
0.1 Newton’s Method, Continued

• Newton’s algorithm is widely used because, it is more rapidly convergent
than any of the methods discussed so far. Quadratically convergent

• The error of each step approaches a constant K times the square of the
error of the previous step.

• The number of decimal places of accuracy nearly doubles at each iteration.

• When Newton’s method is applied to f(x) = 3x+ sinx− ex = 0, if we
begin with x0 = 0.0:

x1 = x0 −
f(x0)

f ′ (x0)
= 0.0−

−1.0

3.0
= 0.33333

x2 = 0.36017

x3 = 0.3604217

• After three iterations, the root is correct to seven digits (.3604217029603
2440136932951583028); convergence is much more rapid than any pre-
vious method.

• In fact, the error after an iteration is about one-third of the square of
the previous error.

• There is the need for two functions evaluations at each step, f(xn) and
f ′(xn) and we must obtain the derivative function at the start.

• If a difficult problem requires many iterations to converge, the number
of function evaluations with Newton’s method may be many more than
with linear iteration methods.

• Because Newton’s method always uses two per iteration whereas the
others take only one.

• An algorithm for the Newton’s method :

1

To determine a root of f(x) = 0, given x0 reason-
ably close to the root,
Compute f(x0), f

′

(x0)
If (f(x0) 6= 0) And (f

′

(x0) 6= 0) Then
Repeat
Set x1 = x0

Set x0 = x0 − f(x0)

f ′ (x0)

Until (|x1 − x0| < tolerance value1) Or If
|f(x0)| < tolerance value2)
End If.

• The method may converge to a root different from the expected one or
diverge if the starting value is not close enough to the root.

• In some cases Newton’s method will not converge (Fig. 1).

Figure 1: Graphical illustration of the case that Newton’s Method will not
converge.

• Starting with x0, one never reaches the root r because x6 = x1 and we
are in an endless loop.

• Observe also that if we should ever reach the minimum or maximum
of the curve, we will fly off to infinity.

• Example: Apply Newton’s method to x− x1/3 − 2 = 0.
(m-file: demoNewton.m. >> demoNewton(3)

• Example: A general implementation of Newton’s method.
(m-files: newton.m),(fx3n.m).
>> newton(′fx3n′, 3, 5e− 16, 5e− 16, 1)

2

http://siber.cankaya.edu.tr/ozdogan/NumericalComputations/mfiles/chapter1/demoNewton.m
http://siber.cankaya.edu.tr/ozdogan/NumericalComputations/mfiles/chapter1/newton.m
http://siber.cankaya.edu.tr/ozdogan/NumericalComputations/mfiles/chapter1/fx3n.m

0.2 Muller’s Method

• Most of the root-finding methods that we have considered so far have
approximated the function in the neighbourhood of the root by a straight
line.

• Muller’s method is based on approximating the function in the neigh-
bourhood of the root by a quadratic polynomial.

Figure 2: Parabola aν2 + bν + c = p2(ν)

• A second-degree polynomial is made to fit three points near a root, at
x0, x1, x2 with x0 between x1, and x2.

• The proper zero of this quadratic, using the quadratic formula, is used
as the improved estimate of the root.

• A quadratic equation that fits through three points in the vicinity of a
root, in the form aν2 + bν + c. (See Fig. 2)

• Transform axes to pass through the middle point, let

– ν = x− x0,

– h1 = x1 − x0

– h2 = x0 − x2.

ν = 0 =⇒ a(0)2 + b(0) + c = f0
ν = h1 =⇒ ah2

1 + bh1 + c = f1
ν = −h2 =⇒ ah2

2 − bh2 + c = f2

We evaluate the coefficients by evaluating p2(ν) at the three points:

• From the first equation, c = f0.

3

• Letting h2/h1 = γ, we can solve the other two equations for a, and b.

a =
γf1 − f0(1 + γ) + f2

γh2
1(1 + γ)

, b =
f1 − f0 − ah2

1

h1

• After computing a, b, and c, we solve for the root of aν2 + bν + c by
the quadratic formula

ν1,2 =
2c

−b ±
√
b2 − 4ac

,

ν = x− x0,

root = x0 −
2c

b±
√
b2 − 4ac

See Figs. 3-4 that an example is given

Figure 3: An example of the use of Muller’s method.

• Experience shows that Muller’s method converges at a rate that is sim-

ilar to that for Newton’s method.

• It does not require the evaluation of derivatives, however, and (after we
have obtained the starting values) needs only one function evaluation
per iteration.

4

Figure 4: Cont. An example of the use of Muller’s method.

An algorithm for Muller’s method :

Given the points x2, x0, x1 in increasing value,
Evaluate the corresponding function values: f2, f0, f1.
Repeat
(Evaluate the coefficients of the parabola, aν2+bν+c, determined
by the three points.
(x2, f2), (x0, f0), (xl, f1).)
Set hl = x1 − x0;h2 = x0 − x2; γ = h2/h1.
Set c = f0
Set a = γf1−f0(1+γ)+f2

γh2

1
(1+γ)

Set b =
f1−f0−ah2

1

h1

(Next, compute the roots of the polynomial.)
Set root = x0 − 2c

b±
√
b2−4ac

Choose root, xr, closest to x0 by making the denominator as large
as possible; i.e. if
b > 0, choose plus; otherwise, choose minus.
If xr > x0,
Then rearrange to:x0, x1, and the root
Else rearrange to: x0, x2, and the root
End If.
(In either case, reset subscripts so that x0, is in the middle.)
Until |f(xr)| < Ftol

0.3 Fixed-point Iteration; x = g(x) Method

• Rearrange f(x) into an equivalent form x = g(x),

• This can be done in several ways.

– Observe that if f(r) = 0, where r is a root of f(x), it follows that
r = g(r).

5

– Whenever we have r = g(r), r is said to be a fixed point for the
function g.

• The iterative form:

xn+1 = g(xn); n = 0, 1, 2, 3, . . .

converges to the fixed point r, a root of f(x).

• Example:f(x) = x2 − 2x− 3 = 0

• Suppose we rearrange to give this equivalent form:

x = g1(x) =
√
2x+ 3

x0 = 4 → x1 =
√
11 = 3.31662

x2 =
√
9.63325 = 3.10375 → x3 = 3.03439

x4 = 3.01144 → x5 = 3.00381

• If we start with x = 4 and iterate with the fixed-point algorithm,

• The values are converging on the root at x = 3.

0.3.1 Other Rearrangements

• Another rearrangement of f(x); Let us start the iterations again with
x0 = 4. Successive values then are:

x = g2(x) =
3

(x− 2)

x0 = 4 → x1 = 1.5 →
x2 = −6 → x3 = −0.375 →
x4 = −1.263158 → x5 = −0.919355 →
x5 = −0.919355 → x6 = −1.02762 →
x7 = −0.990876 → x8 = −1.00305

• It seems that we now converge to the other root, at x = −1.

• Consider a third rearrangement; starting again with x0 = 4, we get

x = g3(x) =
(x2 − 3)

2
x0 = 4 → x1 = 6.5 →
x2 = 19.625 → x3 = 191.070

6

Figure 5: The fixed point of x = g(x) is the intersection of the line y = x
and the curve y = g(x) plotted against x. Where A:x = g1(x) =

√
2x+ 3.

B:x = g2(x) =
3

(x−2)
. C: x = g3(x) =

(x2−3)
2

.

• The iterations are obviously diverging.

• The fixed point of x = g(x) is the intersection of the line y = x and
the curve y = g(x) plotted against x.

Figure 5 shows the three cases.

• Start on the x-axis at the initial x0, go vertically to the curve, then
horizontally to the line y = x, then vertically to the curve, and again
horizontally to the line.

• Repeat this process until the points on the curve converge to a fixed point
or else diverge.

• The method may converge to a root different from

the expected one, or it may diverge.

• Different rearrangements will converge at different rates.

• Iteration algorithm with the form x = g(x)

7

Table 1: The order of convergence for the iteration algorithm with the dif-
ferent forms of x = g(x) .

To determine a root of f(x) = 0, given a value x1

reasonably close to the root
Rearrange the equation to an equivalent form
x = g(x)
Repeat
Set x2 = xl

Set xl = g(x1)
Until |x1 − x2| < tolerance value

0.3.2 Order of Convergence

• The fixed-point method converges at a linear rate;

• it is said to be linearly convergent, meaning that the error at each
successive iteration is a constant fraction of the previous error.

• If we tabulate the errors after each step in getting the roots of the
polynomial and its ratio to the previous error,

• we find that the magnitudes of the ratios to be levelling out at 0.3333.
(See Table 1)

• Example: Comparing Muller’s and Fixed-point Iteration methods
(m-files: mainmulfix.m, muller.m, fixedpoint.m)

0.4 Multiple Roots• A function can have more than one root of the same value. See Fig.
6left.

• f(x) = (x − 1)(e(x−1) − 1) has a double root at x = 1, as seen in Fig.
6right.

8

http://siber.cankaya.edu.tr/ozdogan/NumericalComputations/mfiles/chapter1/mainmulfix.m
http://siber.cankaya.edu.tr/ozdogan/NumericalComputations/mfiles/chapter1/muller.m
http://siber.cankaya.edu.tr/ozdogan/NumericalComputations/mfiles/chapter1/fixedpoint.m

Figure 6: Left: The curve on the left has a triple root at x = −1 [the function
is (x+ 1)3]. The curve on the right has a double root at x = 2 [the function
is (x− 2)2].Right: Plot of (x− 1)(e(x−1) − 1).

Table 2: Left: Errors when finding a double root. Right: Successive errors
with Newton’s method for f(x) = (x+ 1)3 = 0 (Triple root).

• The methods we have described do not work well for multiple roots.

• For example, Newton’s method is only linearly convergent at a double root.

• Table 2left gives the errors of successive iterates (Newton’s method is
applied to a double root) and the convergence is clearly linear with
ratio of errors is 1

2
.

• When Newton’s method is applied to a triple root, convergence is still
linear, as seen in Table 2right. The ratio of errors is larger, about 2

3
.

9

0.5 The fzero function

• TheMATLAB fzero function is a hybrid of bisection, the secant method,
and interpolation.

• Care is taken to avoid unnecessary calculations and to minimize the

effects of roundoff.

0.6 Nonlinear Systems

Figure 7: A pair of equations.

• A pair of equations:
x2 + y2 = 4
ex + y = 1

• Graphically, the solution to this system is represented by the intersections of the circle
x2 + y2 = 4 with the curve y = 1− ex (see Fig. 7)

• Newton’s method can be applied to systems as well as to a single non-
linear equation. We begin with the forms

f(x, y) = 0,
g(x, y) = 0

10

• Let
x = r, y = s

be a root.

• Expand both functions as a Taylor series about the point (xi, yi) in
terms of

(r − xi), (s− yi)

where (xi, yi) is a point near the root:

• Taylor series expansion of functions;

f(r, s) = 0 = f(xi, yi) + fx(xi, yi)(r − xi) + fy(xi, yi)(s− yi) + . . .
g(r, s) = 0 = g(xi, yi) + gx(xi, yi)(r − xi) + gy(xi, yi)(s − yi) + . . .

• Truncating both series gives
0 = f(xi, yi) + fx(xi, yi)(r − xi) + fy(xi, yi)(s− yi)
0 = g(xi, yi) + gx(xi, yi)(r − xi) + gy(xi, yi)(s− yi)
• which we can rewrite as

fx(xi, yi)∆xi + fy(xi, yi)∆yi = −f(xi, yi)
gx(xi, yi)∆xi + gy(xi, yi)∆yi = −g(xi, yi)

• where ∆xi and ∆yi are used as increments to xi and yi;

xi+1 = xi +∆xi

yi+1 = yi +∆yi

are improved estimates of the (x, y) values.

• We repeat this until both f(x, y) and g(x, y) are close to zero.

Example:
f(x, y) = 4− x2 − y2 = 0
g(x, y) = 1− ex − y = 0

The partial derivatives are

fx = −2x, fy = −2y,

gx = −ex, gy = −1

• Beginning with x0 = 1, y0 = −1.7, we solve

−2∆x0 + 3.4∆y0 = −0.1100
−2.7183∆x0 − 1.0∆y0 = 0.0183

• This gives

11

∆x0 = 0.0043,
∆y0 = −0.0298

• from which

x1 = 1.0043,
y1 = −1.7298.

• These agree with the true value within 2 in the fourth decimal place.
Repeating the process once more:

x2 = 1.004169,
y2 = −1.729637.

Then,
f(1.004169,-1.729637)=-0.0000001,
g(1.004169,-1.729637)=-0.00000001,

0.6.1 Solving a System by Iteration

• There is another way to attack a system of nonlinear equations.

• Consider this pair of equations:

equations;
ex − y = 0,
xy − ex = 0

rearrangement;
x = ln(y),
y = ex/x

• We know how to solve a single nonlinear equation by fixed-point itera-
tions

• We rearrange it to solve for the variable in a way that successive com-
putations may reach a solution.

• To start, we guess at a value for y, say, y = 2. See Table 3.

• Final values are precisely the correct results.

12

Table 3: An example for solving a system by iteration

y-value x-value
2 0.69315

2.88539 1.05966
2.72294 1.00171
2.71829 1.00000
2.71828 1.00000

Table 4: Another example for solving a system by iteration

y-value x-value
-1.7291 1.0051
-1.72975 1.00398
-1.72961 1.00421
-1.72964 1.00416
-1.72963 1.00417

• Example: Another example for the pair of equations whose plot is Fig.
7.

equations;
x2 + y2 = 4,
ex + y = 1

rearrangement;
y = −

√

(4− x2),

x = ln(1− y)
and begin with x = 1.0, the successive values for y and x are: (See Table

4)
• We are converging to the solution in an oscillatory manner.

13

	Newton's Method, Continued
	Muller's Method
	Fixed-point Iteration; x=g(x) Method
	Other Rearrangements
	Order of Convergence

	Multiple Roots
	The fzero function
	Nonlinear Systems
	Solving a System by Iteration

