1 Assignment 1 - Solving Nonlinear Equations; Due to November 7, 2010

- The function f(x) = 2x tan(x) is given. Solve f(x) = 0 in [-1.4,1.4] as defined in next page by:
 - 1. Halving the Interval (Bisection) Method
 - 2. The Method of False Position (regula falsi)
 - 3. Newton's Method
 - 4. Muller's Method
 - 5. Fixed-point Iteration; x = g(x) Method
- Which methods? See Table 1

Table 1: You should use the following methods depending on the last digit of your Student ID.

Last Digit	Methods
0-1	1,2,3
2-3	$1,\!2,\!4$
4-5	$1,\!2,\!5$
6-7	$1,\!3,\!4$
8-9	$1,\!3,\!5$

• Hints:

```
>> fplot('2*x-tan(x)',[-1.4 1.4])
>> [X,FVAL]=fzero('2*x-tan(x)',[-1.4 -0.5])
>> [X,FVAL]=fzero('2*x-tan(x)',[-0.5 0.5])
>> [X,FVAL]=fzero('2*x-tan(x)',[0.5 1.4])
```

- Write one complete function.
 - You may use **mainmulfix.m** as a starting template for your code.
 - You can make use of the available MATLAB codes presented in the Hands-On sessions or lectures.
 - An example calling this program;

>> myfunction(-1.4,1.4,tol_x,tol_y)

- Tabulate the actual error $(x_n - r)$ and function values $(f(x_n))$ as given in Table 2.

Table 2: Error Sequences. The number of iterations is not limited to or defined as 15. r corresponds to exact value of root.

	Method1	Method2	Method3	Method1	Method2	Method3
n	$(x_n - r)$	$(x_n - r)$	$(x_n - r)$	$f(x_n)$	$f(x_n)$	$f(x_n)$
1						
2						
3						
4						
5						
6						
7						
8						
9						
10						
12						
13						
14						
15						

- Plot the behaviours of the errors for three methods. Analyse your plots.
- Compare and discuss the rate of convergence (use ratios) for three methods.
- Which method is the best and why?