
1 Solving Nonlinear Equations

”solve f(x) = 0” where f(x) is a function of x. The values of x that make
f(x) = 0 are called the roots of the equation. They are a1so called the zeros
of f(x).
The following non-linear equation can compute the friction factor,f :

1√
f

=
(

1

k

)

ln(RE
√

f) +
(

14 − 5.6

k

)

where the parameter k is known and RE, the so-called Reynold’s number.
The equation for f is not solvable except by the numerical procedures of this
chapter.

• Interval Halving (Bisection). Describes a method that is very sim-
ple and foolprof but is not very efficient. We examine how the error
decreases as the method continues.

• Linear Interpolation Methods. Tells how approximating the func-
tion in the vicinity of the root with a straight line can find a root more
efficiently. It has a better ”rate of convergence”.

• Newton’s Method. Explains a still more efficient method that is
very widely used but there are pitfalls that you should know about.
Complex roots can be found if complex arithmetic is employed.

• Muller’s Method. Approximates the function with a quadratic poly-
nomial that fits to the function better than a straight line. This signif-
icantly improves the rate of convergence over linear interpolation.

• Fixed-Point Iteration: x = g(x) Method. Uses a different ap-
proach: The function f(x) is rearranged to an equivalent form, x =
g(x). A starting value, x0, is substituted into g(x) to give a new x-
value, x1. This in turn is used to get another x-value. If the function
g(x) is properly chosen, the successive values converge.

1.1 Interval Halving (Bisection)

• Interval halving (bisection), an ancient but effective method for finding
a zero of f(x).

• It begins with two values for x that bracket a root.

• The function f(x) changes signs at these two x-values and, if f(x) is
continuous, there must be at least one root between the values.

1

• A plot of f(x) is useful to know where to start.

• The bisection method then successively divides the initial interval in
half, finds in which half the root(s) must lie, and repeats with the
endpoints of the smaller interval.

• The test to see that f(x) does change sign between points a and b is
to see if f(a) ∗ f(b) < 0.

f(x) = 3x + sin(x) − ex

Look at to the plot of the function (see Fig. 1) to learn where the function
crosses the x-axis. MATLAB can do it for us:

>> f = inline (’ 3 *x + sin (x) - exp (x) ’)

>> fplot (f, [0 2]) ; grid on

And we see from the figure that indicates there are zeros at about x = 0.35
and 1.9.
An algorithm for Halving the Interval (Bisection):

To determine a root of f(x) = 0 that is accurate within
a specified tolerance value, given values x1 and x2, such
that f(x1) ∗ f(x2) < 0,
Repeat
Set x3 = (x1 + x2)/2
If f(x3) ∗ f(x1) < 0 Then
Set x2 = x3

Else Set xl = x3 End If
Until (|x1 − x2|) < 2 ∗ tolerance value

• Think about the multiplication factor, 2

• The final Value of x3 approximates the root, and it is in error by not
more than |xl − x2|/2.

• The method may produce a false root if f(x) is discontinuous on [x1, x2].

To obtain the true value for the root, which is needed to compute the actual
error. MATLAB surely used a more advanced method than bisection.

>> solve(’3*x + sin(x) - exp(x)’)

ans=

.36042170296032440136932951583028

2

Figure 1: Plot of the function: f(x) = 3x + sin(x) − ex

Table 1: The bisection method for f(x) = 3x + sin(x) − ex, starting from
x1 = 0, x2 = 1, using a tolerance value of 1E-4.

3

• The main advantage of interval halving is that it is guaranteed to work
if f(x) is continuous in [a, b] and if the values x = a and x = b actually
bracket a root (This guarantee can be avoided, if the function has a
slope very near to zero at the root, the precision of the computations
may be inadequate.)

• Another important advantage that few other root-finding methods share
is that the number of iterations to achieve a specified accuracy is known
in advance.

• Because the interval [a, b] is halved each time, the 1last value of x3

differs from the true root by less than 1
2

the last interval. So we can
say with surely that

error after n iterations <

∣

∣

∣

∣

∣

(b − a)

2n

∣

∣

∣

∣

∣

• The major objection of interval halving has been that it is slow to
converge.

• Observe in Table 1 that the estimate of the root may be better at
an earlier iteration than at later (we are closer at iteration 6 than at
iteration 7.)

• In spite of arguments that other methods find roots with fewer iter-
ations, interval halving is an important tool. Bisection is generally
recommended for finding an approximate value for the root, and then
this value is refined by more efficient methods. The reason is that
most other root-finding methods require a starting value near to a root
(lacking this, they may fail completely).

• When there are multiple roots, interval halving may not be applicable,
because the function may not change sign at points on either side of
the roots.

1.2 Linear Interpolation Methods

Bisection is simple to understand but it is not the most efficient way to find
where f(x) is zero.
Most functions can be approximated by a straight line over a small interval.

4

Figure 2: Graphical illustration of the Secant Method.

1.2.1 The Secant Method

• The secant method begins by finding two points on the curve of f(x),
hopefully near to the root we seek.

• As Figure 2 illustrates, we draw the line through these two points and
find where it intersects the x-axis.

• If f(x) were truly linear, the straight line would intersect the x-axis at
the root.

• The intersection of the line with the x-axis is not at x = r but it should
be close to it. From the obvious similar triangles we can write

(x1 − x2)

f(x1)
=

(x0 − x1)

f(x0) − f(x1)
=⇒ x2 = x1 − f(x1)

(x0 − x1)

f(x0) − f(x1)

• Because f(x) is not exactly linear, x2 is not equal to r, but it should be
closer than either of the two points we began with. If we repeat this,
we have:

xn+1 = xn − f(xn)
(xn−1 − xn

f(xn−1) − f(xn)

• The net effect of this rule is to set x0 = x1 and x1 = x2, after each
iteration.

• The technique we have described is known as, the secant method be-
cause the line through two points on the curve is called the secant
line.

5

Table 2: The Secant method for f(x) = 3x + sin(x) − ex, starting from
x0 = 1, x1 = 0, using a tolerance value of 1E-6.

An algorithm for the Secant Method:

To determine a root of f(x) = 0, given two values, x0

and x1, that are near the root,
If|f(x0)| < |f(x1)| Then
Swap x0 with x1

Repeat
Set x2 = x1 − f(x1) ∗ (x0−x1)

f(x0)−f(x1)

Set x0 = x1

Set x1 = x2

Until |f(x2)| < tolerance value

• If f(x) is not continuous, the method may fail.

• An alternative stopping criterion for the secant method is when the
pair of points being used are sufficiently close together.

• Table 2 shows the results from the secant method for the same function
that was used to illustrate bisection.

• An objection is sometimes raised about the secant method. If the
function is far from linear near the root, the successive iterates can fly
off to points far from the root, as seen if Fig. 3.

• If the method is being carried out by a program that displays the
successive iterates, the user can interrupt the program should such
improvident behavior be observed. Also, if the function was plotted
before starting the method, it is unlikely that the problem will be
encountered, because a better starting value would be used.

6

Figure 3: A pathological case for the secant method.

1.2.2 Linear Interpolation (False Position)

• A way to avoid such pathology is to ensure that the root is bracketed
between the two starting values and remains between the successive
pairs. When this is done, the method is known as linear interpolation

• This technique is similar to bisection except the next iterate is taken
at the intersection of a line between the pair of x-values and the x-axis
rather than at the midpoint.

• Doing so gives faster convergence than does bisection, but at the ex-
pense of a more complicated algorithm.

An algorithm for the method of false position (regula falsi):

To determine a root of f(x) = 0, given two values of x0

and x1 that bracket a root: that is, f(x0) and f(x1) are
of opposite sign,
Repeat
Set x2 = x1 − f(x1) ∗ (x0−x1)

f(x0)−f(x1)

If f(x2) is of opposite sign to f(x0) Then
Set x1 = x2,
Else
Set x0 = x2

End If
Until |f(x2)| < tolerance value.

• If f(x) is not continuous, the method may fail.

• Table 3 compares the results of three methods-interval halving (bi-
section), linear interpolation, and the secant method-on f(x) = 3x +
sin(x) − ex = 0

7

Table 3: Comparison of methods, f(x) = 3x + sin(x) − ex, starting from
x0 = 0, x1 = 1.

• Observe that the speed of convergence is best for the secant method,
poorest for interval halving, and intermediate for false position.

1.3 Newton’s Method

• One of the most widely used methods of solving equations is Newton’s
method (Newton did not publish an extensive discussion of this method,
but he solved a cubic polynomial in Principia (l687). The version given
here is considerably improved over his original example).

• Like the previous ones, this method is also based on a linear approxi-
mation of the function, but does so using a tangent to the curve. Figure
4 gives a graphical description

• Starting from a single initial estimate, x0, that is not too far from a
root, we move along the tangent to its intersection with the x-axis, and
take that as the next approximation.

• This is continued until either the successive x-values are sufficiently
close or the value of the function is sufficiently near zero.

• The calculation scheme follows immediately from the right triangle
shown in Fig. 4.

tanθ = f
′

(x0) =
f(x0)

x0 − x1
⇒ x1 = x0 −

f(x0)

f ′(x0)

8

Figure 4: Graphical illustration of the Newton’s Method.

and the general term is:

xn+1 = xn − f(xn)

f ′(xn)
, n 0, 1, 2, . . .

• Newton’s algorithm is widely used because, it is more rapidly conver-
gent than any of the methods discussed so far.

• The method is quadratically convergent, by which we mean that the
error of each step approaches a constant K times the square of the
error of the previous step.

• The net result of this is, that the number of decimal places of accuracy
nearly doubles at each iteration.

• When Newton’s method is applied to f(x) = 3x+ sinx− ex = 0, if we
begin with x0 = 0.0:

x1 = x0 −
f(x0)

f ′(x0)
= 0.0 − −1.0

3.0
= 0.33333

x2 = 0.36017

x3 = 0.3604217

• After three iterations, the root is correct to seven digits; convergence
is much more rapid than any previous method. In fact, the error after
an iteration is about one-third of the square of the previous error.

9

Figure 5: Graphical illustration of the case that Newton’s Method will not
converge.

• If a difficult problem requires many iterations to converge, the number
of function evaluations with Newton’s method may be many more than
with linear iteration methods because Newton always uses two per it-
eration whereas the others take only one (after the first step that takes
two).

An algorithm for the Newton’s method :

To determine a root of f(x) = 0, given x0 reasonably
close to the root,
Compute f(x0), f

′

(x0)
If (f(x0) 6= 0) And (f

′

(x0) 6= 0) Then
Repeat
Set x1 = x0

Set x0 = x0 − f(x0)

f
′ (x0)

Until (|x1 − x0| < tolerance value1) Or If
|f(x0)| < tolerance value2)
End If.

• The method may converge to a root different from the expected one or
diverge if the starting value is not close enough to the root.

• In some cases Newton’s method will not converge. Figure 5 illustrates
this situation.

10

Figure 6: Plot of f(x) = x3 + 2x2 − x + 5.

• Starting with x0, one never reaches the root r because x6 = x1 and we
are in an endless loop.

• Observe also that if we should ever reach the minimum or maximum
of the curve, we will fly off to infinity.

1.3.1 Complex Roots

• Newton’s method works with complex roots if we give it a complex
value for the starting value.

• Use Newton’s method on f(x) = x3 + 2x2 − x + 5. Figure 6 shows the
graph of f(x). It has, a real root at about x = −3, whereas the other
two roots are complex because the x-axis is not crossed again.

• If we begin Newton’s method with x0 = 1 + i (we used this in the lack
of knowledge about the complex root), we get these successive iterates;

1. 0.486238 + 1.04587i

2. 0.448139 + 1.23665i

3. 0.462720 + 1.22242i

4. 0.462925 + l.22253i

5. 0.462925 + 1.22253i

• Because the fourth and fifth iterates agree to six significant figures, we
are sure that we have an estimate good to at least that many figures.

• The second complex root is the conjugate or this: 0.462925 - 1.22253i.

11

• If we begin with x0 = 1 − i, the method converges to the conjugate.

• If we begin with a real starting value-say, x0 = −3-we get convergence
to the root at x = −2.92585.

12

	Solving Nonlinear Equations
	Interval Halving (Bisection)
	Linear Interpolation Methods
	The Secant Method
	Linear Interpolation (False Position)

	Newton's Method
	Complex Roots

