
1 Nonlinear Data, Curve Fitting

• In many cases, data from experimental tests are not linear,

• so we need to fit to them some function other than a first-degree poly-

nomial.

• Popular forms are the exponential form

y = axb

or
y = aebx

• We can develop normal equations to the preceding development for a
least-squares line by setting the partial derivatives equal to zero.

• Such nonlinear simultaneous equations are much more difficult to solve
than linear equations.

• Thus, the exponential forms are usually linearized by taking loga-
rithms before determining the parameters,

For the case y = axb =⇒

lny = lna+ blnx

For the case y = aebx =⇒

lny = lna + bx

• We now fit the new variable, z = lny, as a linear function of lnx or x
as described earlier (normal equations).

• Here we do not minimize the sum of squares of the deviations of Y
from the curve, but rather the deviations of lnY .

• In effect, this amounts to minimizing the squares of the percentage
errors, which itself may be a desirable feature.

• An added advantage of the linearized forms is that plots of the data on
either log-log or semilog graph paper show at a glance whether these
forms are suitable, by whether a straight line represents the data when
so plotted.
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• In cases when such linearization of the function is not desirable,

• or when no method of linearization can be discovered, graphical meth-

ods are frequently used;

• one plots the experimental values and sketches in a curve that seems
to fit well.

• Transformation of the variables to give near linearity,

• such as by plotting against 1/x, 1/(ax+ b), 1/x2,

• and other polynomial forms of the argument may give curves with
gentle enough changes in slope to allow a smooth curve to be drawn.

• S-shaped curves are not easy to linearize; the relation

y = abc
x

is sometimes employed.

• The constants a, b, and c are determined by special procedures.

• Another relation that fits data to an S-shaped curve is

1

y
= a+ be−x

2 Least-Squares Polynomials

• Fitting polynomials to data that do not plot linearly is common.

• It will turn out that the normal equations are linear for this situation
(an added advantage).

• n as the degree of the polynomial

• N as the number of data pairs.

• If N = n + 1, the polynomial passes exactly through each point and
the methods discussed earlier apply,

• so we will always have N > n+ 1.

• We assume the functional relationship

y = a0 + a1x+ a2x
2 + . . .+ anx

n (1)
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• With errors defined by

ei = Yi − yi = Yi − a0 − a1xi − a2x
2
i − . . .− anx

n
i

• We again use Yi to represent the observed (experimental) value cor-
responding to xi (it is assumed that xi free of error for the sake of
simplicity).

• We minimize the sum of squares;

S =
N∑

i=1

e2i =
N∑

i=1

(Yi − a0 − a1xi − a2x
2
i − . . .− anx

n
i )

2

• At the minimum, all the partial derivatives ∂S/∂a0, ∂S/∂an vanish.

• Writing the equations for these gives n+ 1 equations:

∂S
∂a0

= 0 =
∑N

i=1 2(Yi − a0 − a1xi − a2x
2
i − . . .− aix

n
i )(−1)

∂S
∂a1

= 0 =
∑N

i=1 2(Yi − a0 − a1xi − a2x
2
i − . . .− aix

n
i )(−xi)

...
∂S
∂an

= 0 =
∑N

i=1 2(Yi − a0 − a1xi − a2x
2
i − . . .− aix

n
i )(−xn

i )

• Dividing each by −2 and rearranging gives the n+ 1 normal equations
to be solved simultaneously:

a0N + a1
∑

xi + a2
∑

x2i + . . .+ an
∑

xni =
∑

Yi

a0
∑

xi + a1
∑

x2i + a2
∑

x3i + . . .+ an
∑

xn+1
i =

∑
xiYi

a0
∑

x2i + a1
∑

x3i + a2
∑

x4i + . . .+ an
∑

xn+2
i =

∑
x2iYi

...

a0
∑

xni + a1
∑

xn+1
i + a2

∑
xn+2
i + . . .+ an

∑
x2ni =

∑
xni Yi

(2)

• Putting these equations in matrix form shows the coefficient matrix
(B).

B

︷ ︸︸ ︷








N
∑

xi

∑
x2
i

∑
x3
i

. . .
∑

xn

i∑
xi

∑
x2
i

∑
x3
i

∑
x4
i

. . .
∑

xn+1

i∑
x2
i

∑
x3
i

∑
x4
i

∑
x5
i

. . .
∑

xn+2

i

...
...

...
...

...
...∑

xn

i

∑
xn+1

i

∑
xn+2

i

∑
xn+3

i
. . .

∑
x2n
i









a

︷ ︸︸ ︷







a0
a1
a2
.
..
an








=








∑
Yi∑
xiYi∑
x2
i
Yi

...∑
xn

i
Yi








(3)

All the summations in Eqs. 2 and 3 run from 1 to N .
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• Equation 3 represents a linear system.

• However, you need to know that if this system is ill-conditioned and
round-off errors can distort the solution: the a’s of Eq. 1.

• Up to degree-3 or -4, the problem is not too great.

• Special methods that use orthogonal polynomials are a remedy.

• Degrees higher than 4 are used very infrequently.

• It is often better to fit a series of lower-degree polynomials to subsets
of the data.

• Matrix B of Eq. 3 is called the normal matrix for the least-squares
problem.

• There is another matrix that corresponds to this, called the design matrix.

• It is of the form;

A =












1 1 1 1 1
x1 x2 x3 . . . xN

x2
1 x2

2 x2
3 . . . x2

N
...

...
...

...
...

xn
1 xn

2 xn
3 . . . xn

N












• AAT is just the coefficient matrix of Eq. 3.

• It is easy to see that Ay, where y is the column vector of y-values, gives
the right-hand side of Eq. 3.

A
︷ ︸︸ ︷









1 1 1 1 1
x1 x2 x3 . . . xN

x2

1
x2

2
x2

3
. . . x2

N
...

...
...

...
...

xn
1

xn
2

xn
3

. . . xn
N










y
︷ ︸︸ ︷









y1
y2
y3
...
yn










=










∑
Yi∑
xiYi∑
x2

i Yi

...
∑

xn
i Yi










(4)

• We can rewrite Eq. 3 in matrix form, as

AATa = Ba = Ay
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1 AAT = B. To find the solution (with MATLAB) >> a = AynA ∗

transpose(A)

A
︷ ︸︸ ︷











1 1 1 . . . 1
x1 x2 x3 . . . xN

x2
1 x2

2 x2
3 . . . x2

N
...

...
...

...
...

xn
1 xn

2 xn
3 . . . xn

N












∗

AT

︷ ︸︸ ︷











1 x1 x2
1 . . . xn

1

1 x2 x2
2 . . . xn

2

1 x3 x2
3 . . . xn

3
...

...
...

...
...

1 xN x2
N . . . xn

N












=












N
∑

xi

∑
x2
i

∑
x3
i . . .

∑
xn
i

∑
xi

∑
x2
i

∑
x3
i

∑
x4
i . . .

∑
xn+1
i

∑
x2
i

∑
x3
i

∑
x4
i

∑
x5
i . . .

∑
xn+2
i

...
...

...
...

...
...

∑
xn
i

∑
xn+1
i

∑
xn+2
i

∑
xn+3
i . . .

∑
x2n
i












︸ ︷︷ ︸

B

2 ATa = y

AT

︷ ︸︸ ︷











1 x1 x2
1 . . . xn

1

1 x2 x2
2 . . . xn

2

1 x3 x2
3 . . . xn

3
...

...
...

...
...

1 xN x2
N . . . xn

N












∗

a
︷ ︸︸ ︷










a0
a1
a2
. . .
an











=
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y
︷ ︸︸ ︷










y1
y2
y3
. . .
yN











• That is
a0 + a1x1 + a2x

2
1 + . . .+ anx

n
1 = y1

a0 + a1x2 + a2x
2
2 + . . .+ anx

n
2 = y2

a0 + a1x3 + a2x
2
3 + . . .+ anx

n
3 = y3

...
...

...
...

...
...

a0 + a1xN + a2x
2
N + . . .+ anx

n
N = yN

• Least-squares polynomials with all x-values (from given xy-pair data)
are inserted.

• It is illustrated the use of Eqs. 2 to fit a quadratic to the data of Table
1.

Table 1: Data to illustrate curve fitting.

• To set up the normal equations, we need the sums tabulated in Table
1. The equations to be solved are:

11a0 + 6.01a1 + 4.6545a2 = 5.905
6.01a0 + 4.6545a1 + 4.1150a2 = 2.1839

4.6545a0 + 4.1150a1 + 3.9161a2 = 1.3357

• The result is a0 = 0.998, a2 = −1.018,a3 = 0.225, so the least- squares
method gives

y = 0.998− 1.018x+ 0.225x2

• which we compare to y = 1− x+ 0.2x2.

• Errors in the data cause the equations to differ.
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• Figure 1 shows a plot of the data.

• The data are actually a perturbation of the relation y = 1− x+ 0.2x2.

Figure 1: Figure for the data to illustrate curve fitting.

• Example: The following data:

R/C: 0.73, 0.78, 0.81, 0.86, 0.875, 0.89, 0.95, 1.02, 1.03, 1.055, 1.135,
1.14, 1.245, 1.32, 1.385, 1.43, 1.445, 1.535, 1.57, 1.63, 1.755.

Vθ/V∞: 0.0788, 0.0788, 0.064, 0.0788, 0.0681, 0.0703, 0.0703, 0.0681,
0.0681, 0.079, 0.0575, 0.0681, 0.0575, 0.0511, 0.0575, 0.049, 0.0532,
0.0511, 0.049, 0.0532,0.0426.

• Let x = R/C and y = Vθ/V∞,

• We would like our curve to be of the form

g(x) =
A

x
(1− e−λx2

)
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• and our least-squares equation becomes

S =
21∑

i=1

(Yi −
A

xi

(1− e−λx2
i ))2

• Setting Sλ = SA = 0 gives the following equations:

∑21
i=1(

1
xi

)(1− e−λx2
i )(Yi −

A
xi

(1− e−λx2
i )) = 0

∑21
i=1 xi(e

−λx2
i )(Yi −

A
xi

(1− e−λx2
i )) = 0

• When this system of nonlinear equations is solved, we get

g(x) =
0.07618

x
(1− e−2.30574x2

)

• For these values of A and λ, S = 0.00016.

• The graph of this function is presented in Figure 2.

Figure 2: The graph of Vθ/V∞ vs R/C.

2.1 Use of Orthogonal Polynomials

• We have mentioned that the system of normal equations for a polyno-
mial fit is ill-conditioned when the degree is high.

• Even for a cubic least-squares polynomial, the condition number of
the coefficient matrix can be large.

• In one experiment, a cubic polynomial was fitted to 21 data points.
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• When the data were put into the coefficient matrix of Eq. 3, its condi-
tion number (using 2-norms) was found to be 22000!.

• This means that small differences in the y-values will make a large

difference in the solution.

• In fact, if the four right-hand-side values are each changed by only 0.01
(about 0.1%),

• the solution for the parameters of the cubic were changed significantly,
by as much as 44%!

• However, if we fit the data with orthogonal polynomials such as
the Chebyshev polynomials.

• A sequence of polynomials is said to be orthogonal with respect to the
interval [a,b], if

∫ b
a P

∗

n(x)Pm(x)dx = 0 when n 6= m.

• The condition number of the coefficient matrix is reduced to about 5
and the solution is not much affected by the perturbations.
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