.

∗ Label the curve as ”local”.

∗ Illustrate an important performance overhead called false shar-
ing. Consider the following change to the program: instead
of incrementing a local variable, local hits, and assigning it to

3

http://siber.cankaya.edu.tr/ParallelComputing/cfiles/pithread.c


the array entry outside the loop, we now directly increment
the corresponding entry in the hits array. This can be done
by changing line 64 to *(hit pointer) ++;, and deleting line
67.

∗ Repeat the procedure above and label the curve as ”spaced 1”.
This represents a significant slowdown instead of a speedup!
The drastic impact of this seemingly harmless change is ex-
plained by a phenomenon called false sharing. In this exam-
ple, two adjoining data items (which likely reside on the same
cache line) are being continually written to by threads that
might be scheduled on different processors. We know that a
write to a shared cache line results in an invalidate and a sub-
sequent read must fetch the cache line from the most recent
write location. With this in mind, we can see that the cache
lines corresponding to the hits array generate a large number
of invalidates and reads because of repeated increment opera-
tions. This situation, in which two threads ’falsely’ share data
because it happens to be on the same cache line, is called false
sharing.

∗ It is in fact possible to use this simple example to estimate
the cache line size of the system. We change hits to a two-
dimensional array and use only the first column of the array to
store counts. By changing the size of the second dimension, we
can force entries in the first column of the hits array to lie on
different cache lines (since arrays in C are stored row-major).

∗ Make this change and repeat the procedure above for two
different size values. Label the curves as ”spaced 16” and
”spaced 32”, in which the second dimension of the hits array
is 16 and 32 integers, respectively. It is evident that as the
entries are spaced apart, the performance improves. This is
consistent with our understanding that spacing the entries out
pushes them into different cache lines, thereby reducing the
false sharing overhead.

∗ Draw this 4 lines in one figure. Make the Speed-Up and Effi-
ciency analysis.

4


