The Gauss-Jordan Method

\begin{displaymath}
(1) \left[
\begin{array}{rrrrr}
0 & 2 & 0 & 1 &0 \\
2 & 2...
...& -3 & 0 & 1 &-7 \\
6 & 1 &-6 &-5 &6 \\
\end{array} \right]
\end{displaymath}

\begin{displaymath}
(2) \left[
\begin{array}{rrrrr}
1 & 0.1667 & -1&-0.8333 & 1 ...
...4 & 4.3334 & -11 \\
0 & 2 & 0 & 1 & 0 \\
\end{array} \right]
\end{displaymath}

\begin{displaymath}
(3) \left[
\begin{array}{rrrrr}
1 & 0 & -0.8182 &-0.6364 &0....
... & -9 \\
0 & 0 & 2.1818 & 3.3636 & -6 \\
\end{array} \right]
\end{displaymath}

\begin{displaymath}
(4) \left[
\begin{array}{rrrrr}
1 & 0 & 0 & 0.04 &-0.58\\
0...
...0 & -1.32\\
0 & 0 & 0 & 1.5599 & -3.12\\
\end{array} \right]
\end{displaymath}

\begin{displaymath}
(5) \left[
\begin{array}{rrrrr}
1 & 0 & 0 & 0 &-0.5\\
0 & 1...
... & 1 & 0 & 0.3333\\
0 & 0 & 0 & 1 & -2\\
\end{array} \right]
\end{displaymath}

  1. Interchanging rows 1 and 4, dividing the new first row by 6, and reducing the first column gives
  2. Interchanging rows 2 and 3, dividing the new second row by -3.6667, and reducing the second column (operating above the diagonal as well as below) gives
  3. No interchanges now are required. We divide the third row by 6.8182 and create zeros below and above.
  4. We complete by dividing the fourth row by 1.5599 and create zeros above.
  5. The fourth column is now the solution.

Cem Ozdogan 2011-12-27