Other Rearrangements

$\displaystyle x=g_2(x)=\frac{3}{(x-2)}
$

$ x_0=4$ $ \rightarrow $ $ x_1=1.5$ $ \rightarrow $
$ x_2=-6$ $ \rightarrow $ $ x_3=-0.375$ $ \rightarrow $
$ x_4= - 1.263158$ $ \rightarrow $ $ x_5 = -0.919355$ $ \rightarrow $
$ x_5 = -0.919355$ $ \rightarrow $ $ x_6= - 1.02762$ $ \rightarrow $
$ x_7=-0.990876$ $ \rightarrow $ $ x_8= - 1.00305$

$\displaystyle x=g_3(x)=\frac{(x^2-3)}{2}
$

$ x_0=4$ $ \rightarrow $ $ x_1=6.5$ $ \rightarrow $
$ x_2 = 19.625$ $ \rightarrow $ $ x_3 = 191.070$

Figure 3.11: The fixed point of $ x=g(x)$ is the intersection of the line $ y=x$ and the curve $ y = g(x)$ plotted against $ x$. Where A: $ x = g_1(x) =\sqrt {2x + 3}$. B: $ x=g_2(x)=\frac {3}{(x-2)}$. C: $ x=g_3(x)=\frac {(x^2-3)}{2}$.
\includegraphics[scale=0.37]{figures/1-23}

Figure 3.11 shows the three cases.

Cem Ozdogan 2011-12-27