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4.3

Main Topics

3 Newton’s Method . Explains a still more efficient method
that is very widely used but there are pitfalls that you
should know about. Complex roots can be found if
complex arithmetic is employed.

4 Muller’s Method . Approximates the function with a
quadratic polynomial that fits to the function better than a
straight line. This significantly improves the
rate of convergence over linear interpolation.

5 Fixed-Point Iteration: x = g(x) Method . Uses a different
approach:

• The function f (x) is rearranged to an equivalent form,
x = g(x).

• A starting value, x0, is substituted into g(x) to give a new
x-value, x1.

• This in turn is used to get another x-value.
• If the function g(x) is properly chosen, the successive

values converge.

• Multiple Roots. Nonlinear Systems
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4.4

Newton’s Method I

• Newton’s algorithm is widely used because, it is more
rapidly convergent than any of the methods discussed so
far. Quadratically convergent

• The error of each step approaches a constant K times the
square of the error of the previous step.

• The number of decimal places of accuracy nearly
doubles at each iteration.

• When Newton’s method is applied to
f (x) = 3x + sinx − ex = 0, if we begin with x0 = 0.0:

x1 = x0 −
f (x0)

f ′ (x0)
= 0.0 −

−1.0

3.0
= 0.33333

x2 = 0.36017

x3 = 0.3604217

• After three iterations, the root is correct to seven digits
(.36042170296032440136932951583028);
convergence is much more rapid than any previous
method.

• In fact, the error after an iteration is about one-third of the
square of the previous error.
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4.5

Newton’s Method II
• There is the need for two functions evaluations at each

step, f (xn) and f ′(xn) and we must obtain the derivative
function at the start.

• If a difficult problem requires many iterations to converge,
the number of function evaluations with Newton’s method
may be many more than with linear iteration methods.

• Because Newton’s method always uses two per iteration
whereas the others take only one.

• An algorithm for the Newton’s method :
To determine a root of f (x) = 0, given x0 reasonably close
to the root,
Compute f (x0), f

′

(x0)
If (f (x0) 6= 0) And (f

′

(x0) 6= 0) Then
Repeat
Set x1 = x0

Set x0 = x0 − f (x0)

f ′ (x0)

Until (|x1 − x0| < tolerance value1) Or If |f (x0)| <
tolerance value2)
End If.



Solving Nonlinear
Equations II

Dr. Cem Özdo ğan
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4.6

Newton’s Method III
• The method may converge to a root different from the

expected one or diverge if the starting value is not close
enough to the root.

• In some cases Newton’s method will not converge (Fig. 1).

Figure: Graphical illustration of the
case that Newton’s Method will not
converge.

• Starting with x0, one never
reaches the root r because
x6 = x1 and we are in an
endless loop.

• Observe also that if we
should ever reach the
minimum or maximum of
the curve, we will fly off to
infinity.

• Example : Apply Newton’s method to x − x1/3 − 2 = 0.
( m-file: demoNewton.m . » demoNewton(3)

• Example : A general implementation of Newton’s method.
( m-files: newton.m ),( fx3n.m ).
» newton(’fx3n’,3,5e-16,5e-16,1)

http://siber.cankaya.edu.tr/ozdogan/NumericalComputations//mfiles/chapter1/demoNewton.m
http://siber.cankaya.edu.tr/ozdogan/NumericalComputations//mfiles/chapter1/newton.m
http://siber.cankaya.edu.tr/ozdogan/NumericalComputations//mfiles/chapter1/fx3n.m
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4.7

Muller’s Method I

• Most of the root-finding methods that we have considered
so far have approximated the function in the
neighbourhood of the root by a straight line.

• Muller’s method is based on approximating the function in
the neighbourhood of the root by a quadratic polynomial.

Figure: Parabola
aν2 + bν + c = p2(ν)

• A second-degree
polynomial is made to fit
three points near a root, at
x0, x1, x2 with x0 between
x1, and x2.

• The proper zero of this
quadratic, using the
quadratic formula, is used
as the improved estimate of
the root.

• A quadratic equation that fits through three points in the
vicinity of a root, in the form aν2 + bν + c. (See Fig. 2)
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4.8

Muller’s Method II

• Transform axes to pass through the middle point, let
• ν = x − x0,
• h1 = x1 − x0

• h2 = x0 − x2.
ν = 0 =⇒ a(0)2 + b(0) + c = f0
ν = h1 =⇒ ah2

1 + bh1 + c = f1
ν = −h2 =⇒ ah2

2 − bh2 + c = f2

We evaluate the coefficients
by evaluating p2(ν) at the
three points:

• From the first equation, c = f0.

• Letting h2/h1 = γ, we can solve the other two equations
for a, and b.

a =
γf1 − f0(1 + γ) + f2

γh2
1(1 + γ)

, b =
f1 − f0 − ah2

1

h1

• After computing a, b, and c, we solve for the root of
aν2 + bν + c by the quadratic formula

ν1,2 =
2c

−b ±
√

b2 − 4ac
, ν = x−x0, root = x0−

2c

b ±
√

b2 − 4ac
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4.9

Muller’s Method III
See Figs. 3-4 that an example is given

Figure: An example of the use of Muller’s method.
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4.10

Muller’s Method IV

Figure: Cont. An example of the use of Muller’s method.

• Experience shows that Muller’s method converges at a
rate that is similar to that for Newton’s method.

• It does not require the evaluation of derivatives, however,
and (after we have obtained the starting values) needs
only one function evaluation per iteration.
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4.11

Muller’s Method V

An algorithm for Muller’s method :
Given the points x2, x0, x1 in increasing value,
Evaluate the corresponding function values: f2, f0, f1.
Repeat
(Evaluate the coefficients of the parabola, aν2 + bν + c, determined by the three
points.
(x2, f2), (x0, f0), (xl , f1).)
Set hl = x1 − x0; h2 = x0 − x2; γ = h2/h1.
Set c = f0
Set a =

γf1−f0(1+γ)+f2
γh2

1(1+γ)

Set b =
f1−f0−ah2

1
h1

(Next, compute the roots of the polynomial.)
Set root = x0 − 2c

b±
√

b2−4ac
Choose root, xr , closest to x0 by making the denominator as large as possible;
i.e. if
b > 0, choose plus; otherwise, choose minus.
If xr > x0,
Then rearrange to:x0, x1, and the root
Else rearrange to: x0, x2, and the root
End If.
(In either case, reset subscripts so that x0, is in the middle.)
Until |f (xr )| < Ftol
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4.12

Fixed-point Iteration; x = g(x) Method I

• Rearrange f (x) into an equivalent form x = g(x),

• This can be done in several ways.
• Observe that if f (r) = 0, where r is a root of f (x), it follows

that r = g(r).
• Whenever we have r = g(r), r is said to be a fixed point for

the function g.

• The iterative form:

xn+1 = g(xn); n = 0, 1, 2, 3, . . .

converges to the fixed point r , a root of f (x).

• Example :f (x) = x2 − 2x − 3 = 0

• Suppose we rearrange to give this equivalent form:

x = g1(x) =
√

2x + 3

x0 = 4 → x1 =
√

11 = 3.31662
x2 =

√
9.63325 = 3.10375 → x3 = 3.03439

x4 = 3.01144 → x5 = 3.00381

• If we start with x = 4 and iterate with the fixed-point
algorithm,

• The values are converging on the root at x = 3.
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4.13

Fixed-point Iteration; x = g(x) Method II: Other
Rearrangements

• Another rearrangement of f (x); Let us start the iterations
again with x0 = 4. Successive values then are:

x = g2(x) =
3

(x − 2)

x0 = 4 → x1 = 1.5 →
x2 = −6 → x3 = −0.375 →
x4 = −1.263158 → x5 = −0.919355 →
x5 = −0.919355 → x6 = −1.02762 →
x7 = −0.990876 → x8 = −1.00305

• It seems that we now converge to the other root, at
x = −1.

• Consider a third rearrangement; starting again with x0 = 4,
we get

x = g3(x) =
(x2 − 3)

2

x0 = 4 → x1 = 6.5 →
x2 = 19.625 → x3 = 191.070

• The iterations are obviously diverging.
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4.14

Fixed-point Iteration; x = g(x) Method III: Other
Rearrangements

• The fixed point of x = g(x) is the intersection of the line
y = x and the curve y = g(x) plotted against x .

Figure: The fixed point of x = g(x) is the intersection of the
line y = x and the curve y = g(x) plotted against x . Where
A:x = g1(x) =

√
2x + 3. B:x = g2(x) = 3

(x−2) . C:

x = g3(x) =
(x2

−3)
2 .

Figure
5
shows
the
three
cases.
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4.15

Fixed-point Iteration; x = g(x) Method IV: Other
Rearrangements

• Start on the x-axis at the initial x0, go vertically to the
curve, then horizontally to the line y = x , then vertically to
the curve, and again horizontally to the line.

• Repeat this process until the points on the curve converge
to a fixed point or else diverge.

• The method may converge to a root different from
the expected one, or it may diverge.

• Different rearrangements will converge at different rates.

• Iteration algorithm with the form x = g(x)

To determine a root of f (x) = 0, given a value x1 reason-
ably close to the root
Rearrange the equation to an equivalent form x = g(x)
Repeat
Set x2 = xl

Set xl = g(x1)
Until |x1 − x2| < tolerance value
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4.16

Order of Convergence

• The fixed-point method converges at a linear rate;
• it is said to be linearly convergent, meaning that the error

at each successive iteration is a constant fraction of the
previous error.

Table: The order of convergence for
the iteration algorithm with the
different forms of x = g(x) .

• If we tabulate the
errors after each
step in getting the
roots of the
polynomial and its
ratio to the previous
error,

• we find that the
magnitudes of the
ratios to be levelling
out at 0.3333. (See
Table 1)

• Example : Comparing Muller’s and Fixed-point Iteration
methods ( m-files: mainmulfix.m , muller.m ,
fixedpoint.m )

http://siber.cankaya.edu.tr/ozdogan/NumericalComputations/mfiles/chapter1/mainmulfix.m
http://siber.cankaya.edu.tr/ozdogan/NumericalComputations/mfiles/chapter1/muller.m
http://siber.cankaya.edu.tr/ozdogan/NumericalComputations/mfiles/chapter1/fixedpoint.m
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4.17

Multiple Roots I

Figure: Left: The curve on the left has a triple root at x = −1 [the
function is (x + 1)3]. The curve on the right has a double root at x = 2
[the function is (x − 2)2].Right: Plot of (x − 1)(e(x−1) − 1).

• A function can have more than one root of the same value.
See Fig. 6left.

• f (x) = (x − 1)(e(x−1) − 1) has a double root at x = 1, as
seen in Fig. 6right.

• The methods we have described do not work well for
multiple roots.

• For example, Newton’s method is only linearly convergent
at a double root.
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4.18

Multiple Roots II

Table: Left: Errors when finding a double root. Right: Successive
errors with Newton’s method for f (x) = (x + 1)3 = 0 (Triple root).

• Table 2left gives the errors of successive iterates
(Newton’s method is applied to a double root) and the
convergence is clearly linear with ratio of errors is 1

2 .
• When Newton’s method is applied to a triple root,

convergence is still linear, as seen in Table 2right. The
ratio of errors is larger, about 2

3 .
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4.19

The fzero function

• The MATLAB fzero function is a hybrid of bisection,
the secant method, and interpolation.

• Care is taken to avoid unnecessary calculations and to
minimize the effects of roundoff.
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4.20

Nonlinear Systems I

Figure: A pair of equations.

• A pair of equations:
x2 + y2 = 4
ex + y = 1

• Graphically, the solution to
this system is represented by
the intersections of the circle
x2 + y2 = 4 with the curve
y = 1 − ex (see Fig. 7)

• Newton’s method can be applied to systems as well as to
a single nonlinear equation. We begin with the forms

f (x , y) = 0,
g(x , y) = 0

• Let
x = r , y = s

be a root .
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4.21

Nonlinear Systems II
• Expand both functions as a Taylor series about the point
(xi , yi) in terms of

(r − xi), (s − yi)

where (xi , yi) is a point near the root:
• Taylor series expansion of functions ;

f (r , s) = 0 = f (xi , yi) + fx(xi , yi)(r − xi) + fy (xi , yi)(s − yi) + . . .

g(r , s) = 0 = g(xi , yi) + gx(xi , yi)(r − xi) + gy (xi , yi)(s − yi) + . . .

• Truncating both series gives
0 = f (xi , yi) + fx(xi , yi)(r − xi) + fy (xi , yi)(s − yi)
0 = g(xi , yi) + gx (xi , yi)(r − xi) + gy (xi , yi)(s − yi)

• which we can rewrite as
fx (xi , yi)∆xi + fy (xi , yi)∆yi = −f (xi , yi)
gx (xi , yi)∆xi + gy (xi , yi)∆yi = −g(xi , yi)

• where ∆xi and ∆yi are used as increments to xi and yi ;

xi+1 = xi +∆xi

yi+1 = yi +∆yi

are improved estimates of the (x , y) values.
• We repeat this until both f (x , y) and g(x , y) are close to

zero.
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4.22

Nonlinear Systems III
Example:

f (x , y) = 4 − x2 − y2 = 0
g(x , y) = 1 − ex − y = 0

The partial derivatives are

fx = −2x , fy = −2y ,

gx = −ex , gy = −1

• Beginning with
x0 = 1, y0 = −1.7, we solve

−2∆x0 + 3.4∆y0 = −0.1100
−2.7183∆x0 − 1.0∆y0 = 0.0183

• This gives ∆x0 = 0.0043,
∆y0 = −0.0298

• from which x1 = 1.0043,
y1 = −1.7298.

• These agree with the true value within 2 in the fourth
decimal place. Repeating the process once more:

x2 = 1.004169,
y2 = −1.729637.

Then,
f(1.004169,-1.729637)=-0.0000001,

g(1.004169,-1.729637)=-0.00000001,
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4.23

Solving a System by Iteration I
• There is another way to attack a system of nonlinear

equations.
• Consider this pair of equations:

equations;
ex − y = 0,
xy − ex = 0

rearrangement;
x = ln(y),
y = ex/x

• We know how to solve a single nonlinear equation by
fixed-point iterations

• We rearrange it to solve for the variable in a way that
successive computations may reach a solution.

Table: An example for solving a
system by iteration

y-value x-value
2 0.69315

2.88539 1.05966
2.72294 1.00171
2.71829 1.00000
2.71828 1.00000

• To start, we guess at a
value for y , say, y = 2. See
Table 3.

• Final values are precisely
the correct results.
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4.24

Solving a System by Iteration II

• Example : Another example for the pair of equations whose
plot is Fig. 7.

equations;
x2 + y2 = 4,
ex + y = 1

rearrangement;
y = −

√

(4 − x2),
x = ln(1 − y)

and begin with x = 1.0,
the successive values for
y and x are: (See Table 4)

Table: Another example for
solving a system by iteration

y-value x-value
-1.7291 1.0051
-1.72975 1.00398
-1.72961 1.00421
-1.72964 1.00416
-1.72963 1.00417

• We are converging to the solution in an oscillatory manner.
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