
Figure 1: Plot of a periodic function of period P.

1 Fourier Series

• Polynomials are not the on1y functions that can be used to approximate
known function

• Another means for representing known functions are approximations
that use sines and cosines, called Fourier series

– Any function can be represented by an infinite sum of sine and
cosine terms with the proper coefficients, (possibly with an infinite
number of terms)

• Any function, f(x), is periodic of period P if it has the same value for
any two x-values, that differ by P , or

f(x) = f(x + P ) = f(x + 2P ) = . . . = f(x − P ) = f(x − 2P ) = . . .

Figure 1 shows such a periodic function. Observe that the period can
be started at any point on the x-axis.

– Sin(x) and cos(x) are periodic of period 2π

– Sin(2x) and cos(2x) are periodic of period π

– Sin(nx) and cos(nx) are periodic of period 2π/n

• We now discuss how to find the As and Bs in a Fourier series of the
form

f(x) ≈
A0

2
+

∞
∑

n=1

[Ancos(nx) + Bnsin(nx)] (1)

The determination of the coefficients of a Fourier series (when a given
function,f(x), can be so represented) is based on the property of or-

thogonality for sines and cosines. For integer values of n, m:
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∫ π

−π
sin(nx) = 0 (2)

∫ π

−π
cos(nx) =

{

0, n 6= 0
2π, n = 0

(3)

∫ π

−π
sin(nx)cos(mx) = 0 (4)

∫ π

−π
sin(nx)sin(mx) =

{

0, n 6= m
π, n = m

(5)

∫ π

−π
cos(nx)cos(mx) =

{

0, n 6= m
π, n = m

(6)

It is related to the same term used for orthogonal (perpendicular) vec-
tors whose dot product is zero. Many functions, besides sines and
cosines, are orthogonal (such as the Chebyshev polynomials).

• To begin, we assume that f(x) is periodic of period 2π and can be
represented as in Eq. 1. We find the values of An and Bn in Eq. 1 in
the following way;

– Multiply both sides of Eq. 1 by cos(0x) = 1, and integrate term
by term between the limits of −π and π.

∫ π

−π
f(x)dx =

∫ π

−π

A0

2
dx+

∞
∑

n=1

∫ π

−π
Ancos(nx)dx+

∞
∑

n=1

∫ π

−π
Bnsin(nx)

Because of Eqs. 2 and 3, every term on the right vanishes except
the first, giving

∫ π

−π
f(x)dx =

A0

2
(2π), or A0 =

1

π

∫ π

−π
f(x)dx

Hence, A0 is found and it is equal to twice the average value of
f(x) over one period.

– Multiply both sides of Eq. 1 by cos(mx), where m is any positive
integer, and integrate:

∫ π

−π
cos(mx)f(x)dx =

∫ π

−π

A0

2
cos(mx)dx+

∞
∑

n=1

∫ π

−π
Ancos(mx)cos(nx)dx +

∞
∑

n=1

∫ π

−π
Bncos(mx)sin(nx)dx
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Because of Eqs. 3,4 and 6 the only nonzero term on the right is
when m = n in the first summation, so we get a formula for the
As;

An =
1

π

∫ π

−π
f(x)cos(nx)dx, n = 1, 2, 3, . . .

– Multiply both sides of Eq. 1 by sin(mx), where m is any positive
integer, and integrate:

∫ π

−π
sin(mx)f(x)dx =

∫ π

−π

A0

2
sin(mx)dx+

∞
∑

n=1

∫ π

−π
Ansin(mx)cos(nx)dx +

∞
∑

n=1

∫ π

−π
Bnsin(mx)sin(nx)dx

Because of Eqs. 2, 4 and 5, the only nonzero term on the right
is when m = n in the second summation, so we get a formula for
the Bs;

Bn =
1

π

∫ π

−π
f(x)sin(nx)dx, n = 1, 2, 3, . . .

It is obvious that getting the coefficients of Fourier series involves
many integrations.

1.1 Fourier Series for Periods Other Than 2π

• What if the period of f(x) is not 2π? we just make a change of vari-
able. If f(x) is periodic of period P , the function can be considered to
have one period between −P/2 and P/2. The functions sin(2πx/P )
and cos(2πx/P ) are periodic between −P/2 and P/2. The formulae
become, for f(x) periodic of period P ;

An =
2

P

∫ P/2

−P/2
f(x)cos

(

nπx

P/2

)

dx, n = 0, 1, 2, . . . (7)

Bn =
2

P

∫ P/2

−P/2
f(x)sin

(

nπx

P/2

)

dx, n = 1, 2, 3, . . . (8)

Because a function that is periodic with period P between −P/2 and
P/2 is also periodic with period P between A and A + P , the limits of
integration in Eqs. 7 and 8 can be from 0 to P .
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Figure 2: Left: Plot of f(x) = x, periodic of period 2π,Right: Plot of the
Fourier series expansion for N = 2, 4, 8.

Examples:

1. Let f(x) = x be periodic between −π and π. (See Figure 2left). Find
the As and Bs of its Fourier expansion. For A0;

A0 =
1

π

∫ π

−π
f(x)dx =

1

π

∫ π

−π
xdx =

[

x2

2π

]π

−π

= 0

For the other As;

An =
1

π

∫ π

−π
xcos(nx)dx = 0

For the other Bs;

Bn =
1

π

∫ π

−π
xsin(nx)dx =

2(−1)n+1

n
, n = 1, 2, 3, . . .

We then have

x ≈ 2
∞
∑

n=1

(−1)n+1

n
sin(nx), −π < x < π

Figure 2right shows how the series approximates to the function when
only two, four, or eight terms are used.

2. Find the Fourier coefficients for f(x) = |x| on −π to π;

A0 =
1

π

∫ 0

−π
−xdx +

1

π

∫ π

0
xdx = π

An =
1

π

∫ 0

−π
(−x)cos(nx)dx+

1

π

∫ π

0
(x)cos(nx)dx =

{

0, n = 2, 4, 6, . . .
−4

(n2π)
, n = 1, 3, 5, . . .
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Figure 3: Plot of Fourier series for |x| for N = 2, 4, 8.

Bn =
1

π

∫ 0

−π
(−x)sin(nx)dx +

1

π

∫ π

0
(x)sin(nx)dx = 0

Because the definite integrals are nonzero only for odd values of n, it
simplifies to change the index of the summation. The Fourier series is
then

|x| ≈
π

2
−

4

π

∞
∑

n=1

cos(2n − 1)x

(2n − 1)2

Figure 3 shows how the series approximates the function when two,
four, or eight terms are used.

3. Find the Fourier coefficients for f(x) = x(2 − x) = 2x − x2 over the
interval [-2, 2] if it is periodic of period 4. Equations 7 and 8 apply.

A0 =
2

4

∫ 2

−2
(2x − x2)dx =

−8

3

An =
2

4

∫ 2

−2
(2x − x2)cos

(

nπx

2

)

dx =
16(−1)n+1

n2π2
, n = 1, 2, 3, . . .

Bn =
2

4

∫ 2

−2
(2x − x2)sin

(

nπx

2

)

dx =
8(−1)n+1

nπ
, n = 1, 2, 3, . . .

x(2−x) ≈
−4

3
+

16

π2

∞
∑

n=1

(−1)n+1

n2
cos

(

nπx

2

)

+
8

π

∞
∑

n=1

(−1)n+1

n
sin

(

nπx

2

)

Figure 4 shows how the series approximates to the function when 40
terms are used.

With MATLAB, two commands are needed because the first result is sym-
bolic and the integration operation does not permit a multiplier (although
the 2/4 could be included in the integrand);

a3=int(’x*(2-x)*cos(3*pi*x/2)’,-2,2)

symmul(a3,’2/4’)
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Figure 4: Plot of Fourier series for x(2 − x) for N = 40.

Figure 5: A function, f(x), of interest on [0,3].

1.2 Fourier Series for Nonperiodic Functions and Half-

Range Expansions

• The development until now has been for a periodic function. What if
f(x) is not periodic? Can we approximate it by a trigonometric series?
We assume that we are interested in approximating the function only
over a limited interval and we do not care whether the approximation
holds outside of that interval.

• Suppose we have a function defined for all x-values, but we are only
interested in representing it over (O, L). Figure 5 is typical.

• Because we will ignore the behavior of the function outside of (0, L),
we can redefine the behavior outside that interval as we wish Figs. 6left
and -right show two possible redefinitions.
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Figure 6: Left: Plot of a function reflected about the y-axis, an even func-
tion,Right: Plot of a function reflected about the origin, an add function.

– In the first redefinition, we have reflected the portion of f(x) about
the y-axis and have extended it as a periodic function of period
2L. This creates an even periodic function.

f(x) is even if f(−x) = f(x)

– If we reflect it about the origin and extend it periodically, we
create an odd periodic function of period 2L.

f(x) is odd if f(−x) = −f(x)

It is easy to see that cos(Cx) is an even function and that sin(Cx) is
an odd function for any real value of C.

• There are two important relationships for integrals of even and odd
functions.

if f(x) is even,
∫ L

−L
f(x)dx = 2

∫ L

0
f(x)dx

if f(x) is odd,
∫ L

−L
f(x)dx = 0

– the product of two even functions is even;
if f(x) is even, f(x)cos(nx) is even

– the product of two odd functions is even;
if f(x) is odd, f(x)sin(nx) is even

– the product of an even and an odd function is odd;
if f(x) is even, f(x)sin(nx) is odd
if f(x) is odd, f(x)cos(nx) is odd
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Figure 7: Left: Plot of the function reflected about the y-axis, Right: Plot
of the function reflected about the origin.

– The Fourier series expansion of an even function will contain only
cosine terms (all the B-coefficients are zero).

– The Fourier series expansion of an odd function will contain only
sine terms (all the A-coefficients are zero).

• If we want to represent f(x) between 0 and L as a Fourier series and
are interested only in approximating it on the interval (0, L), we can
redefine f within the interval (−L, L) in two importantly different ways;

– We can redefine the portion from −L to 0 byreflectingg about the
y-axis. We then generate an even function.

– We can reflect the portion between 0 and L about the origin to
generate an odd function.

Figure 7 showed these two possibilities.

• Thus two different Fourier series expansions of f(x) on (0, L) are pos-
sible, one that has only cosine terms or one that has only sine terms.
We get the As for the even extension of f(x) on (0, L) from

An =
2

L

∫ L

0
f(x)cos

(

nπx

L

)

dx, n = 0, 1, 2, . . .

We get the Bs for the odd extension of f(x) on (0, L) from

Bn =
2

L

∫ L

0
f(x)sin

(

nπx

L

)

dx, n = 1, 2, 3, . . .
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Examples:

1. Find the Fourier cosine series expansion of f(x), given that

f(x) =

{

0, 0 < x < 1
1, 1 < x < 2

Figure 7left shows the even extension of the function. Because we are
dealing with an even function on (−2, 2) we know that the Fourier series
will have only cosine terms. We get the As with

A0 =
2

2

∫ 2

1
(1)dx = 1

An =
2

2

∫ 2

1
(1)cos

(

nπx

2

)

=

{

0, n even
2(−1)(n+1)/2

nπ
, n odd

Then the Fourier cosine series is

f(x) ≈
1

2
+

2

π

∞
∑

n=1

(
(−1)ncos ((2n − 1)πx/2)

(2n − 1)

2. Find the Fourier sine series expansion for the same function. Figure
7right shows the odd extension of the function. We know that all of
the A-coefficients will be zero, so we need to compute only the Bs;

Bn =
2

2

∫ 2

1
(1)sin(

nπx

2
)dx =

2

nπ

[

−cos(nπ) + cos(
nπ

2
)
]

, n = 1, 2, 3, . . .

f(x) =
2

π

∞
∑

n=1

[cos(nπ/2) − cos(nπ)]

n
sin(

nπx

2
)
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1.3 Summary

• A function that is periodic of period P and meets certain criteria (see
below) can be represented by Eq. 9;

f(x) =
A0

2
+

∞
∑

n=1

Ancos

(

nπx

P/2

)

+
∞
∑

n=1

Bnsin

(

nπx

P/2

)

(9)

The coefficients can be computed with

An =
2

P

∫ P/2

−P/2
f(x)cos

(

nπx

P/2

)

dx, n = 0, 1, 2, . . .

Bn =
2

P

∫ P/2

−P/2
f(x)sin

(

nπx

P/2

)

dx, n = 1, 2, 3, . . .

(The limits of the integrals can be from a to a + P )

• If f(x) is an even function, only the As will be nonzero. Similarly, if
f(x) is odd, only the Bs will be nonzero. If f(x) is neither even nor
odd, its Fourier series will contain both cosine and sine terms.

• Even if f(x) is not periodic, it can be represented on just the interval
(0, L) by redefining the function over (−L, 0) by reflecting f(x) about
the y-axis or, alternative1y, about the origin. The first creates an
even function, the second an odd function. The Fourier series of the
redefined function will actually represent a periodic function of period
2L that is defined for (−L, L).

• When L is the half-period, the Fourier series of an even function con-
tains only cosine terms and is called a Fourier cosine series. The As
can be computed by

An =
2

L

∫ L

0
f(x)cos

(

nπx

L

)

dx, n = 0, 1, 2, . . .

The Fourier series of an odd function contain Ls only sine terms and
is called a Fouriersineseries. The Bs can be computed by

Bn =
2

L

∫ L

0
f(x)sin

(

nπx

L

)

dx, n = 1, 2, 3, . . .
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