
1 The Inverse of a Matrix and Matrix Pathol-

ogy

• Division by a matrix is not defined but the equivalent is obtained from
the inverse of the matrix.

• If the product of two square matrices, A∗B, equals the identity matrix,I,
B is said to be the inverse of A (and A is the inverse of B).

• Matrices do not commute on multiplication but inverses are an excep-
tion: A ∗ A−1 = A−1 ∗ A.

• To find the inverse of matrix A, use an elimination method. We aug-
ment the A matrix with the identity matrix of the same size and solve.
The solution is A−1.

• i.e.,

A =

1 −1 2
3 0 1
1 0 2

 ,

1 −1 2 1 0 0
3 0 1 0 1 0
1 0 2 0 0 1

 ,

R2 − (3/1)R1 →
R3 − (1/1)R1 →

1 −1 2 1 0 0
0 3 −5 −3 1 0
0 1 0 −1 0 1

 ,

1 −1 2 1 0 0
0 1 0 −1 0 1
0 3 −5 −3 1 0

 ,

R3 − (3/1)R2 →

1 −1 2 1 0 0
0 1 0 −1 0 1
0 0 −5 0 1 −3

 ,
R3/(−5)

,

R1 − (2/1)R3 →
,

1 −1 0 1 2/5 −6/5
0 1 0 −1 0 1
0 0 1 0 −1/5 3/5

 ,

R2 − (1/ − 1)R1 → ,

1 0 0 0 2/5 −1/5
0 1 0 −1 0 1
0 0 1 0 −1/5 3/5

We confirm the fact that we have found the inverse by multiplication:

1 −1 2
3 0 1
1 0 2

0 2/5 −1/5
−1 0 1

0 −1/5 3/5

 =

1 0 0
0 1 0
0 0 1

1

It is more efficient to use Gaussian elimination. We show only the final
triangular matrix; we used pivoting:

1 −1 2 1 0 0
3 0 1 0 1 0
1 0 2 0 0 1

→

3 0 1 0 1 0
(0.333) −1 1.667 1 −0.333 0
(0.333) (0) 1.667 0 −0.333 1

After doing the back-substitutions, we get

3 0 1 0 0.4 −0.2
(0.333) −1 1.667 −1 0 1
(0.333) (0) 1.667 0 −0.2 0.6

If we have the inverse of a matrix, we can use it to solve a set of
equations, Ax = b, because multiplying by A−1 gives the answer:

A−1Ax = A−1b
x = A−1b

1.1 Pathological Systems

• When a real physical situation is modeled by a set of linear equations,
we can anticipate that the set of equations will have a solution that
matches the values of the quantities in the physical problem, at least
as far as the equations truly do represent it.

• Because of round-off errors, the solution vector that is calculated may
imperfectly predict the physical quantity, but there is assurance that a
solution exists, at least in principle.

• Consequently, it must always be theoretically possible to avoid divisions
by zero when the set of equations has a solution.

• Here is an example of a matrix that has no inverse: What is the LU
equivalent of

A =

1 −2 3
2 4 −1

−1 −14 11

>> lu(A)

ans =

2.0000 4.0000 -1.0000

-0.5000 -12.0000 10.5000

0.5000 0.3333 0

2

Element A(3,3) cannot be used as a divisor in the back-substitution.
That means that we cannot solve.

• The definition of a singular matrix is a matrix that does not have an
inverse.

1.2 Redundant Systems

• Even though a matrix is singular, it may still have a solution. Consider
again the same singular matrix:

A =

1 −2 3
2 4 −1

−1 −14 11

Suppose we solve the system Ax = b where the right-hand side is
b = [5, 7, 1]T .

>> lu (Ab)

ans =

2.0000 4.0000 -1.0000 7.0000

-0.5000 -12.0000 10.5000 4.5000

0.5000 0.3333 0 0

and the back-substitution cannot be done.

– The output suggests that x3 can have any value.

– Suppose we set it equal to 0. We can solve the first two equations
with that substitution, that gives [17/4,−3/8, 0]T .

– Suppose we set x3 to 1 and repeat. This gives [3, 1/2, 1]T , and this
is another solution.

– We have found a solution, actually, an infinity of them. The reason
for this is that the system is redundant.

• What we have here is not truly three linear equations but only two
independent ones. The system is called redundant.

• Here is a comparison of singular and nonsingular matrices:

3

For Singular matrix A: For Nonsingular Matrix A:
It has no inverse, A−1 It has an inverse, A−1

Its determinant is zero The determinant is nonzero
There is no unique solution There is a unique solution
to the system Ax = b to the system Ax = b
Gaussian elimination cannot avoid Gaussian elimination does not
a zero on the diagonal encounter a zero on the diagonal
The rank is less than n The rank equals n
Rows are linearly dependent Rows are linearly independent
Columns are linearly dependent Columns are linearly independent

Table 1: A comparison of singular and nonsingular matrices

2 Ill-Conditioned Systems

• A system whose coefficient matrix is singular has no unique solution.
What if the matrix is almost singular?

A =

3.02 −1.05 2.53
4.33 0.56 −1.78

−0.83 −0.54 1.47

The LU equivalent has a very small element in position (3, 3), and the
inverse has elements very large in comparison to A:

LU =

4.33 0.56 −1.78
0.6975 −1.4406 3.7715

−0.1917 0.3003 −0.0039

 ,

inv(A) =

5.6611 −7.2732 −18.5503
200.5046 −268.2570 −66669.9143
76.8511 −102.6500 −255.8846

• Matrix is nonsingular but is almost singular

• Suppose we solve the system Ax = b, with b equal to [−1.61, 7.23,−3.38]T .
The solution is x = [1.0000, 2.0000,−1.0000]T .

• Now suppose that we make a small change in just the first element of the
b-vector : [−1.60, 7.23,−3.38]T . We get x = [1.0566, 4.0051,−0.2315]T

• b = [−1.61, 7.22,−3.38]T . The solution now is x = [1.07271, 4.6826, 0.0265]T

which also differs.

4

• A system whose coefficient matrix is nearly singular is called
ill-conditioned. When a system is ill-conditioned, the solution is very
sensitive to changes in the right-hand vector. It is also sensitive to small
changes in the coefficients.

• A(1, 1) is changed from 3.02 to 3.00, original b-vector, a large change
in the solution x = [1.1277, 6.5221, 0.7333]T]. This means that it is also
very sensitive to round-off error.

2.1 Norms

• Norms, a measure of the magnitude of the matrix.

• The magnitude of a single number is just its distance from zero:
| − 4.2| = 4.2.

• using ||A|| to represent the norm of matrix A

1. ||A|| ≥ 0 and ||A|| = 0 if and only if A = 0

2. ||kA|| = ||k||||A||

3. ||A + B|| ≤ ||A|| + ||B||

4. ||AB|| ≤ ||A||||B||

• For vectors in two- or three space, norm is called the Euclidean norm,

and is computed by
√

x2
1 + x2

2 + x2
3. We compute the Euclidean norm

of vectors with more than three components by

||x||e =
√

x2
1 + x2

2 + . . . + x2
n =

(

n
∑

i=1

x2
i

)1/2

• defining the p-norm as

||x||p =

(

n
∑

i=1

|xi|
p

)1/p

||x||1 =
∑n

i=1 |xi| = sum of magnitudes

||x||2 = (
∑n

i=1 |xi|
2)

1/2
= Euclidean norm

||x||∞ = max1≤i≤n|xi| = maximum − magnitude norm

• i.e., Compute the 1-, 2-, and ∞-norms of the vector x = (1.25, 0.02,−5.15, 0)

||x||1 = |1.25| + |0.02| + | − 5.15| + |0| = 6.42
||x||2 = 5.2996
||x||∞ = 5.15

5

2.1.1 Matrix Norms

• The norms of a matrix are similar to the norms of a vector.

||A||1 = max1≤j≤n
∑n

i=1 |aij| = maximum column sum
||A||∞ = max1≤i≤n

∑n
j=1 |aij| = maximum row sum

• Suppose r is the largest eigenvalue of AT ∗A. Then ||A||2 = r1/2. This
is called the spectral norm of A, and ||A||2 is always less than (or equal
to) ||A||1 and ||A||∞.

• For an m × n matrix, the Frobenius norm is defined as

||A||f =

m
∑

i=1

n
∑

j=1

a2
ij

1/2

The Frobenius norm is a good measure of the magnitude of a matrix.

• The spectral norm is usually the most expensive. Which norm is best?
In most instances, we want the norm that puts the smallest upper
bound on the magnitude of the matrix. In this sense, the spectral
norm is usually the ”best”.

A =

5 -5 -7

-4 2 -4

-7 -4 5

>> norm(A,’fro’)

ans =

15

>> norm(A,inf)

ans =

17

>> norm(A,1)

ans=

16

>> norm(A)

ans =

12.0301

>> norm (A,2)

ans =

12.0301

6

we observe that the 2-norm, the spectral norm, is the norm we get if we
just ask for the norm. The smallest norm of the matrix is the spectral
norm, it is the tightest measure.

3 Iterative Methods

• Gaussian elimination and its variants are called direct methods. An
entirely different way to solve many systems is through iteration. In
this, we start with an initial estimate of the solution vector and proceed
to refine this estimate.

• The two methods for solving Ax = b that we shall discuss in this section
are the Jacobi Method and the Gauss-Seidel Method.

• An n × n matrix A is diagonally dominant if and only if;

|aii| >
n
∑

j=1,j 6=i

|aij|, i = l, 2, . . . , n

• Although this may seem like a very restrictive condition, it turns out
that there are very many applied problems that have this property.

• i.e.,
6x1 − 2x2 + x3 = 11
xl + 2x2 − 5x3 = −1
−2x1 + 7x2 + 2x3 = 5

• The solution is x1 = 2, x2 = 1, x3 = 1. However, before we begin
our iterative scheme we must first reorder the equations so that the
coefficient matrix is diagonally dominant

6x1 − 2x2 + x3 = 11
−2x1 + 7x2 + 2x3 = 5
xl + 2x2 − 5x3 = −1

3.1 Jacobi Method

The iterative methods depend on the rearrangement of the equations in this
manner:

xi =
bi

aii

−
n
∑

j=1,j 6=i

aij

aii

xj, i = l, 2, . . . , n, 7→ x1 =
11

6
−
(

−2

6
x2 +

1

6
x3

)

7

First Second Third Fourth Fifth Sixth . . . Ninth
x1 0 1.833 2.038 2.085 2.004 1.994 . . . 2.000
x2 0 0.7l4 1.181 l.053 l.001 0.990 . . . l.000
x3 0 0.200 0.852 1.080 l.038 l.00l . . . 1.000

Table 2: Successive estimates of solution (Jacobi method)

Each equation now solved for the variables in succession:

x1 = 1.8333 + 0.3333x2 − 0.1667x3

x2 = 0.7143 + 0.2857x1 − 0.2857x3

x3 = 0.2000 + 0.2000x1 + 0.4000x2

• We begin with some initial approximation to the value of the variables.
(Each component might be taken equal to zero if no better initial esti-
mates are at hand.)

• The new values are substituted in the right-hand sides to generate
a second approximation, and the process is repeated until successive
values of each of the variables are sufficiently alike.

x
(n+1)
1 = 1.8333 + 0.3333x

(n)
2 − 0.l667x

(n)
3

x
(n+1)
2 = 0.7143 + 0.2857x

(n)
1 − 0.2857x

(n)
3

x
(n+1)
3 = 0.2000 + 0.2000x

(n)
1 + 0.4000x

(n)
2

(1)

Starting with an initial vector of x(0) = (0, 0, 0,), we get

• Note that this method is exactly the same as the method of fixed-point
iteration for a single equation that was discussed in Section ??, but it
is now applied to a set of equations; we see this if we write Eq. 1 in
the form of

x(n+1) = G(x(n)) = b′ − Bxn

which is identical to xn+1 = g(xn) as used in Section ??.

• In the present context, x(n) and x(n+1) refer to the nth and (n + 1)st
iterates of a vector rather than a simple variable, and g is a linear
transformation rather than a nonlinear function.

Ax = b,

6 −2 1
−2 7 2

1 2 −5

x1

x2

x3

 =

11
5

−1

8

Now, let A = L + D + U , where

L =

0 0 0
−2 0 0

1 2 0

 , D =

6 0 0
0 7 0
0 0 −5

 , U =

0 −2 1
0 0 2
0 0 0

rewritten as
Ax = (L + D + U)x = b
Dx = −(L + U)x + b
x = −D−1(L + U)x + D−1b

From this we have, identifying x on the left as the new iterate,

x(n+1) = −D−1(L + U)x(n) + D−1b

In Eq. 1,

b′ = D−1b =

1.8333
0.7143
0.2000

D−1(L + U) =

0 −0.3333 0.1667
−0.2857 0 0.2857
−0.2000 −0.4000 0

• The procedure we have just described is known as the Jacobi method,
also called ”the method of simultaneous displacements”, because each
of the equations is simultaneously changed by using the most recent
set of x-values. See Table 2.

3.2 Gauss-Seidel Iteration

• Even though we have newx1 available, we do not use it to compute
newx2 even though in nearly all cases the new values are better than
the old and ought to be used instead. When this done, the procedure
known as Gauss-Seidel iteration.

• We proceed to improve each x-value in turn, using always the most
recent approximations of the other variables. The rate of convergence
is more rapid than for the Jacobi method. See Table 3. These values
were computed by using this iterative scheme:

x
(n+1)
1 = 1.8333 + 0.3333x

(n)
2 − 0.l667x

(n)
3

x
(n+1)
2 = 0.7143 + 0.2857x

(n+1)
1 − 0.2857x

(n)
3

x
(n+1)
3 = 0.2000 + 0.2000x

(n+1)
1 + 0.4000x

(n+1)
2

beginning with x(1) = (0, 0, 0)T

9

First Second Third Fourth Fifth Sixth
x1 0 1.833 2.069 1.998 1.999 2.000
x2 0 1.238 1.002 0.995 l.000 l.000
x3 0 1.062 1.015 0.998 1.000 1.000

Table 3: Successive estimates of solution (Gauss-Seidel method)

3.3 Sparse Matrices and Banded Matrices

• Many applied problems are solved with systems whose coefficient ma-
trix is sparse-only a fraction of the elements are nonzero.

• In other applications the coefficient matrix may be sparse and have
elements situated in selected positions.

• A banded matrix is one where the nonzero elements lie on diagonals
parallel to the main diagonal.

4 Parallel Processing

We have mentioned that the operation of many numerical methods can be
speeded up by the proper use of parallel processing or distributed systems.

• Vector/Matrix Operations:

– For inner products, a very elementary case, we assume we have
two vectors, v, u, of length n, and an equal number of parallel
processors, proc(i), i = 1, . . . , n, where each proc(i) contains the
components, vi, ui.

– Then the multiplication of all the vi ∗ ui can be done in parallel
in one time unit.

– if the processors are connected suitably we can actually do the
addition part in log(n) time units.

– This assumes a high degree of connectivity between the proces-
sors. The different designs are referred to as the topologies of the
systems.

– Suppose our processors were only connected as a linear array in
which the communication send/receive is just between two adja-
cent processors.

P1 ↔ P2 ↔ . . . ↔ Pn−1 ↔ Pn

10

Figure 1: Connectivity between the processors (topologies).

– Then our addition of the n elements would be n/2 time steps, be-
cause we could do an addition at each end in parallel and proceed
to the middle.

– The n-dimensional hypercube is a graph with 2n vertices in which
each vertex has n edges (is connected to n other vertices). This
graph can be easily defined recursively because there is an easy
albalgorithm determine the order in which the vertices are con-
nected. See Fig. 1.

– Two vertices are adjacent if and only if the indices differ in exactly
one bit.

– We can get to the (n + 1)-dimensional hypercube by making two
copies of the n-dimensional hypercube and then adding a zero to
the leftmost bit of the first n-dimensional cube and then doing the
same with a l to the second cube.

– There are many other designs for connecting the processors. Such
designs include names like star, ring, torus, mesh

– For the matrix/vector product, Ax, we assume that processor proc(i)
contains the ith row of A as well as the vector, x.

– Because one processor is performing this dot product of row i of
A and of vector x, the whole operation will only take O(n) units
of time.

– For the matrix/matrix product, AB, for two n × n matrices, we
suppose that we have n2 processors. Before we start our compu-

11

tations each processor, Pij will have received the values for row
i of A and column j of B. Based on our previous discussion, we
can expect the time to be O(n).

• Gaussian Elimination:

– To see how this can be done in a parallel-processing environment,
we must examine the row-reduction phase.

– If we are computing in a parallel processing environment, we
can take advantage of the independence by assigning each row-
reduction task to a different processor:

1 2 1 3 4
2 5 4 3 4
1 4 2 3 3
3 2 4 1 8

→ proc(1) : R2 − (2/1)R1

→ proc(2) : R3 − (1/1)R1

→ proc(3) : R4 − (3/1)R1

– Suppose each row assignment statement requires 4 time units, one
for each element in a row. Then the sequential algorithm performs
this stage of the row reduction in 12 time units, whereas we need
only 4 time units for the parallel algorithm.

– This example of parallel processing on the first stage of row re-
duction of a 4× 4 system matrix generalizes to any row reduction
in stage j of an n × n system matrix.

– Recall that there are n−1 row-reduction stages in Gaussian elim-
ination, one for each of the n columns of the coefficient matrix
except for the last column. This suggests that we need n− 1 pro-
cessors to do the reduction in parallel.

12

Algorithms for Row Reduction in Gaussian Elimination:

Sequential Processing (without pivoting)
For j = 1 To (n - l) /*n-1 row-reduction stages*/
For i= (j + 1) To n /* 1st row-reduction stage */
For k = j To (n + 1)
a[i, k] = a[i, k] - a[i,j]/a[j,j]*a[j,k]
End For k
End For i
End For j
Parallel Processing
For i = 1 To (n - 1)
For k = i To (n + 1)
a[i, k] = a[i, k] - a[i,j]/a[j,j]*a[j,k]
End For k
End For i

– Sequential algorithm requires O(n3) operations and that the par-
allel algorithm with n processors accomplishes the same task in
O(n2) operations.

• Problems in Using Parallel Processors:

– The algorithm described here does not pivot. Thus, our solution
may not be as numerically stable as one obtained via a sequential
algorithm with partial pivoting.

– The coefficient matrix A is assumed to be nonsingular. It is easy
to check for singularity at each stage of the row reduction, but
such error-handling will more than double the running time of the
algorithm.

– We have ignored the communication and overhead time costs that
are involved in parallelization. Because of these costs, it is prob-
ably more efficient to solve small systems of equation using a se-
quential algorithm.

– Other, perhaps faster, parallel algorithms exist for solving systems
of linear equations.

• Iterative Solutions -The Jacobi Method

– Recall that at each iteration of the algorithm a new solution vector
x(n+1) is computed using only the elements of the solution vector
from the previous iteration, x(n).

13

– Because Gauss-Seidel iteration requires that the new iterates for
each variable be used after they have been obtained, this method
cannot be speeded up by parallel processing.

14

	The Inverse of a Matrix and Matrix Pathology
	Pathological Systems
	Redundant Systems

	Ill-Conditioned Systems
	Norms
	Matrix Norms

	Iterative Methods
	Jacobi Method
	Gauss-Seidel Iteration
	Sparse Matrices and Banded Matrices

	Parallel Processing

