>> format long >> x=-3:0.1:3 >> fzero('x.^3-x-2',[-3 3]) ans = 1.521379706804568 >> x=-3:0.1:3; >> plot(x,x.^3-x-2);grid on; >> x2=1.0; >> x0=1.2; >> x1=1.4; >> h2=x0-x2; >> gamma=h2/h1; >> fn=inline('x.^3-x-2'); >> c=feval(fn,x0); >> a=(gamma*feval(fn,x1)-feval(fn,x0)*(1+gamma)+feval(fn,x2)) /(gamma*h1^2*(1+gamma)); >> b=(feval(fn,x1)-feval(fn,x0)-a*h1^2)/h1; >> nu=(2*c)/(b+sqrt(b^2-4*a*c)); >> root=x0-nu %%% >> x2=1.2; >> x0=1.4; >> x1=1.524956139135861; >> h1=x1-x0; >> h2=x0-x2; >> gamma=h2/h1; >> c=feval(fn,x0); >> a=(gamma*feval(fn,x1)-feval(fn,x0)*(1+gamma)+feval(fn,x2)) /(gamma*h1^2*(1+gamma)); >> b=(feval(fn,x1)-feval(fn,x0)-a*h1^2)/h1; >> nu=(2*c)/(b+sqrt(b^2-4*a*c)); >> root=x0-nu %%% >> x2=1.4; >> x0=1.521356085625905;; >> x1=1.524956139135861; >> h1=x1-x0; >> h2=x0-x2; >> gamma=h2/h1; >> c=feval(fn,x0); >> a=(gamma*feval(fn,x1)-feval(fn,x0)*(1+gamma)+feval(fn,x2)) /(gamma*h1^2*(1+gamma)); >> b=(feval(fn,x1)-feval(fn,x0)-a*h1^2)/h1; >> nu=(2*c)/(b+sqrt(b^2-4*a*c)); >> root=x0-nu root = 1.521379705079513
>> format long >> x=-pi:0.1:pi >> fzero('sin(x)-4*x+2',[0 1]) ans = 0.651618523135209 >> x=0; >> sin(x)-4*x+2 ans = 2 >> x=1; >> sin(x)-4*x+2 ans = -1.158529015192103 write the function function fx=func(x) fx=sin(x)-4*x+2; save as func.m write the function function fx=funcdiff(x) fx=cos(x)-4; save as funcdiff.mThe best choice for
>> x0=0;x0-(func(x0)/funcdiff(x0)) ans = 0.6667 (0.666666666666667) >> x0=0.6667;x0-(func(x0)/funcdiff(x0)) ans = 0.6516 (0.651640263601115) >> x0=0.6516;x0-(func(x0)/funcdiff(x0)) ans = 0.6516 (0.651618523167672)or start with
>> x0=1;x0-(func(x0)/funcdiff(x0)) ans = 0.6651 (0.665135766874333) >> x0=0.6651;x0-(func(x0)/funcdiff(x0)) ans = 0.6516 (0.651635876939131) >> x0=0.6516;x0-(func(x0)/funcdiff(x0)) ans = 0.6516 (0.651618523167672)
>> A=[1 3 1 1; 2 5 2 2; -1 -3 -3 5; 1 3 2 2] >> b=[6 2 4 3] >> format short >> GEPivShow(A,b') Begin forward elmination with Augmented system: 1 3 1 1 6 2 5 2 2 2 -1 -3 -3 5 4 1 3 2 2 3 Swap rows 1 and 2; new pivot = 2 After elimination in column 1 with pivot = 2.000000 2.0000 5.0000 2.0000 2.0000 2.0000 0 0.5000 0 0 5.0000 0 -0.5000 -2.0000 6.0000 5.0000 0 0.5000 1.0000 1.0000 2.0000 After elimination in column 2 with pivot = 0.500000 2.0000 5.0000 2.0000 2.0000 2.0000 0 0.5000 0 0 5.0000 0 0 -2.0000 6.0000 10.0000 0 0 1.0000 1.0000 -3.0000 After elimination in column 3 with pivot = -2.000000 2.0000 5.0000 2.0000 2.0000 2.0000 0 0.5000 0 0 5.0000 0 0 -2.0000 6.0000 10.0000 0 0 0 4.0000 2.0000 ans = -21.0000 10.0000 -3.5000 0.5000 >> det(A) ans = 8 >> 2.0000*0.5000*-2.0000*4.0000 %product of the diagonal of U ans = 8 % For LU-decomposition >> [L,U,pv]=luPiv(A) L = 1.0000 0 0 0 0.5000 1.0000 0 0 -0.5000 -1.0000 1.0000 0 0.5000 1.0000 -0.5000 1.0000 U = 2.0000 5.0000 2.0000 2.0000 0 0.5000 0 0 0 0 -2.0000 6.0000 0 0 0 4.0000 pv = 2 1 3 4 % one time pivoting % solution is completed %********************************************** % For proving purpose >> A=[1 3 1 1; 2 5 2 2; -1 -3 -3 5; 1 3 2 2] A = 1 3 1 1 2 5 2 2 -1 -3 -3 5 1 3 2 2 % our Idendity matrix becomes for swaping rows 1 and 2 >> pivoting1=[0 1 0 0; 1 0 0 0; 0 0 1 0; 0 0 0 1] pivoting1 = 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 1 % apply this pivoting to our original matrix >> A=pivoting1*A A = 2 5 2 2 1 3 1 1 -1 -3 -3 5 1 3 2 2 >> [L,U,pv] = luPiv(A) L = 1.0000 0 0 0 0.5000 1.0000 0 0 -0.5000 -1.0000 1.0000 0 0.5000 1.0000 -0.5000 1.0000 U = 2.0000 5.0000 2.0000 2.0000 0 0.5000 0 0 0 0 -2.0000 6.0000 0 0 0 4.0000 pv = 1 2 3 4 % it is proved. %********************************************** % for not pivoting case; >> GEshow(A,b') Begin forward elmination with Augmented system: 1 3 1 1 6 2 5 2 2 2 -1 -3 -3 5 4 1 3 2 2 3 After elimination in column 1 with pivot = 1.000000 1 3 1 1 6 0 -1 0 0 -10 0 0 -2 6 10 0 0 1 1 -3 After elimination in column 2 with pivot = -1.000000 1 3 1 1 6 0 -1 0 0 -10 0 0 -2 6 10 0 0 1 1 -3 After elimination in column 3 with pivot = -2.000000 1 3 1 1 6 0 -1 0 0 -10 0 0 -2 6 10 0 0 0 4 2 ans = -21.0000 10.0000 -3.5000 0.5000 % Solutions are the same. They are same because the system is % not ill-conditioned.