0.1 Newton's Method, Continued

- Newton's algorithm is widely used because, it is more rapidly convergent than any of the methods discussed so far. Quadratically convergent
- The error of each step approaches a constant K times the square of the error of the previous step.
- The number of decimal places of accuracy nearly doubles at each iteration.
- When Newton's method is applied to $f(x) = 3x + sinx e^x = 0$, if we begin with $x_0 = 0.0$:

$$
x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} = 0.0 - \frac{-1.0}{3.0} = 0.33333
$$

$$
x_2 = 0.36017
$$

$$
x_3 = 0.3604217
$$

- After three iterations, the root is correct to seven digits (.3604217029603) 2440136932951583028); convergence is much more rapid than any previous method.
- In fact, the error after an iteration is about one-third of the square of the previous error.
- There is the need for two functions evaluations at each step, $f(x_n)$ and $f'(x_n)$ and we must obtain the derivative function at the start.
- If a difficult problem requires many iterations to converge, the number of function evaluations with Newton's method may be many more than with linear iteration methods.
- Because Newton's method always uses two per iteration whereas the others take only one.
- An algorithm for the Newton's method :

To determine a root of $f(x) = 0$, given x_0 reasonably close to the root, Compute $f(x_0)$, $f'(x_0)$ If $(f(x_0) \neq 0)$ And $(f'(x_0) \neq 0)$ Then Repeat Set $x_1 = x_0$ Set $x_0 = x_0 - \frac{f(x_0)}{f'(x_0)}$ $\overline{f'(x_0)}$ Until $(|x_1 - x_0| <$ tolerance value1) Or If $|f(x_0)| <$ tolerance value2) End If.

- The method may converge to a root different from the expected one or diverge if the starting value is not close enough to the root.
- In some cases Newton's method will not converge (Fig. [1\)](#page-1-0).

Figure 1: Graphical illustration of the case that Newton's Method will not converge.

- Starting with x_0 , one never reaches the root r because $x_6 = x_1$ and we are in an endless loop.
- Observe also that if we should ever reach the minimum or maximum of the curve, we will fly off to infinity.
- Example: Apply Newton's method to $x x^{1/3} 2 = 0$. $(m$ -file: demoNewton.m. \gg demoNewton(3)
- Example: A general implementation of Newton's method. $(m$ -files: newton.m), $(\text{fx3n.m}).$ $(\text{fx3n.m}).$ $(\text{fx3n.m}).$ \gg newton('fx3n', 3, 5e - 16, 5e - 16, 1)

0.2 Muller's Method

- Most of the root-finding methods that we have considered so far have approximated the function in the neighbourhood of the root by a straight line.
- Muller's method is based on approximating the function in the neighbourhood of the root by a quadratic polynomial.

Figure 2: Parabola $a\nu^2 + b\nu + c = p_2(\nu)$

- A second-degree polynomial is made to fit three points near a root, at x_0, x_1, x_2 with x_0 between x_1 , and x_2 .
- The proper zero of this quadratic, using the quadratic formula, is used as the improved estimate of the root.
- A quadratic equation that fits through three points in the vicinity of a root, in the form $a\nu^2 + b\nu + c$. (See Fig. [2\)](#page-2-0)
- $\bullet~$ Transform axes to pass through the middle point, let
	- $\nu = x x_0,$ $- h_1 = x_1 - x_0$ $- h_2 = x_0 - x_2.$ $\nu = 0 \implies a(0)^2 + b(0) + c = f_0$ $\nu = h_1 \Longrightarrow ah_1^2 + bh_1 + c = f_1$ $\nu = -h_2 \Longrightarrow ah_2^2 - bh_2 + c = f_2$

We evaluate the coefficients by evaluating $p_2(\nu)$ at the three points:

• From the first equation, $c = f_0$.

• Letting $h_2/h_1 = \gamma$, we can solve the other two equations for a, and b.

$$
a = \frac{\gamma f_1 - f_0(1+\gamma) + f_2}{\gamma h_1^2(1+\gamma)}, \ b = \frac{f_1 - f_0 - ah_1^2}{h_1}
$$

• After computing a, b, and c, we solve for the root of $a\nu^2 + b\nu + c$ by the quadratic formula

$$
\nu_{1,2} = \frac{2c}{-b \pm \sqrt{b^2 - 4ac}},
$$

$$
\nu = x - x_0,
$$

$$
\rho ct - x_0 = \frac{2c}{-b}
$$

$$
root = x_0 - \frac{2c}{b \pm \sqrt{b^2 - 4ac}}
$$

See Figs. [3-](#page-3-0)[4](#page-4-0) that an example is given

Find a root between 0 and 1 of the same transcendental function as before: $f(x) = 3x +$

Figure 3: An example of the use of Muller's method.

- Experience shows that Muller's method converges at a rate that is similar to that for Newton's method.
- It does not require the evaluation of derivatives, however, and (after we have obtained the starting values) needs only one function evaluation per iteration.

Figure 4: Cont. An example of the use of Muller's method.

An algorithm for Muller's method :

Given the points x_2, x_0, x_1 in increasing value, Evaluate the corresponding function values: f_2, f_0, f_1 . Repeat (Evaluate the coefficients of the parabola, $a\nu^2+b\nu+c$, determined by the three points. $(x_2, f_2), (x_0, f_0), (x_l, f_1).$ Set $h_l = x_1 - x_0; h_2 = x_0 - x_2; \gamma = h_2/h_1.$ Set $c = f_0$ Set $a = \frac{\gamma f_1 - f_0(1+\gamma) + f_2}{\gamma h_1^2(1+\gamma)}$ Set $b = \frac{f_1 - f_0 - a h_1^2}{h_1}$ (Next, compute the roots of the polynomial.) Set $root = x_0 - \frac{2c}{b \pm \sqrt{b^2}}$ Set $root = x_0 - \frac{b \pm \sqrt{b^2 - 4ac}}{b \pm \sqrt{b^2 - 4ac}}$
Choose root, x_r , closest to x_0 by making the denominator as large as possible; i.e. if $b > 0$, choose plus; otherwise, choose minus. If $x_r > x_0$, Then rearrange to: x_0, x_1 , and the root Else rearrange to: x_0, x_2 , and the root End If. (In either case, reset subscripts so that x_0 , is in the middle.) Until $|f(x_r)| < F$ tol

0.3 Fixed-point Iteration; $x = g(x)$ Method

- Rearrange $f(x)$ into an equivalent form $x = g(x)$,
- This can be done in several ways.
	- Observe that if $f(r) = 0$, where r is a root of $f(x)$, it follows that $r = q(r)$.
- Whenever we have $r = g(r)$, r is said to be a fixed point for the function q .
- The iterative form:

$$
x_{n+1} = g(x_n); \quad n = 0, 1, 2, 3, \dots
$$

converges to the fixed point r, a root of $f(x)$.

- Example: $f(x) = x^2 2x 3 = 0$
- Suppose we rearrange to give this equivalent form:

$$
x = g_1(x) = \sqrt{2x + 3}
$$

\n
$$
x_0 = 4 \qquad \rightarrow \qquad x_1 = \sqrt{11} = 3.31662
$$

\n
$$
x_2 = \sqrt{9.63325} = 3.10375 \qquad \rightarrow \qquad x_3 = 3.03439
$$

\n
$$
x_4 = 3.01144 \qquad \rightarrow \qquad \frac{x_5 = 3.00381}{x_4 = 3.0381}
$$

- If we start with $x = 4$ and iterate with the fixed-point algorithm,
- The values are *converging on the root* at $x = 3$.

0.3.1 Other Rearrangements

• Another rearrangement of $f(x)$; Let us start the iterations again with $x_0 = 4$. Successive values then are:

$$
x = g_2(x) = \frac{3}{(x - 2)}
$$

\n
$$
x_0 = 4 \rightarrow x_1 = 1.5 \rightarrow x_2 = -6 \rightarrow x_3 = -0.375 \rightarrow x_4 = -1.263158 \rightarrow x_5 = -0.919355 \rightarrow x_6 = -1.02762 \rightarrow x_7 = -0.990876 \rightarrow \frac{x_8 = -1.00305}{x_8 = -1.00305}
$$

- It seems that we now converge to the other root, at $x = -1$.
- Consider a third rearrangement; starting again with $x_0 = 4$, we get

$$
x = g_3(x) = \frac{(x^2 - 3)}{2}
$$

 $x_0 = 4$ \rightarrow $x_1 = 6.5$ \rightarrow $x_2 = 19.625 \rightarrow \frac{x_3 = 191.070}{ }$

Figure 5: The fixed point of $x = g(x)$ is the intersection of the line $y = x$ and the curve $y = g(x)$ plotted against x. Where A: $x = g_1(x) = \sqrt{2x + 3}$. B: $x = g_2(x) = \frac{3}{(x-2)}$. C: $x = g_3(x) = \frac{(x^2-3)}{2}$.

- The iterations are obviously diverging.
- The fixed point of $x = g(x)$ is the <u>intersection</u> of the line $y = x$ and the curve $y = g(x)$ plotted against x.

Figure [5](#page-6-0) shows the three cases.

- Start on the x-axis at the initial x_0 , go vertically to the curve, then horizontally to the line $y = x$, then vertically to the curve, and again horizontally to the line.
- Repeat this process until the points on the curve converge to a fixed point or else diverge.
- The method may converge to a root different from the expected one, or it may diverge.
- Different rearrangements will converge at different rates.
- Iteration algorithm with the form $x = g(x)$

Table 1: The order of convergence for the iteration algorithm with the different forms of $x = g(x)$.

Iteration	If $g(x) = \sqrt{2x + 3}$		If $g(x) = 3/(x - 2)$		
	Error	Ratio	Error	Ratio	
	0.31662	0.31662	2.50000	0.50000	
\overline{c}	0.10375	0.32767	-5.00000	$-2,00000$	
3	0.03439	0.33143	0.62500	-0.12500	
$\overline{4}$	0.01144	0.33270	-0.26316	-0.42105	
5	0.00381	0.33312	0.08065	-0.30645	
6			-0.02762	-0.34254	
7			0.00912	-0.33029	
8			-0.00305	-0.33435	

To determine a root of $f(x) = 0$, given a value x_1 reasonably close to the root Rearrange the equation to an equivalent form $x = q(x)$ Repeat Set $x_2 = x_l$ Set $x_l = g(x_1)$ Until $|x_1 - x_2|$ < tolerance value

0.3.2 Order of Convergence

- The fixed-point method converges at a linear rate;
- it is said to be *linearly convergent*, meaning that the error at each successive iteration is a constant fraction of the previous error.
- If we tabulate the errors after each step in getting the roots of the polynomial and its ratio to the previous error,
- we find that the magnitudes of the ratios to be levelling out at 0.3333. (See Table [1\)](#page-7-0)
- **Example:** Comparing Muller's and Fixed-point Iteration methods ([m-files: mainmulfix.m](http://siber.cankaya.edu.tr/ozdogan/NumericalComputations/mfiles/chapter1/mainmulfix.m), [muller.m](http://siber.cankaya.edu.tr/ozdogan/NumericalComputations/mfiles/chapter1/muller.m), [fixedpoint.m](http://siber.cankaya.edu.tr/ozdogan/NumericalComputations/mfiles/chapter1/fixedpoint.m))

0.4 Multiple Roots

- A function can have more than one root of the same value. See Fig. [6l](#page-8-0)eft.
- $f(x) = (x 1)(e^{(x-1)} 1)$ has a double root at $x = 1$, as seen in Fig. [6r](#page-8-0)ight.

Figure 6: Left: The curve on the left has a triple root at $x = -1$ [the function is $(x+1)^3$. The curve on the right has a double root at $x=2$ [the function is $(x-2)^2$. Right: Plot of $(x-1)(e^{(x-1)}-1)$.

Table 2: Left: Errors when finding a double root. Right: Successive errors with Newton's method for $f(x) = (x+1)^3 = 0$ (Triple root).

Error	Ratio				
		Iteration	Error	Iteration	Error
0.1666	0.453				
0.0798	0.479	Ω		6	0.0439
0.0391	0.490				0.0293
0.0193	0.494	o	0.2222	8	0.0195
0.0096	0.497	3	0.1482	Ω	0.0130
0.0048	0.500	4	0.0988	10	0.00867
0.0024	0.500		0.0658		
	0.3679			0.5 0.3333	

- The methods we have described do not work well for multiple roots.
- For example, Newton's method is only linearly convergent at a <u>double root</u>.
- Table 2 left gives the errors of successive iterates (Newton's method is applied to a double root) and the convergence is clearly linear with ratio of errors is $\frac{1}{2}$.
- When Newton's method is applied to a triple root, convergence is still linear, as seen in Table 2 right. The ratio of errors is larger, about $\frac{2}{3}$.

```
>> x = linspace( -4, 4, 100 ); plot(x,x.^3+3*x.^2+3*x+1); grid on<br>>> x= linspace( -4, 4, 100 ); plot(x,x.*exp(x-1)-x-exp(x-1)+1); grid on<br>>> x = linspace( 0, 4, 1500 ); plot(x,x.^2-4*x+4); grid on
```
0.5 The fzero function

- The **MATLAB** fzero function is a hybrid of <u>bisection</u>, the secant method, and interpolation.
- Care is taken to avoid unnecessary calculations and to minimize the effects of roundoff.

```
>> xb=brackPlot('fx3',0,5);
>> fzero('fx3',xb)
ans = 3.5214options=optimset('Display','iter');
r = fzero (' (x+1) ^3', [-10 10], options)
```
0.6 Nonlinear Systems

Figure 7: A pair of equations.

- A pair of equations: $x^2 + y^2 = 4$ $e^x + y = 1$
- Graphically, the solution to this system is represented by the intersections of the circle $x^2 + y^2 = 4$ with the curve $y = 1 - e^x$ (see Fig. [7\)](#page-9-0)
- Newton's method can be applied to systems as well as to a single nonlinear equation. We begin with the forms

$$
f(x, y) = 0,
$$

$$
g(x, y) = 0
$$

• Let

$$
x=r, y=s
$$

be a root.

• Expand both functions as a Taylor series about the point (x_i, y_i) in terms of

$$
(r-x_i), (s-y_i)
$$

where (x_i, y_i) is a point near the root:

• Taylor series expansion of functions;

 $f(r, s) = 0 = f(x_i, y_i) + f_x(x_i, y_i)(r - x_i) + f_y(x_i, y_i)(s - y_i) + \dots$ $g(r, s) = 0 = g(x_i, y_i) + g_x(x_i, y_i)(r - x_i) + g_y(x_i, y_i)(s - y_i) + \dots$ • Truncating both series gives $0 = f(x_i, y_i) + f_x(x_i, y_i)(r - x_i) + f_y(x_i, y_i)(s - y_i)$ $0 = g(x_i, y_i) + g_x(x_i, y_i)(r - x_i) + g_y(x_i, y_i)(s - y_i)$ • which we can rewrite as $f_x(x_i, y_i) \Delta x_i + f_y(x_i, y_i) \Delta y_i = -f(x_i, y_i)$ $g_x(x_i, y_i)\Delta x_i + g_y(x_i, y_i)\Delta y_i = -g(x_i, y_i)$

• where Δx_i and Δy_i are used as increments to x_i and y_i ;

$$
x_{i+1} = x_i + \Delta x_i
$$

$$
y_{i+1} = y_i + \Delta y_i
$$

are improved estimates of the (x, y) values.

• We repeat this until both $f(x, y)$ and $g(x, y)$ are close to zero.

Example:

 $f(x, y) = 4 - x^2 - y^2 = 0$ $g(x, y) = 1 - e^x - y = 0$ The partial derivatives are

$$
f_x = -2x, f_y = -2y,
$$

$$
g_x = -e^x, g_y = -1
$$

• Beginning with $x_0 = 1, y_0 = -1.7$, we solve

 $-2\Delta x_0 + 3.4\Delta y_0 = -0.1100$ $-2.7183\Delta x_0 - 1.0\Delta y_0 = 0.0183$ • This gives

 $\Delta x_0 = 0.0043,$ $\Delta y_0 = -0.0298$ \bullet from which

 $x_1 = 1.0043$, $y_1 = -1.7298.$

• These agree with the true value within 2 in the fourth decimal place. Repeating the process once more:

 $x_2 = 1.004169,$ $y_2 = -1.729637.$ Then, $f(1.004169,-1.729637) = -0.0000001$, $g(1.004169,-1.729637)=-0.00000001,$

0.6.1 Solving a System by Iteration

- There is another way to attack a *system of nonlinear equations*.
- Consider this pair of equations:

equations;
\n
$$
e^x - y = 0
$$
,
\n $xy - e^x = 0$
\nrearrangement;
\n $x = ln(y)$,
\n $y = e^x/x$

- We know how to solve a single nonlinear equation by fixed-point iterations
- We rearrange it to solve for the variable in a way that successive computations may reach a solution.
- To start, we guess at a value for y , say, $y = 2$. See Table [3.](#page-12-0)
- Final values are precisely the correct results.

Table 3: An example for solving a system by iteration

y-value	x-value
2	0.69315
2.88539	1.05966
2.72294	1.00171
2.71829	1.00000
2.71828	(111)(11)

Table 4: Another example for solving a system by iteration

• Example: Another example for the pair of equations whose plot is Fig. [7.](#page-9-0)

equations; $x^2 + y^2 = 4$, $e^x + y = 1$

> rearrangement; $y = -\sqrt{(4 - x^2)}$, $x = ln(1 - y)$

and begin with $x = 1.0$, the successive values for y and x are: (See Table [4\)](#page-12-1)

• We are converging to the solution in an oscillatory manner.