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1. General Introduction. Numerical analysis is the area of mathematics and
computer science that creates, analyzes, and implements algorithms for solving nu-
merically the problems of continuous mathematics. Such problems originate generally
from real-world applications of algebra, geometry and calculus, and they involve vari-
ables which vary continuously; these problems occur throughout the natural sciences,
social sciences, engineering, medicine, and business. During the past half-century, the
growth in power and availability of digital computers has led to an increasing use of
realistic mathematical models in science and engineering, and numerical analysis of
increasing sophistication has been needed to solve these more detailed mathematical
models of the world. The formal academic area of numerical analysis varies from quite
theoretical mathematical studies (e.g. see [5]) to computer science issues (e.g. see [1],
[11]).

With the growth in importance of using computers to carry out numerical pro-
cedures in solving mathematical models of the world, an area known as scientific
computing or computational science has taken shape during the 1980s and 1990s.
This area looks at the use of numerical analysis from a computer science perspective;
see [20], [16]. It is concerned with using the most powerful tools of numerical anal-
ysis, computer graphics, symbolic mathematical computations, and graphical user
interfaces to make it easier for a user to set up, solve, and interpret complicated
mathematical models of the real world.

1.1. Historical background. Numerical algorithms are almost as old as human
civilization. The Rhind Papyrus (˜1650 BC) of ancient Egypt describes a rootfinding
method for solving a simple equation; see [10, p. 88]. Archimedes of Syracuse (287-
212 BC) created much new mathematics, including the “method of exhaustion” for
calculating lengths, areas, and volumes of geometric figures; see [15, Chap. 2]. When
used as a method to find approximations, it is in much the spirit of modern numerical
integration; and it was an important precursor to the development of the calculus by
Isaac Newton and Gottfried Leibnitz.

A major impetus to developing numerical procedures was the invention of the
calculus by Newton and Leibnitz, as this led to accurate mathematical models for
physical reality, first in the physical sciences and eventually in the other sciences,
engineering, medicine, and business. These mathematical models cannot usually be
solved explicitly, and numerical methods to obtain approximate solutions are needed.
Another important aspect of the development of numerical methods was the creation
of logarithms by Napier (1614) and others, giving a much simpler manner of carrying
out the arithmetic operations of multiplication, division, and exponentiation.

Newton created a number of numerical methods for solving a variety of problems,
and his name is attached today to generalizations of his original ideas. Of special note
is his work on rootfinding and polynomial interpolation. Following Newton, many of
the giants of mathematics of the 18th and 19th centuries made major contributions to
the numerical solution of mathematical problems. Foremost among these are Leon-
hard Euler (1707-1783), Joseph-Louis Lagrange (1736-1813), and Karl Friedrich Gauss
(1777-1855). Up to the late 1800’s, it appears that most mathematicians were quite
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broad in their interests, and many of them were interested in and contributed to
numerical analysis. For a general history of numerical analysis up to 1900, see [17].

1.2. An early mathematical model. One of the most important and influen-
tial of the early mathematical models in science was that given by Newton to describe
the effect of gravity. According to this model, the force of gravity on a body of mass
m due to the Earth has magnitude

F =
Gmme

r2

where me is the mass of the Earth, r is the distance between the centers of the two
bodies, and G is the universal gravitational constant. The force on m is directed
towards the center of gravity of the Earth. Newton’s model of gravitation has led
to many problems that require solution by approximate means, usually involving the
numerical solution of ordinary differential equations.

Following the development by Newton of his basic laws of physics, these were ap-
plied by many mathematicians and physicists to give mathematical models for solid
and fluid mechanics. Civil and Mechanical Engineering use these models as the basis
for most modern work on solid structures and the motion of fluids, and numerical
analysis has become a basic part of the work of researchers in these areas of engi-
neering. For example, building modern structures makes major use of finite element
methods for solving the partial differential equations associated with models of stress;
and computational fluid mechanics is now a fundamental tool in designing new air-
planes. In the 19th century, phenomena involving heat, electricity, and magnetism
were successfully modelled; and in the 20th century, relativistic mechanics, quantum
mechanics, and other theoretical constructs were created to extend and improve the
applicability of earlier ideas. For a general discussion of modelling, see [26].

2. An Overview of Numerical Analysis. The following is a rough catego-
rization of the mathematical theory underlying numerical analysis, keeping in mind
that there is often a great deal of overlap between the listed areas. For a compendium
on the current state on research in numerical analysis, see [14].

2.1. Numerical linear and nonlinear algebra. This refers to problems in-
volving the solution of systems of linear and nonlinear equations, possibly with a very
large number of variables. Many problems in applied mathematics involve solving
systems of linear equations, with the linear system occurring naturally in some cases
and as a part of the solution process in other cases. Linear systems are usually written
using matrix-vector notation, Ax = b, with A the matrix of coefficients for the sys-
tem, x the column vector of the unknown variables x1, . . . , xn, and b a given column
vector. Solving linear systems with up to a n = 1000 variables is now considered rela-
tively straightforward in most cases. For small to moderate sized linear systems (say
n ≤ 1000), the favorite numerical method is Gaussian elimination and its variants;
this is simply a precisely stated algorithmic variant of the method of elimination of
variables that students first encounter in elementary algebra. For larger linear sys-
tems, there are a variety of approaches depending on the structure of the coefficient
matrix A. Direct methods lead to a theoretically exact solution x in a finite number
of steps, with Gaussian elimination the best known example. In practice, there are
errors in the computed value of x due to rounding errors in the computation, arising
from the finite length of numbers in standard computer arithmetic. Iterative methods
are approximate methods which create a sequence of approximating solutions of in-
creasing accuracy. Linear systems are categorized according to many properties (e.g.
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A may be symmetric about its main diagonal), and specialized methods have been
developed for problems with these special properties; see [1], [18].

Nonlinear problems are often treated numerically by reducing them to a sequence
of linear problems. As a simple but important example, consider the problem of
solving a nonlinear equation f(x) = 0. Approximate the graph of y = f(x) by the
tangent line at a point x(0) near the desired root, and use the root of the tangent
line to approximate the root of the original nonlinear function f(x). This leads to
Newton’s method for rootfinding:

x(k+1) = x(k) − f
(
x(k)

)

f ′ (x(k)
) , k = 0, 1, 2, . . .

This generalizes to handling systems of nonlinear equations. Let f(x) = 0 denote
a system of n nonlinear equations in n unknowns x1, . . . , xn. Newton’s method for
solving this system is given by

x(k+1) = x(k) + δ(k)

f ′
(
x(k)

)
δ(k) = −f

(
x(k)

)
, k = 0, 1, . . .

In this, f ′(x) is the Jacobian matrix of f(x), and the second equation is a linear system
of order n. There are numerous other approaches to solving nonlinear systems, most
based on using some type of approximation using linear functions; see [24].

An important related class of problems occur under the heading of optimization.
Given a real-valued function f(x) with x a vector of unknowns, we wish to find a
value of x which minimizes f(x). In some cases x is allowed to vary freely, and in
other cases there are constraints on the values of x which can be considered; see [27].
Such problems occur frequently in business applications.

2.2. Approximation Theory. This category covers the approximation of func-
tions and methods based on using such approximations. When evaluating a function
f(x) with x a real or complex number, keep in mind that a computer or calculator
can only do a finite number of operations. Moreover, these operations are the basic
arithmetic operations of addition, subtraction, multiplication, and division, together
with comparison operations such as determining whether x > y is true or false. With
the four basic arithmetic operations, we can evaluate polynomials

p(x) = a0 + a1x + · · ·+ anxn (*)

and rational functions, which are polynomials divided by polynomials. Including the
comparison operations, we can evaluate different polynomials or rational functions on
different sets of real numbers x. The evaluation of all other functions, e.g. f(x) =

√
x

or 2x, must be reduced to the evaluation of a polynomial or rational function that
approximates the given function with sufficient accuracy. All function evaluations on
calculators and computers are accomplished in this manner. This topic is known as
approximation theory, and it is a well-developed area of mathematics; for an intro-
duction, see [3, Chap. 3,4].

One method of approximation is called interpolation. Consider being given a
set of points (xi, yi) , i = 0, 1, . . . , n, and then finding a polynomial (*) which satis-
fies p(xi) = yi, i = 0, 1, . . . , n. The polynomial p(x) is said to interpolate the given
data points. Interpolation can be performed with functions other than polynomi-
als (although these are the most popular category of interpolating functions), with
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important cases being rational functions, trigonometric polynomials, and spline func-
tions. Interpolation has a number of applications. If a function is known only at a
discrete set of data points x0, . . . , xn, with yi = f(xi), then interpolation can be used
to extend the definition to nearby points x. If n is at all large, then spline functions
are preferable to polynomials for this purpose. Spline functions are smooth piece-
wise polynomial functions with minimal oscillation, and they are used commonly in
computer graphics, statistics, and other applications; see [12].

Most numerical methods for the approximation of integrals and derivatives of a
given function f(x) are based on interpolation. Begin by constructing an interpo-
lating function p(x) that approximates f(x), often a polynomial, and then integrate
or differentiate p(x) to approximate the corresponding integral or derivative of f(x).
For an introduction to this area, see [3, Chap. 5]; and for a more complete view of
numerical integration, see [25].

2.3. Solving differential and integral equations. Most mathematical mod-
els used in the natural sciences and engineering are based on ordinary differential
equations, partial differential equations, and integral equations. The numerical meth-
ods for these equations are primarily of two types. The first type approximates the
unknown function in the equation by a simpler function, often a polynomial or piece-
wise polynomial function, choosing it to satisfy the original equation approximately.
Among the best known of such methods is the finite element method for solving par-
tial differential equations; see [8]. The second type of numerical method approximates
the derivatives or integrals in the equation of interest, generally solving approximately
for the solution function at a discrete set of points. Most initial value problems for
ordinary differential equations and partial differential equations are solved in this
way, and the numerical procedures are often called finite difference methods, primar-
ily for historical reasons. Most numerical methods for solving differential and integral
equations involve both approximation theory and the solution of quite large linear
and nonlinear systems. For an introduction to the numerical analysis of differential
equations, see [2], [7], [22], [30], [31]; for integral equations, see [4], [9].

2.4. Effects of computer hardware. Virtually all numerical computation is
carried out on digital computers, and their structure and properties affect the struc-
ture of numerical algorithms, especially when solving large linear systems. First and
foremost, the computer arithmetic must be understood. Historically, computer arith-
metic varied greatly between different computer manufacturers, and this was a source
of many problems when attempting to write software which could be easily ported
between different computers. This has been lessoned significantly with the develop-
ment of the IEEE (Institute for Electrical and Electronic Engineering) standard for
computer floating-point arithmetic. All small computers have adopted this standard,
and most larger computer manufacturers have done so as well. For a discussion of the
standard and of computer floating-point arithmetic in general, see [28].

For large scale problems, especially in numerical linear algebra, it is important to
know how the elements of an array A or a vector x are stored in memory. Knowing
this can lead to much faster transfer of numbers from the memory into the arithmetic
registers of the computer, thus leading to faster programs. A somewhat related topic is
that of pipelining. This is a widely used technique whereby the execution of computer
operations are overlapped, leading to faster execution. Machines with the same basic
clock speed can have very different program execution times due to differences in
pipelining and differences in the way memory is accessed.
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Most present-day computers are sequential in their operation, but parallel com-
puters are being used ever more widely. Some parallel computers have independent
processors that all access the same computer memory (shared memory parallel com-
puters), whereas other parallel computers have separate memory for each processor
(distributed memory parallel computers). Another form of parallelism is the use of
pipelining of vector arithmetic operations. Some parallel machines are a combination
of some or all of these patterns of memory storage and pipelining. With all parallel
machines, the form of a numerical algorithm must be changed in order to make best
use of the parallelism. For examples of this in numerical linear algebra, see [13].

3. Common Perspectives in Numerical Analysis. Numerical analysis is
concerned with all aspects of the numerical solution of a problem, from the theo-
retical development and understanding of numerical methods to their practical im-
plementation as reliable and efficient computer programs. Most numerical analysts
specialize in small sub-areas, but they share some common concerns, perspectives,
and mathematical methods of analysis. These include the following.

1. When presented with a problem that cannot be solved directly, then replace
it with a “nearby problem” which can be solved more easily. Examples are
the use of interpolation in developing numerical integration methods and
rootfinding methods; see [3, Chaps 2,5].

2. There is widespread use of the language and results of linear algebra, real
analysis, and functional analysis (with its simplifying notation of norms, vec-
tor spaces, and operators). See [5].

3. There is a fundamental concern with error, its size, and its analytic form.
When approximating a problem, as above in item 1, it is prudent to under-
stand the nature of the error in the computed solution. Moreover, under-
standing the form of the error allows creation of extrapolation processes to
improve the convergence behavior of the numerical method.

4. Stability is a concept referring to the sensitivity of the solution of a problem
to small changes in the data or the parameters of the problem. Consider the
following well-known example. The polynomial

p(x) = (x − 1) (x − 2) (x − 3) (x − 4) (x − 5) (x − 6) (x − 7)

= x7 − 28x6 + 322x5 − 1960x4 + 6769x3 − 12132x2 + 13068x− 5040

has roots which are very sensitive to small changes in the coefficients. If the
coefficient of x6 is changed to −28.002, then the original roots 5 and 6 are
perturbed to the complex numbers 5.459 ± 0.540i, a very significant change
in values. Such a polynomial p(x) is called unstable or ill-conditioned with
respect to the rootfinding problem. In developing numerical methods for
solving problems, they should be no more sensitive to changes in the data
than the original problem to be solved. Moreover, one tries to formulate the
original problem to be stable or well-conditioned. Excellent discussions of this
topic are given in [21], with particular emphasis on numerical linear algebra.

5. Numerical analysts are very interested in the effects of using finite precision
computer arithmetic. This is especially important in numerical linear alge-
bra, as large problems contain many rounding errors; see [21].

6. Numerical analysts are generally interested in measuring the efficiency of
algorithms. What is the cost of a particular algorithm. For example, the
use of Gaussian elimination to solve a linear system Ax = b containing n
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equations will require approximately 2
3n3 arithmetic operations. How does

this compare with other numerical methods for solving this problem?

4. Modern Applications and Computer Software. Numerical analysis and
mathematical modelling have become essential in many areas of modern life. Sophis-
ticated numerical analysis software is being embedded in popular software packages,
e.g. spreadsheet programs, allowing many people to perform modelling even when
they are unaware of the mathematics involved in the process. This requires creating
reliable, efficient, and accurate numerical analysis software; and it requires designing
problem solving environments (PSE) in which it is relatively easy to model a given
situation. The PSE for a given problem area is usually based on excellent theoretical
mathematical models, made available to the user through a convenient graphical user
interface. Such software tools are well-advanced in some areas, e.g. computer aided
design of structures, while other areas are still grappling with the more basic problems
of creating accurate mathematical models and accompanying tools for their solution,
e.g. atmospheric modelling.

4.1. Some application areas. Computer aided design (CAD) and computer
aided manufacturing (CAM) are important areas within engineering, and some quite
sophisticated PSEs have been developed for CAD/CAM. A wide variety of numerical
analysis is involved in the mathematical models that must be solved. The models
are based on the basic Newtonian laws of mechanics; there are a variety of possible
models, and research continues on designing such models. An important CAD topic
is that of modelling the dynamics of moving mechanical systems. The mathematical
model involves systems of both ordinary differential equations and algebraic equations
(generally nonlinear); see [19]. The numerical analysis of these mixed systems, called
differential-algebraic systems, is quite difficult but important to being able to model
moving mechanical systems. Building simulators for cars, planes, and other vehicles
requires solving differential-algebraic systems in real-time. See [2], [7] for a review of
some pertinant numerical analysis literature.

Atmospheric modelling is important for simulating the behavior of the Earth’s at-
mosphere, to understand the possible effect of human activities on our atmosphere. A
large number of variables need to be introduced. These include the velocity v(x, y, z, t)
in the atmosphere at position (x, y, z) and time t, the pressure p(x, y, z, t), and the
temperature T (x, y, z, t). In addition, we must study various chemicals existing
in the atmosphere and their interactions, including ozone, various chemical pollu-
tants, carbon dioxide, and others. The underlying equations for studying v(x, y, z, t),
p(x, y, z, t), and T (x, y, z, t) are partial differential equations; and the chemical kinetic
interactions of the various chemicals are described using some quite difficulty ordinary
differential equations; see [23]. Many types of numerical analysis procedures are used
in atmospheric modelling, including computational fluid mechanics and the numerical
solution of differential equations. For the numerical solution of the partial differential
equations, see [30], [31].

Modern business makes much use of optimization methods in deciding how to
allocate resources most efficiently. These include problems such as inventory control,
scheduling, how best to locate manufacturing and storage facilities, investment strate-
gies, and others; see [6], [29]. The numerical analysis of optimization problems was
briefly discussed earlier in this article.

4.2. Computer software. Software to implement common numerical analysis
procedures is very important. If it is to be shared by many users, it needs to be
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reliable, accurate, and efficient. Moreover, it needs to be written so as to be easily
portable between different computers. Beginning around 1970, there have been a
number of government sponsored research efforts to produce high quality numerical
analysis software in particular problem areas. A more recent example of such a project
is the LAPACK project [1] which contains state-of-the-art programs for basic problems
in numerical linear algebra. Two important online numerical analysis libraries that
contain many of these large scale numerical analysis programming projects can be
found at the following internet sites:

Name URL Location
Netlib www.netlib.org Oak Ridge National Laboratory
GAMS gams.nist.gov National Institute of Standards and Technology

The most popular programming language for implementing numerical analysis
methods continues to be Fortran, and it too continues to be updated to meet changing
needs, with Fortran 95 being the most recent standard. Other languages are also
important, with the most important ones being C, C++, and Java. Another approach
to supplying numerical analysis programs and programming tools has been to create
higher level problem solving environments that contain numerical, programming, and
graphical tools, including some quite sophisticated numerical analysis tools to handle
many basic problems. Best known of these is MATLAB ( c© The Mathworks, Inc.), a
commercial package that has arguably become the most popular way to do numerical
computing. For analytical mathematics computing, there are two popular commercial
packages, Maple ( c© Waterloo Maple, Inc.) and Mathematica ( c© Wolfram Research,
Inc.).
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