
1 Message Passing Architecture

Figure 1: Message passing systems.

• Message passing systems provide alternative methods for communica-
tion and movement of data among multiprocessors (compared to shared
memory multiprocessor systems, see Fig. 1).

• There is no global memory so it is necessary to move data from one
local memory to another by means of message passing (send/receive
pairs).

• Each processor has access to its own local memory and can communi-
cate with other processors using the interconnection network. These
systems eventually gave way to Internet-connected systems where the
processor/memory nodes are cluster nodes, servers, clients, or nodes in
a greater grid.

• Aspects of message passing systems;

– programming model,

– message routing,

– network switching,

– processor support for message passing,

– examples of message passing systems.

1.1 Introduction to Message Passing

• A message passing architecture is used to communicate data among a
set of processors without the need for a global memory.

1



• The elimination of the need for a large global memory together with
its synchronization requirement, gives message passing schemes an edge
over shared memory schemes.

• Each processor has its own address space. Nodes communicate with
each other by

– links (called external channels)

– via an interconnection network, normally a static-type network.

∗ In particular, hypercubes and the nearest-neighbor two-dimensional
and three-dimensional mesh interconnection networks have re-
ceived considerable attention over the years.

∗ Two important factors must be considered in designing mes-
sage passing interconnection networks:

· link bandwidth; defined as the number of bits that can be
transmitted per unit of time (bits/s).

· network latency; defined as the time to complete a mes-
sage transfer through the network.

• In executing a given application program, the program is divided into
concurrent processes; each is executed on a separate processor.

• If the number of processes is larger than the number of processors,
then more than one process will have to be executed on a processor in
a time-shared fashion.

• Processes running on a given processor use what is called internal chan-

nels to exchange messages among themselves.

• Processes running on different processors use the external channels to
exchange messages (see Fig. 2, in this figure, a horizontal line repre-
sents the execution of each process and lines extended among processes
represent messages exchanged among these processes.).

• An important advantage of this form of data exchange is the elimination
of the need for synchronization constructs, such as semaphores, which
results in performance improvement.

• In addition, a message passing scheme offers flexibility in accommodat-
ing a large number of processors in addition to being readily scalable.

2



Figure 2: An example of a message passing system.

• A message is defined as a logical unit for internode communication; it
is considered as a collection of related information that travels together
as an entity. A message can be

– an instruction,

– data,

– synchronization,

– interrupt signals.

• A message passing system interacts with the outside world by receiving
input message(s) and/or outputting message(s). It is essential that the
outside world perceives a consistent behavior of a given message passing
system.

• Process Granularity; The size of a process in a message passing system
can be described by a parameter called process granularity.

Process Granularity =
computation time

communication time

Three types of granularity can be distinguished. These are:

1. Coarse granularity: Each process holds a large number of sequen-
tial instructions and takes a substantial amount of time to execute.

3



2. Medium granularity: Since the process communication overhead
increases as the granularity decreases, medium granularity de-
scribes a middle ground where communication overhead is re-
duced.

3. Fine granularity: Each process contains a few sequential instruc-
tions (as few as just one instruction).

Message passing multiprocessors uses mostly medium or coarse granu-
larity.

1.2 Routing in Message Passing Networks

• Routing is defined as the techniques used for a message to select a path
over the network channels.

• The identification of a set of permissible paths that may be used by
a message to reach its destination, and a function, ν, that selects one
path from the set of permissible paths.

• A routing technique is said to be adaptive if, for a given source and
destination pair, the path taken by the message depends on network
conditions, such as network congestion.

• Contrary to adaptive routing, a deterministic routing technique, deter-
mines the path using only the source and destination, regardless of the
network conditions.

– Although simple, deterministic routing techniques make inefficient
use of the bandwidth available between the source and destination.

• Routing techniques can also be classified based on the method used to
make the routing decision as

– centralized (self), the routing decisions regarding the entire path
are made before sending the message. Centralized routing requires
complete knowledge of the status of the rest of the nodes in the
network.

– distributed routing, each node decides by itself which channel
should be used to forward the incoming message. Distributed
routing requires knowledge of only the status of the neighboring
nodes.

4



• Examples of the deterministic routing algorithms include the e-cube
or dimension order routing used in the mesh and torus multicomputer
networks and the XOR routing in the hypercube.

1.2.1 Routing for Broadcasting and Multicasting

• There are two types of communication operations in message passing
systems,

– one-to-one (point-to-point or unicast), a node is allowed to com-
municate a message to only a single destination, which may be its
immediate neighbors.

– collective communications, a number of routing operations are
defined under collective communication.

∗ Among these, broadcast and multicast are the most widely
used.

∗ In broadcast, also known as the one-to-all operation, one node
sends the same message to all other nodes. Broadcast is
mainly used to distribute data from one node to others during
computation of a distributed memory program.

∗ In multicast, also known as the one-to-many operation, one
node sends its messages to k distinct destinations. Multi-
cast has several uses in large-scale multiprocessors, including
parallel search algorithms and single program multiple data
(SPMD) computation.

• Practical broadcast and multicast routing algorithms must be deadlock-
free and should transmit the message to each destination node in as
little time and using as short a path as possible.

• One technique to achieve this is to deliver the message along a common
path to as many destinations as possible

– and then replicate the message and forward each copy on a differ-
ent channel band for a unique set of destination nodes.

– The path followed by each copy may further branch in this manner
until the message is delivered to every destination node.

– In such a tree-based communication model, the destination set is
partitioned at the source and separate copies are sent on one or
more outgoing links.

5



Figure 3: Hypercube broadcast tree-based communication.

– A message may be replicated at intermediate nodes and forwarded
along multiple outgoing links towards disjoint subsets of destina-
tions.

• Another method to implement a multicast operation uses separate ad-
dressing.

– In this case, a separate copy of the message is sent directly from
the source to every destination. Clearly, this is an inefficient tech-
nique.

A hypercube broadcast tree-based nearest-neighbor communication is
shown in Fig. 3.

1.2.2 Routing Potential Problems

• A number of possible problems can result from the use of certain rout-
ing mechanisms in message passing systems. These include deadlock,
livelock, and starvation.

• Deadlock; When two messages each hold the resources required by the
other in order to move, both messages will be blocked. This is called a
deadlock.

• Resources must be allocated in a manner that avoids deadlock. A
straightforward, but inefficient, way to solve the deadlock problem is
to allow rerouting (maybe discarding) of the messages participating in
a deadlock situation.

6



– Rerouting of messages gives rise to non-minimal routing, while
discarding messages requires that messages be recovered at the
source and retransmitted. This preemptive technique leads to
long latency and, therefore, is not used by most message passing
networks.

– A more common technique is to avoid the occurrence of deadlock.
This can be achieved by ordering network resources and requiring
that messages request use of these resources in a strict monotonic
order. This restricted way for using network resources prevents
the occurrence of circular wait, and hence prevents the occurrence
of deadlock.

• Livelock; Livelock describes a situation in which a message keeps going
around the network and never reaches its destination.

• It is a phenomenon that results from using adaptive routing algorithms
where messages are rerouted in the hope to find another path to their
destinations.

• When nodes need to communicate, they inject their messages into the
network.

– A static injection model results when all nodes inject their mes-
sages at the same moment, with the network clear of messages.

– This is to be compared to dynamic injection, according to which
nodes can inject their messages at arbitrary times. Livelock can
take place if dynamic injection is used. It cannot occur if static
injection is used.

• A number of routing policies can be used to avoid livelock. They are
based on the following. Let S be a set of priorities that is totally or-
dered. Whenever a message is injected into the network, some priority
is assigned to it. In order to avoid livelock, the following must hold.

– Messages are routed according to their priorities;

– Once a message has been injected, only a finite number of messages
will be injected with higher or equal priority.

• Starvation; A node is said to suffer from starvation if it has a message
to inject into the network but is never allowed to do so.

– Starvation cannot arise if static injection is used.

7



– A number of routing policies can be used in order to avoid star-
vation taking place.

∗ The simplest among them is to allow each node to have its
injection queue, where it stores the messages it wants to inject
into the network.

∗ This queue is considered in the same way as the queues of the
incoming links to that node and it competes with them.

∗ As long as a fair queue management policy is used, this method
prevents starvation from happening.

∗ The main disadvantage is that a node with a high message
injection rate can slow down all the other nodes in the net-
work.

1.3 Switching Mechanisms in Message Passing

• Switching mechanisms refer to the mechanisms used to remove data
from an input channel and place it on an output channel.

• Network latency is highly dependent on the switching mechanism used.
A number of switching mechanisms have been in use.

– store-and-forward,

– circuit-switching,

– virtual cut-through,

– wormhole,

– pipelined circuit-switching.

• In circuit-switching networks, the path between the source and desti-
nation is first determined, all links along that path are reserved, and
no buffers are needed in each node. After data transfer, reserved links
are released for use by other messages.

– An important characteristic of the circuit-switching technique is
that the source and destination are guaranteed a certain band-
width and maximum latency when communication is established
between them.

– This static bandwidth allocation regardless of the actual use is the
main drawback of the circuit-switching approach.

8



– However, static bandwidth allocation leads to a simple buffering
strategy. In addition, circuit-switching networks are characterized
by having the smallest amount of delay.

– This is because message routing overhead is only needed when
the circuit is set up; subsequent messages suffer no, or minimal,
additional delay.

– Therefore, circuit-switching networks can be advantageously used
in the case of a large number of message transfers.

• The store-and-forward switching mechanism provides an alternate data
transfer scheme. The main idea is to offer dynamic bandwidth alloca-
tion to messages as they flow through the network, thus avoiding the
main drawback of the circuit-switching mechanism.
Two main types of store-and-forward networks are common. These are
packet-switched and virtual cut-through networks.

– In packet-switched networks,

∗ Each message is divided into smaller fixed size parts, called
packets, before being transmitted.

∗ Each node must contain enough buffers to hold received pack-
ets before transmitting them.

∗ A complete path from source to destination may not be avail-
able at the start of transmission. As links become available,
packets are moved from node to node until they reach the
destination node.

∗ Since packets are routed separately through the network, they
may follow different paths to the destination node.

∗ This may lead to packets arriving out of order at the desti-
nation. Therefore, an end-to-end message assembly scheme is
needed, incurring additional overhead.

∗ Packet-switched networks suffer also from the need for routing
overhead for each packet, rather than message, sent into the
network.

∗ In addition to dynamically allocating bandwidth, packet-switched
networks have the advantage of reduced buffer requirements
in each node.

– In virtual cut-through, a packet is stored at an intermediate node
only if the next required channel is busy.

9



Figure 4: Communication latencies in the store-and-forward (SF) and worm-
hole (WH) techniques.

∗ Virtual cut-through is similar to the packet-switching tech-
nique, with the following difference. In contrast to packet
switching, when a packet arrives at an intermediate node and
its selected outgoing channel is free, the packet is sent out
to the adjacent node towards its destination before it is com-
pletely received.

∗ Therefore, the delay due to unnecessary buffering in front of
an idle channel is avoided.

• In order to reduce the size of the required buffers and decrease the
incurred network latency, a technique called wormhole routing has been
introduced. Here, a packet is divided into smaller units called flits (flow
control bits).

• These flits move in a pipeline fashion with a header flit leading the way
to the destination node.

• When the header flit is blocked due to network congestion, the remain-
ing flits are also blocked.

• Only a buffer that can store a flit is required for a successful operation
of the wormhole routing technique. The technique is known to pro-
duce a latency that is independent of the path length and it requires
less storage at all nodes compared to the store-and-forward packet-
switching technique. Fig. 4 illustrate the difference in performance
between the store and-forward (SF) and wormhole (WH) routing in
terms of communication latency.

• In these figures, L represents the packet length in bits, W represents
the channel bandwidth in bits/cycle, D is the number of channels, and

10



Tc is the cycle time. As can be seen from the figures, the latency of the
SF and that of the WH are given respectively by

TSF = Tc〈
L

W
∗ D〉, and TWF = Tc〈

L

W
+ D〉,

Table 5 shows an overall comparison of a number of switching mecha-
nisms.

Figure 5: Comparison Among a Number of Switching Techniques.

1.4 Processor Support for Message Passing

• Processors that support message passing are those processors that con-
tain the special instructions needed to support interprocess message
communications. A number of features are required:

1. A port is a communication channel. It is a reference object for
tasks and threads. Two main operations can be performed on
ports: send and receive.

2. Messages are used as communication among objects. A message is
divided into a header and a body. The size of the body is variable
while that of the header is fixed. A message holds information
exchanged between processes.

3. Port sets: A task can hold multiple access rights (send and receive)
on ports.

– Multiple tasks can hold send access to a single port.

11



– On the other hand, one task can hold receive access at a given
time.

– In port set, a task can have either all or none of the access
rights to a group of ports. Ports must be mutually exclusive
in the sense that a port cannot be in two different sets at a
given time.

• The Intel iPAX 432 uses message passing communications and supports
them directly. It also uses port objects that work as a competitor to
the path of the message. The processor contains a message queue. A
message communication can be arranged depending on the following:

– Time of arrival (such as the “first-in-first-out”, FIFO);

– Priority;

– Deadline within priority.

• The IBM AS/400 supports message passing by having an event object
type that contains a field supporting the contents of the message. This
field is called the event data field. AS/400 processor operations are
send and receive.

1.5 Example Message Passing Architectures

• Examples of message passing machines include Caltech Hypercube,
the Inmos Transputer systems, Meiko CS-2, Cosmic Cube, nCUBE/2,
iPSC/2, iPSC/860, CM-5. Other recent systems include the IBM Scal-
able Power Series (IBM POWERparallel 3, SP 3).

• The Caltech Hypercube (the Cosmic Cube) was an n-dimensional hy-
percube system with a single host, known as the Intermediate Host
(IH), for global control. The original system was based on the simple
store-and-forward routing mechanism. The system started with a set
of routine libraries known as the crystalline operating system (CrOS),
which supported C and FORTRAN. The system supported only col-
lective operations (broadcast) to/from the IH. Two years later, the
Caltech project team introduced a hardware wormhole routing chip.

• The Cosmic Cube is considered the first working hypercube multicom-
puter message passing system. The Cosmic cube system has been con-
structed using 64 node for the Intel iPSC. Each node has 128 KB of
dynamic RAM that has parity checking for error detection but no cor-
rection. In addition, each node has 8 KB of ROM in order to store the

12



initialization and bootstrap programs. The basic packet size is 64 bits
with queues in each node. In this system, messages are communicated
via transmissions (send/receive).

• The Meiko Computing Surface CS-1 was the first Inmos Transputer
T800-based system. The Transputer was a 32-bit microprocessor with
fast task-switching capability through hardware intercommunication.
The system was programmed using a communication sequential pro-
cesses (CSP) language called Occam. The language used abstract links
known as channels and supported synchronous blocking send and re-
ceive primitives.

• The Intel iPSC is a commercial message passing hypercube developed
after the Cosmic Cube. The iPSC/1 used Intel 286 processors with a
287 floating-point coprocessor. Each node consists of a single board
computer having two buses, a process bus and I/O bus. Nodes are
controlled by the Cube manager. Each node has seven communica-
tion channels (links) to communicate with other nodes and a separate
channel for communication with the Cube Manager. FORTRAN mes-
sage passing routines are supported. The software environment used in
iPSC1 was called NX1, and has a more distributed processes environ-
ment than those included in the Caltech CrOS.

• The nCUBE/2 has up to a few thousand nodes connected in a binary
hypercube network. Each node consists of a CPU-chip and DRAM
chips on a small double-sided printed circuit board. The CPU chip
contains a 64 bit integer unit, an IEEE floating-point unit, a DRAM
memory interface, a network interface with 28 DMA channels, and
routers that support cut-through routing across a 13-dimensional hy-
percube. The processor runs at 20 MHz and delivers roughly 5 MIPS
or 1.5 MFLOPS.

• The Thinking Machine CM-5 had up to a few thousand nodes inter-
connected in a hypertree (incomplete fat tree). Each node consists of
a 33 MHz SPARC RISC processor chip-set, local DRAM memory, and
a network interface to the hypertree and broadcast/scan/prefix con-
trol networks. Compared to its predecessors, CM-5 represented a true
distributed memory message passing system. It featured two intercon-
nection networks, and Sparc-based processing nodes. Each node has
four vector units for pipeline arithmetic operations. The CM-5 pro-
gramming environment consisted of the CMOST operating system, the

13



CMMD message passing library, and various array-style compilers. The
latter includes CMF, supporting a F90-like SIMD programming style.

• The IBM Scalable POWERparallel 3 (SP 3) is the most recent IBM
supercomputer series (1999/2000). The SP 3 consists of 2 to 512
POWER3 Architecture RISC System/6000 processor nodes. Each node
has its own private memory and its own copy of the AIX operating sys-
tem. The POWER3 processor is an eight-stage pipeline processor. Two
instructions can be executed per clock-cycle except for the multiply and
divide. A multiply instruction takes two clock cycles while a divide in-
struction takes 13 to 17 cycles. The FPU contains two execution units
using double precision (64 bit). Both execution units are identical and
conform to the IEEE 754 binary floating-point standard.

Figure 6: Typical SP 3 node.

– Figure 6 shows a block diagram of a typical SP 3 node. Nodes
are connected by a high-performance scalable packet-switched net-
work in a distributed memory and message passing.

– The network’s building block is a two-staged 16×16 switch board,
made up of 4× 4 bidirectional crossbar switching elements (SEs).

– Each link is bidirectional and has a 40 MB/s bandwidth in each
direction. The switch uses buffered cut-through wormhole routing.
This interconnection arrangement allows all processors to send
messages simultaneously.

– For full connectivity, at least one extra stage is provided. This
stage guarantees that there are at least four different paths be-
tween every pair of nodes. This form of path redundancy helps in

14



reducing network congestion as well as recovery in the presence of
failures.

– The communication protocol supports end-to-end packet acknowl-
edgment. For every packet sent by a source node, there is a re-
turned acknowledgment after the packet has reached the destina-
tion node. This allows source nodes to discover packet loss. Au-
tomatic retransmission of a packet is made if the acknowledgment
is not received within a preset time interval.

1.6 Message Passing vs Shared Memory

• Shared memory enjoys the desirable feature that all communications
are done using implicit loads and stores to a global address space.

• Another fundamental feature of shared memory is that synchronization
and communication are distinct. Special synchronization operations
(mechanisms), in addition to the loads and stores operations, need to
be employed in order to detect when data have been produced and/or
consumed.

• On the other hand, message passing employs an explicit communication
model. Explicit messages are exchanged among processors.

• Synchronization and communication are unified in message passing.
The generation of remote, asynchronous events is an integral part of
the message passing communication model.

• It is important, however, to indicate that shared memory and message
passing communication models are universal; that is, it is possible to
employ one to simulate the other.

– However, it is observed that it is easier to simulate shared memory
using message passing than the converse.

– This is basically because of the asynchronous event semantics
of message passing as compared to the polling semantics of the
shared memory.

• The shared memory communication model allows the programmer to
concentrate on the issues related to parallelism by relieving him/her of
the details of the interprocessor communication.

15



• In that sense, the shared memory communication model represents a
straightforward extension of the uniprocessor programming paradigm.
In addition, shared memory semantics are independent of the physi-
cal location and therefore they are open to the dynamic optimization
offered by the underlying operating system.

• On the other hand, the shared memory communication model is in
essence a polling interface. This is a drawback as far as synchronization
is concerned.

• Message passing can be characterized as employing an interrupt-driven
communication model. In message passing, messages include both data
and synchronization in a single unit. As such, the message passing
communication model lends itself to those operating system activities
in which communication patterns are explicitly known in advance, for
example, I/O, interprocessor interrupts, and task and data migration.

• On the other hand, message passing suffers from the need for mar-
shaling cost, that is, the cost of assembling and disassembling of the
message.

• One natural conclusion arising from the above discussion is that shared
memory and message passing communication models each lend them-
selves naturally to certain application domains. Shared memory mani-
fests itself to application writers while message passing manifests itself
to operating systems designers.

• It is therefore natural to consider combining both shared memory and
message passing in general-purpose multiprocessor systems. This has
been the main driving force behind systems such as the Stanford FLex-
ible Architecture for SHared memory (FLASH) system. It is a multi-
processor system that efficiently integrates support for shared mem-
ory and message passing while minimizing both hardware and software
overhead.

16


	Message Passing Architecture
	Introduction to Message Passing
	Routing in Message Passing Networks
	Routing for Broadcasting and Multicasting
	Routing Potential Problems

	Switching Mechanisms in Message Passing
	Processor Support for Message Passing
	Example Message Passing Architectures
	Message Passing vs Shared Memory


