Ceng 375 Numerical Computing Final Jan 11, 2008 15.00–17.00 Good Luck!

Each question is 25 pts. Solve only 4 of them.

1. The following table and figure are given as

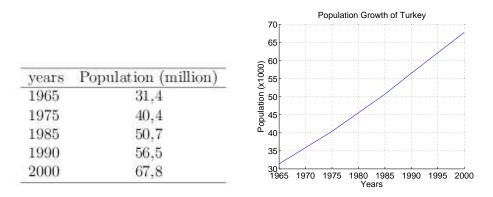


Figure 1: The population growth of Turkey between years of 1965 and 2000

- i What is the relationship that the graph suggests? Use least squares method to find out the necessary parameters of this suggested formula.
- ii Estimate the population at the years of 1995, 2007,2010 with least squares method.
- iii Fit a cubic (P_3) polynomial to the given data.
- iv Estimate the population at the years of 1995, 2007,2010 with fitted polynomial.
- v Compare your results for both least squares and interpolated polynomial methods.

2. Consider the difference approximation

$$f_n' = \frac{-f_{n+2} + 4f_{n+1} - 3f_n}{2h}$$

where $\underline{f_n}$ means f(x) and $\underline{f_{n+1}}$ means f(x+h)

- i Use this formula to approximate the derivative of f(x) = cos(x)at x = 0 using step sizes of h = 0.10 and 0.20.
- ii Make an error analysis. Estimate the order of error $(O(h^2))$. **Hints:** The ratio of errors and the difference with the exact value.

3. Find the power fit $y = Ax^2$ for the following data,

y - Ax	or the	TOHOW	1115
	x_k	y_k	
	2.0	5.1	
	2.3	7.5	
	2.6	10.6	
	2.9	14.4	
	3.2	10.0	

Hint: Use the least-squares method and find only the value of "A".

4. Write the expression to economize the the Maclaurin series for e^{3x} with the precision 4.0 by using Chebyshev polynomials. Hint: The two-term recursion formula

$$T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x)$$

 $T_0(x) = 1$
 $T_1(x) = x$

5. Consider the following table of data

x_i	f_i
0.0000	0.0000
0.2000	0.5879
0.4000	1.0637
0.6000	1.3927
0.8000	1.5573
1.0000	1.5575
1.2000	1.4091

- i Approximate $\int_0^{1.2} f(x) dx$ using the *Trapezoidal Rule* and a step size of h = 0.4.
- ii Approximate $\int_0^{1.2} f(x) dx$ using the *Trapezoidal Rule* and a step size of h = 0.2.
- iii Estimate the *error* in your answer to previous item. **Hint:** Use the procedure to estimate the proportionality factor, C.