1 Hands-on–Interpolation and Curve Fitting with MATLAB II

1. For the given data points;

x	y
2	2.12
4	2.24
6	2.68
10	3.56

i construct the divided-difference table by hand

- ii run the MATLAB code (newpoly.m) and compare with your table.
 - interpolate for x = 8
 - extrapolate for x = 11
- iii run the MATLAB code (divDiffTable.m)
 - interpolate for x = 8
 - extrapolate for x = 11

Hint: Open these *m*-files with the editor. Then execute the codes according to the first line. Use these outputs to inter/extrapolate (see lecture notes).

2. The MATLAB procedure for polynomial least-squares is *polyfit*. Study the following example;

3. For the given data points;

T (° C)	R (ohms)
20.5	765
32.7	826
51.0	873
73.2	942
95.7	1032

i Plot it (such as plot(x,Y,'o')).

ii The graph suggest a linear relationship.

$$y = ax + b$$

values for the parameters, a and b, can be obtained from the plot.

iii Write a MATLAB code that calculates each summation;

$$\begin{array}{cccc} \sum x_i^2 & \sum x_i & \sum x_i Y_i \\ \sum x_i & N & \sum Y_i \end{array}$$

All the summations are from i = 1 to i = N.

iv Then it is obtained as

$$a\sum x_i^2 + b\sum x_i = \sum x_i Y_i$$
$$a\sum x_i + bN = \sum Y_i$$

Solving these equations simultaneously gives the values for slope and intercept a and b. Now, we have a function in the form;

$$y = ax + b$$

v Plot them (such as plot(x,y,x,Y,'o')).