Lecture 4 Solving Nonlinear Equations II

Roots of the equation, Convergence

Ceng375 Numerical Computations at October 21, 2010

Dr. Cem Özdoğan Computer Engineering Department Çankaya University

Solving Nonlinear Equations II

Dr. Cem Özdoğan

Solving Nonlinear

Equations
Newton's Method,
Continued
Muller's Method
Fixed-point Interation; x = g(x) Method
Other Rearrangements
Order of Convergence
Multiple Roots
The fzero function
Nonlinear Systems
Solving a System by

Iteration

Contents

Equations II

Solving Nonlinear Dr. Cem Özdoğan

Solving Nonlinear Equations

Newton's Method. Continued Muller's Method Fixed-point Iteration: x = g(x) Method Other Rearrangements Order of Convergence Multiple Roots The fzero function Nonlinear Systems Solving a System by

Iteration

Solving Nonlinear Equations

Newton's Method, Continued Muller's Method Fixed-point Iteration; x = g(x) Method Other Rearrangements Order of Convergence Multiple Roots

The fzero function

Nonlinear Systems

Main Topics

- 3 Newton's Method. Explains a still more efficient method that is very widely used but there are pitfalls that you should know about. Complex roots can be found if complex arithmetic is employed.
- 4 **Muller's Method**. Approximates the function with a *quadratic polynomial* that fits to the function better than a *straight line*. This significantly improves the rate of convergence over linear interpolation.
- 5 Fixed-Point Iteration: x = g(x) Method. Uses a <u>different</u> approach:
 - The function f(x) is rearranged to an equivalent form,
 x = g(x).
 - A starting value, x₀, is substituted into g(x) to give a new x-value, x₁.
 - This in turn is used to get another x-value.
 - If the function g(x) is properly chosen, the successive values converge.
- Multiple Roots. Nonlinear Systems

Solving Nonlinear Equations II

Dr. Cem Özdoğan

Solving Nonlinea

Equations
Newton's Method,
Continued
Muller's Method
Fixed-point Iteration; x = g(x) Method
Other Rearrangements
Order of Convergence
Multiple Roots
The Ezero function
Nonlinear Systems
Solving a System by

Newton's Method I

- Newton's algorithm is widely used because, it is more rapidly convergent than any of the methods discussed so far. Quadratically convergent
- The error of each step approaches a constant *K* times the square of the error of the previous step.
- The number of decimal places of <u>accuracy</u> nearly <u>doubles at each iteration</u>.
- When Newton's method is applied to $f(x) = 3x + \sin x e^x = 0$, if we begin with $x_0 = 0.0$:

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} = 0.0 - \frac{-1.0}{3.0} = 0.33333$$

 $x_2 = 0.36017$
 $x_3 = 0.3604217$

- After three iterations, the root is correct to seven digits (.36042170296032440136932951583028);
 convergence is much more rapid than any previous method.
- In fact, the error after an iteration is about one-third of the square of the previous error.

Solving Nonlinear Equations II

Dr. Cem Özdoğan

Solving Nonlinear Equations Newton's Method.

Continued Muller's Method

Fixed-point Iteration;

x = g(x) Method
Other Rearrangements
Order of Convergence

Multiple Roots
The fzero function
Nonlinear Systems

Newton's Method II

- There is the need for two functions evaluations at each step, $f(x_n)$ and $f'(x_n)$ and we must obtain the derivative function at the start.
- If a difficult problem requires many iterations to converge, the number of function evaluations with Newton's method may be many more than with linear iteration methods.
- Because Newton's method always uses two per iteration whereas the others take only one.
- An algorithm for the Newton's method :

To determine a root of f(x)=0, given x_0 reasonably close to the root, Compute $f(x_0)$, $f^{'}(x_0)$ If $(f(x_0)\neq 0)$ And $(f^{'}(x_0)\neq 0)$ Then Repeat Set $x_1=x_0$ Set $x_0=x_0-\frac{f(x_0)}{f^{'}(x_0)}$ Until $(|x_1-x_0|< tolerance\ value1)$ Or If $|f(x_0)|< tolerance\ value2)$ End If.

Solving Nonlinear Equations II

Dr. Cem Özdoğan

Solving Nonlinear Equations Newton's Method, Continued

Muller's Method

Fixed-point Iteration; x = q(x) Method

Other Rearrangements
Order of Convergence

Multiple Roots The fzero function Nonlinear Systems

Newton's Method III

- The method may converge to a root <u>different</u> from the expected one or <u>diverge</u> if the starting value is not close enough to the root.
- In some cases Newton's method will not converge (Fig. 1).

Figure: Graphical illustration of the case that Newton's Method will not converge.

- Starting with x₀, one never reaches the root r because x₆ = x₁ and we are in an endless loop.
- Observe also that if we should ever reach the minimum or maximum of the curve, we will fly off to infinity.
- Example: Apply Newton's method to $x x^{1/3} 2 = 0$. (m-file: demoNewton.m. » demoNewton(3)
- Example: A general implementation of Newton's method.
 (m-files: newton.m), (fx3n.m).
 » newton('fx3n',3,5e-16,5e-16,1)

Dr. Cem Özdoğan

Solving Nonlinear Equations

Continued Muller's Method

Fixed-point Iteration;

x = g(x) Method Other Rearrangements Order of Convergence

Multiple Roots
The fzero function
Nonlinear Systems

Muller's Method I

- Most of the root-finding methods that we have considered so far have approximated the function in the neighbourhood of the root by a <u>straight line</u>.
- Muller's method is based on approximating the function in the neighbourhood of the root by a quadratic polynomial.

Figure: Parabola $a\nu^2 + b\nu + c = p_2(\nu)$

• A quadratic equation that fits through three points in the vicinity of a root, in the form $a\nu^2 + b\nu + c$. (See Fig. 2)

A second-degree polynomial is made to fit three points near a root, at x₀, x₁, x₂ with x₀ between x₁, and x₂.

x₁, and x₂.
The proper zero of this quadratic, using the quadratic formula, is used as the improved estimate of the root.

Solving Nonlinear Equations II

Dr. Cem Özdoğan

Solving Nonlinear Equations

Newton's Method, Continued Muller's Method

Fixed-point Iteration;

x = g(x) Method
 Other Rearrangements
 Order of Convergence
 Multiple Roots
 The fzero function
 Nonlinear Systems

Muller's Method II

Transform axes to pass through the middle point, let

•
$$\nu = X - X_0$$
,
• $h_1 = X_1 - X_0$

•
$$h_2 = x_0 - x_2$$
.

$$u=0 \Longrightarrow a(0)^2+b(0)+c=f_0$$
 We evaluate $u=h_1 \Longrightarrow ah_1^2+bh_1+c=f_1$ by evaluating $u=-h_2 \Longrightarrow ah_2^2-bh_2+c=f_2$ three points:

We evaluate the coefficients by evaluating $p_2(\nu)$ at the

- From the first equation, c = f₀.
- Letting $h_2/h_1 = \gamma$, we can solve the other two equations for a, and b.

$$a = \frac{\gamma f_1 - f_0(1 + \gamma) + f_2}{\gamma h_1^2(1 + \gamma)}, \ b = \frac{f_1 - f_0 - ah_1^2}{h_1}$$

 After computing a, b, and c, we solve for the root of $a\nu^2 + b\nu + c$ by the quadratic formula

$$u_{1,2} = \frac{2c}{-b \pm \sqrt{b^2 - 4ac}}, \ \nu = x - x_0, \quad root = x_0 - \frac{2c}{b \pm \sqrt{b^2 - 4ac}}$$

Solving Nonlinear Equations II

Dr. Cem Özdoğan

Solving Nonlinear Equations

Newton's Method. Continued

Muller's Method Fixed-point Iteration:

x = g(x) Method Other Rearrangements Order of Convergence Multiple Roots

The fzero function Nonlinear Systems Solving a System by

Muller's Method III

See Figs. 3-4 that an example is given

Find a root between 0 and 1 of the same transcendental function as before: $f(x) = 3x + \sin(x) - e^x$. Let

$$x_0 = 0.5,$$
 $f(x_0) = 0.330704$ $h_1 = 0.5,$
 $x_1 = 1.0,$ $f(x_1) = 1.123489$ $h_2 = 0.5,$
 $x = 0.0,$ $f(x_2) = -1$ $\gamma = 1.0.$

Then

$$a = \frac{(1.0)(1.123189) - 0.330704(2.0) + (-1)}{1.0(0.5)^2(2.0)} = -1.07644,$$

$$b = \frac{1.123189 - 0.330704 - (-1.07644)(0.5)^2}{0.5} = 2.12319,$$

$$c = 0.330704,$$

and

$$\begin{aligned} \text{root} &= 0.5 - \frac{2(0.330704)}{2.12319 + \sqrt{(2.12319)^2 - 4(-1.07644)(0.330704)}} \\ &= 0.354914. \end{aligned}$$

For the next iteration, we have

$$x_0 = 0.354914$$
, $f(x_0) = -0.0138066$ $h_1 = 0.145086$, $x_1 = 0.5$, $f(x_1) = 0.330704$ $h_2 = 0.354914$, $x_2 = 0$, $f(x_2) = -1$ $\gamma = 2.44623$.

Figure: An example of the use of Muller's method.

Solving Nonlinear Equations II

Dr. Cem Özdoğan

Solving Nonlinear Equations

Newton's Method, Continued

Muller's Method Fixed-point Iteration:

x = g(x) Method Other Rearrangements Order of Convergence

Multiple Roots
The fzero function
Nonlinear Systems

Muller's Method IV

```
Then a = \frac{(2.44623)(0.330704) - (-0.0138066)(3.44623) + (-1)}{2.44623(0.145086)^2(3.44623)} = -0.808314, b = \frac{0.330704 - (-0.0138066) - (-0.808314)(0.145086)^2}{0.145086} = 2.49180, c = -0.0138066, root = 0.354914 - \frac{2(-0.0138066)}{2.49180 + \sqrt{(2.49180)^2 - 4(-0.808314)(-0.0138066)}} = 0.360465.
```

Figure: Cont. An example of the use of Muller's method.

After a third iteration, we get 0.3604217 as the value for the root, which is identical to that

from Newton's method after three iterations.

- Experience shows that Muller's method converges at a rate that is similar to that for Newton's method.
- It does not require the evaluation of derivatives, however, and (after we have obtained the starting values) needs only one function evaluation per iteration.

Solving Nonlinear Equations II

Dr. Cem Özdoğan

Solving Nonlinear Equations

Newton's Method, Continued

Muller's Method Fixed-point Itera

Fixed-point Iteration; x = g(x) Method Other Rearrangements Order of Convergence Multiple Roots

Nonlinear Systems Solving a System by Iteration

Equations

Newton's Method.

Order of Convergence

Multiple Roots The fzero function

Nonlinear Systems

Iteration

An algorithm for Muller's method:

Given the points x_2, x_0, x_1 in increasing value,

Evaluate the corresponding function values: f_2 , f_0 , f_1 .

Repeat

(Evaluate the coefficients of the parabola, $a\nu^2 + b\nu + c$, determined by the three points.

 $(x_2, f_2), (x_0, f_0), (x_l, f_1).$

Set $h_1 = x_1 - x_0$; $h_2 = x_0 - x_2$; $\gamma = h_2/h_1$. Set $c = f_0$

Set $a = \frac{\frac{1}{\gamma f_1 - f_0(1 + \gamma) + f_2}}{\frac{1}{\gamma f_1^2(1 + \gamma)}}$

Set $b = \frac{f_1 - f_0 - ah_1^2}{h}$

(Next, compute the roots of the polynomial.)

Set $root = x_0 - \frac{2c}{b+\sqrt{b^2-4ac}}$

Choose root, x_r , closest to x_0 by making the denominator as large as possible; i.e. if

b > 0, choose plus; otherwise, choose minus.

If $x_r > x_0$,

Then rearrange to: x_0 , x_1 , and the root

Else rearrange to: x_0, x_2 , and the root

Fnd If.

(In either case, reset subscripts so that x_0 , is in the middle.)

Until $|f(x_r)| < Ftol$

Fixed-point Iteration; x = g(x) Method I

- Rearrange f(x) into an equivalent form x = g(x),
- This can be done in several ways.
 - Observe that if f(r) = 0, where r is a root of f(x), it follows that r = g(r).
 - Whenever we have r = g(r), r is said to be a <u>fixed point</u> for the function g.
- The iterative form:

$$x_{n+1} = g(x_n); \quad n = 0, 1, 2, 3, \dots$$

converges to the fixed point r, a root of f(x).

- Example: $f(x) = x^2 2x 3 = 0$
- Suppose we rearrange to give this equivalent form:

- If we start with x = 4 and iterate with the fixed-point algorithm,
- The values are converging on the root at x = 3.

Solving Nonlinear Equations II

Dr. Cem Özdoğan

Solving Nonlinear Equations

Newton's Method, Continued Muller's Method

Fixed-point Iteration; x = a(x) Method

x = g(x) Method Other Rearrangements

Order of Convergence Multiple Roots The fzero function Nonlinear Systems

Fixed-point Iteration; x = g(x) Method II: Other Rearrangements

• Another rearrangement of f(x); Let us start the iterations again with $x_0 = 4$. Successive values then are:

$$x = g_2(x) = \frac{3}{(x-2)} \begin{pmatrix} x_0 = 4 & \rightarrow & x_1 = 1.5 & \rightarrow \\ x_2 = -6 & \rightarrow & x_3 = -0.375 & \rightarrow \\ x_4 = -1.263158 & \rightarrow & x_5 = -0.919355 & \rightarrow \\ x_5 = -0.919355 & \rightarrow & x_6 = -1.02762 & \rightarrow \\ x_7 = -0.990876 & \rightarrow & \underline{x_8} = -1.00305 \end{pmatrix}$$

- It seems that we now converge to the other root, at x = -1.
- Consider a third rearrangement; starting again with x₀ = 4, we get

$$x = g_3(x) = \frac{(x^2 - 3)}{2}$$
 $x_0 = 4$ $x_2 = 19.625$ $x_3 = 191.070$

• The iterations are obviously diverging.

Solving Nonlinear Equations II

Dr. Cem Özdoğan

Solving Nonlinear Equations

Newton's Method, Continued Muller's Method Fixed-point Iteration; x = g(x) Method

Order of Convergence

Order of Convergence Multiple Roots The fzero function Nonlinear Systems Solving a System by Iteration

Fixed-point Iteration; x = g(x) Method III: Other Rearrangements

• The fixed point of x = g(x) is the intersection of the line y = x and the curve y = g(x) plotted against x.

Figure 5 shows the three cases.

Figure: The fixed point of x = g(x) is the intersection of the line y = x and the curve y = g(x) plotted against x. Where A: $x = g_1(x) = \sqrt{2x + 3}$. B: $x = g_2(x) = \frac{3}{(x-2)}$. C: $x = g_3(x) = \frac{(x^2-3)}{2}$.

Solving Nonlinear Equations II

Dr. Cem Özdoğan

Solving Nonlinear Equations

Newton's Method, Continued Muller's Method Fixed-point Iteration; x = g(x) Method

Other Rearrangements

Order of Convergence Multiple Roots The fzero function Nonlinear Systems Solving a System by Iteration

Fixed-point Iteration; x = g(x) Method IV: Other Rearrangements

- Start on the x-axis at the initial x_0 , go vertically to the curve, then horizontally to the line y = x, then vertically to the curve, and again horizontally to the line.
- Repeat this process until the points on the curve <u>converge</u> to a fixed point or else diverge.
- The method may converge to a root different from the expected one, or it may diverge.
- Different rearrangements will converge at different rates.
- Iteration algorithm with the form x = g(x)

To determine a root of f(x) = 0, given a value x_1 reasonably close to the root

Rearrange the equation to an equivalent form x = g(x)Repeat

Set $x_2 = x_1$

Set $x_l = g(x_1)$

Until $|x_1 - x_2| < tolerance value$

Solving Nonlinear Equations II

Dr. Cem Özdoğan

Solving Nonlinear Equations

Newton's Method, Continued Muller's Method Fixed-point Iteration; x = g(x) Method

Other Rearrangements Order of Convergence Multiple Roots

The fzero function
Nonlinear Systems
Solving a System by
Iteration

Order of Convergence

- The fixed-point method converges at a <u>linear rate</u>;
- it is said to be <u>linearly convergent</u>, meaning that the error at each successive iteration is a constant fraction of the previous error.

Table: The order of convergence for the iteration algorithm with the different forms of x = g(x).

	If $g(x) = \sqrt{2x + 3}$		If g(x) = 3/(x-2)	
Iteration	Error	Ratio	Error	Ratio
1	0.31662	0.31662	2.50000	0.50000
2	0.10375	0.32767	-5.00000	-2.00000
3	0.03439	0.33143	0.62500	-0.12500
4	0.01144	0.33270	-0.26316	-0.42105
5	0.00381	0.33312	0.08065	-0.30645
6			-0.02762	-0.34254
7			0.00912	-0.33029
8			-0.00305	-0.33435

- If we tabulate the errors after each step in getting the roots of the polynomial and its ratio to the previous error,
- we find that the magnitudes of the ratios to be levelling out at 0.3333. (See Table 1)

 Example: Comparing Muller's and Fixed-point Iteration methods (m-files: mainmulfix.m, muller.m, fixedpoint.m)

Solving Nonlinear Equations II

Dr. Cem Özdoğan

Solving Nonlinear Equations

Newton's Method, Continued Muller's Method Fixed-point Iteration; x = g(x) Method

Other Rearrangements Order of Convergence

Multiple Roots
The fzero function
Nonlinear Systems
Solving a System by

Multiple Roots I

Figure: Left: The curve on the left has a triple root at x = -1 [the function is $(x + 1)^3$]. The curve on the right has a double root at x = 2 [the function is $(x - 2)^2$]. Right: Plot of $(x - 1)(e^{(x-1)} - 1)$.

- A function can have more than one root of the same value.
 See Fig. 6left.
- $f(x) = (x 1)(e^{(x-1)} 1)$ has a double root at x = 1, as seen in Fig. 6right.
- The methods we have described do <u>not</u> work well for multiple roots.
- For example, Newton's method is only <u>linearly convergent</u> at a double root.

Solving Nonlinear Equations II

Dr. Cem Özdoğan

Solving Nonlinear Equations Newton's Method.

Continued

Muller's Method

Fixed-point Iteration; x = g(x) Method

Other Rearrangements

Order of Convergence

Multiple Roots

The fzero function

Nonlinear Systems

Solving a System by

Iteration

Multiple Roots II

Table: Left: Errors when finding a double root. Right: Successive errors with Newton's method for $f(x) = (x + 1)^3 = 0$ (Triple root).

Error	Ratio
0.3679	
0.1666	0.453
0.0798	0.479
0.0391	0.490
0.0193	0.494
0.0096	0.497
0.0048	0.500
0.0024	0.500
	0.3679 0.1666 0.0798 0.0391 0.0193 0.0096

Iteration	Error	Iteration	Error
0	0.5	6	0.0439
1	0.3333	7	0.0293
2	0.2222	8	0.0195
3	0.1482	9	0.0130
4	0.0988	10	0.00867
5	0.0658		

- Table 2left gives the errors of successive iterates (Newton's method is applied to a <u>double root</u>) and the convergence is clearly linear with ratio of errors is ¹/₂.
- When Newton's method is applied to a triple root, convergence is still linear, as seen in Table 2right. The ratio of errors is larger, about $\frac{2}{3}$.

```
>> x = linspace( -4, 4, 100 );plot(x,x.^3+3*x.^2+3*x+1); grid on
>> x= linspace( -4, 4, 100 );plot(x,x.*exp(x-1)-x-exp(x-1)+1); grid on
>> x = linspace( 0, 4, 1500 );plot(x,x.^2-4*x+4); grid on
```

Solving Nonlinear Equations II

Dr. Cem Özdoğan

Solving Nonlinear Equations

Newton's Method, Continued

Muller's Method

Fixed-point Iteration; x = g(x) Method Other Rearrangements

Order of Convergence

The fzero function Nonlinear Systems Solving a System by

Iteration

The fzero function

- The MATLAB fzero function is a hybrid of bisection, the secant method, and interpolation.
- Care is taken to avoid unnecessary calculations and to minimize the effects of roundoff.

```
>> xb=brackPlot('fx3',0,5);
>> fzero('fx3',xb)
ans = 3.5214
options=optimset('Display','iter');
r=fzero('(x+1)^3',[-10 10],options)
```

Solving Nonlinear Equations II

Dr. Cem Özdoğan

Solving Nonlinear Equations

Continued

Muller's Method

Fixed-point Iteration; x = g(x) Method

Other Rearrangements
Order of Convergence
Multiple Roots

The fzero function

Nonlinear Systems
Solving a System by

Nonlinear Systems I

Figure: A pair of equations.

A pair of equations:

$$x^2 + y^2 = 4$$
$$e^x + y = 1$$

 Graphically, the solution to this system is represented by the intersections of the circle $x^2 + y^2 = 4$ with the curve

$$x^2 + y^2 = 4$$
 with the cu
y = 1 - e^x (see Fig. 7)

 $v = 1 - e^x$ (see Fig. 7)

The fzero function

Nonlinear Systems

Solving a System by Iteration

 Newton's method can be applied to systems as well as to a single nonlinear equation. We begin with the forms

$$f(x,y)=0,g(x,y)=0$$

Let

$$x = r, y = s$$

be a **root**

Dr. Cem Özdoğan

Solving Nonlinear

Equations II

Solving Nonlinear Equations

Newton's Method. Continued Muller's Method

Fixed-point Iteration:

x = g(x) Method Other Rearrangements Order of Convergence

Nonlinear Systems II

 Expand both functions as a Taylor series about the point (x_i, y_i) in terms of

$$(r-x_i),(s-y_i)$$

where (x_i, y_i) is a point near the root:

Taylor series expansion of functions;

$$f(r,s) = 0 = f(x_i, y_i) + f_x(x_i, y_i)(r - x_i) + f_y(x_i, y_i)(s - y_i) + \dots$$

$$g(r,s) = 0 = g(x_i, y_i) + g_x(x_i, y_i)(r - x_i) + g_y(x_i, y_i)(s - y_i) + \dots$$

• Truncating both series gives

$$0 = f(x_i, y_i) + f_x(x_i, y_i)(r - x_i) + f_y(x_i, y_i)(s - y_i) 0 = g(x_i, y_i) + g_x(x_i, y_i)(r - x_i) + g_y(x_i, y_i)(s - y_i)$$

· which we can rewrite as

$$f_x(x_i, y_i) \Delta x_i + f_y(x_i, y_i) \Delta y_i = -f(x_i, y_i)$$

$$g_x(x_i, y_i) \Delta x_i + g_y(x_i, y_i) \Delta y_i = -g(x_i, y_i)$$

• where Δx_i and Δy_i are used as increments to x_i and y_i ;

$$x_{i+1} = x_i + \Delta x_i$$
$$y_{i+1} = y_i + \Delta y_i$$

are improved estimates of the (x, y) values.

• We repeat this until both f(x, y) and g(x, y) are close to zero.

Solving Nonlinear Equations II

Dr. Cem Özdoğan

Solving Nonlinear

Equations
Newton's Method.

Continued

Muller's Method

Fixed-point Iteration:

x = g(x) Method

Other Rearrangements

Order of Convergence

Multiple Roots

The fzero function

Nonlinear Systems

Nonlinear Systems III

Example:

$$f(x,y) = 4 - x^2 - y^2 = 0$$

 $g(x,y) = 1 - e^x - y = 0$

• Beginning with
$$x_0 = 1, y_0 = -1.7$$
, we solve

• from which

The partial derivatives are

$$f_{x}=-2x,f_{y}=-2y,$$

$$g_x = -e^x, g_y = -1$$

$$-2\Delta x_0 + 3.4\Delta y_0 = -0.1100$$

-2.7183\Delta x_0 - 1.0\Delta y_0 = 0.0183

$$\Delta x_0 = 0.0043,$$

 $\Delta y_0 = -0.0298$

$$x_1 = 1.0043,$$

 $y_1 = -1.7298.$

 These agree with the true value within 2 in the fourth decimal place. Repeating the process once more:

$$x_2 = 1.004169,$$
 Then, $f(1.004169, -1.729637) = -0.0000001,$ $g(1.004169, -1.729637) = -0.00000001,$

Solving Nonlinear Equations II

Dr. Cem Özdoğan

Solving Nonlinear Equations

Newton's Method, Continued Muller's Method Fixed-point Iteration;

x = g(x) Method Other Rearrangements Order of Convergence Multiple Roots

The fzero function Nonlinear Systems Solving a System by

Iteration

Solving a System by Iteration I

- There is another way to attack a system of nonlinear equations.
- Consider this pair of equations:

equations; rearrangement;
$$e^x - y = 0$$
, $x = \ln(y)$, $xy - e^x = 0$ $y = e^x/x$
• We know how to solve a single nonlinear equation by

- fixed-point iterations
- We rearrange it to solve for the variable in a way that successive computations may reach a solution.

Table: An example for solving a system by iteration

y-value	x-value
2	0.69315
2.88539	1.05966
2.72294	1.00171
2.71829	1.00000
2.71828	1.00000

- To start, we guess at a value for y, say, y = 2. See Table 3.
- Final values are precisely the correct results.

Solving Nonlinear Equations II

Dr. Cem Özdoğan

Solving Nonlinear Equations

Newton's Method. Continued Muller's Method Fixed-point Iteration: x = g(x) Method Other Rearrangements

Order of Convergence Multiple Roots The fzero function

Nonlinear Systems Solving a System by

Solving a System by Iteration II

• **Example**: Another example for the pair of equations whose plot is Fig. 7.

and begin with x = 1.0,

the successive values for y and x are: (See Table 4)

equations;

$$x^2 + y^2 = 4,$$

 $e^x + y = 1$

rearrangement;

$$y = -\sqrt{(4-x^2)},$$

$$x = \ln(1-y)$$

Table: Another example for solving a system by iteration

y-value	x-value
-1.7291	1.0051
-1.72975	1.00398
-1.72961	1.00421
-1.72964	1.00416
-1.72963	1.00417

We are converging to the solution in an oscillatory manner.

Solving Nonlinear Equations II

Dr. Cem Özdoğan

Solving Nonlinear Equations

Newton's Method. Continued Muller's Method Fixed-point Iteration: x = g(x) Method Other Rearrangements Order of Convergence Multiple Roots The fzero function

Nonlinear Systems Solving a System by Iteration