1 Nonlinear Data, Curve Fitting

- In many cases, data from experimental tests are not linear,
- so we need to fit to them some function other than a first-degree polynomial.
- Popular forms are the exponential form

$$
y = ax^b
$$

$$
y = ae^{bx}
$$

- We can develop normal equations to the preceding development for a least-squares line by setting the partial derivatives equal to zero.
- Such *nonlinear* simultaneous equations are much more difficult to solve than *linear* equations.
- Thus, the exponential forms are usually linearized by taking logarithms before determining the parameters,

For the case $y = ax^b \implies$

or

$$
ln y = ln a + blnx
$$

For the case $y = ae^{bx} \implies$

$$
ln y = ln a + bx
$$

- We now fit the new variable, $z = lny$, as a linear function of lnx or x as described earlier (normal equations).
- Here we do not minimize the sum of squares of the deviations of Y from the curve, but rather the deviations of lnY .
- In effect, this amounts to minimizing the squares of the percentage errors, which itself may be a desirable feature.
- An added advantage of the linearized forms is that plots of the data on either log-log or semilog graph paper show at a glance whether these forms are suitable, by whether a straight line represents the data when so plotted.
- In cases when such linearization of the function is not desirable,
- or when <u>no method</u> of linearization can be discovered, *graphical meth*ods are frequently used;
- one plots the experimental values and sketches in a curve that seems to fit well.
- Transformation of the variables to give near linearity,
- such as by plotting against $1/x, 1/(ax + b), 1/x^2$,
- and other polynomial forms of the argument may give curves with gentle enough changes in slope to allow a smooth curve to be drawn.
- S-shaped curves are not easy to linearize; the relation

$$
y = ab^{c^x}
$$

is sometimes employed.

- The constants a, b , and c are determined by special procedures.
- Another relation that fits data to an S-shaped curve is

$$
\frac{1}{y} = a + be^{-x}
$$

2 Least-Squares Polynomials

- Fitting polynomials to data that do not plot linearly is common.
- It will turn out that the normal equations are linear for this situation (an added advantage).
- \bullet *n* as the degree of the polynomial
- N as the number of data pairs.
- If $N = n + 1$, the polynomial passes exactly through each point and the methods discussed earlier apply,
- so we will always have $N > n + 1$.
- We assume the functional relationship

$$
y = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n \tag{1}
$$

• With errors defined by

$$
e_i = Y_i - y_i = Y_i - a_0 - a_1 x_i - a_2 x_i^2 - \dots - a_n x_i^n
$$

- We again use Y_i to represent the observed (experimental) value corresponding to x_i (it is assumed that x_i free of error for the sake of simplicity).
- We minimize the sum of squares;

$$
S = \sum_{i=1}^{N} e_i^2 = \sum_{i=1}^{N} (Y_i - a_0 - a_1 x_i - a_2 x_i^2 - \dots - a_n x_i^n)^2
$$

- At the minimum, all the partial derivatives $\partial S/\partial a_0$, $\partial S/\partial a_n$ vanish.
- Writing the equations for these gives $n + 1$ equations:

$$
\frac{\partial S}{\partial a_0} = 0 = \sum_{i=1}^{N} 2(Y_i - a_0 - a_1 x_i - a_2 x_i^2 - \dots - a_i x_i^n)(-1)
$$

\n
$$
\frac{\partial S}{\partial a_1} = 0 = \sum_{i=1}^{N} 2(Y_i - a_0 - a_1 x_i - a_2 x_i^2 - \dots - a_i x_i^n)(-x_i)
$$

\n
$$
\vdots
$$

\n
$$
\frac{\partial S}{\partial a_n} = 0 = \sum_{i=1}^{N} 2(Y_i - a_0 - a_1 x_i - a_2 x_i^2 - \dots - a_i x_i^n)(-x_i^n)
$$

• Dividing each by -2 and rearranging gives the $n + 1$ normal equations to be solved simultaneously:

$$
a_0 N + a_1 \sum x_i + a_2 \sum x_i^2 + \dots + a_n \sum x_i^n = \sum Y_i
$$

\n
$$
a_0 \sum x_i + a_1 \sum x_i^2 + a_2 \sum x_i^3 + \dots + a_n \sum x_i^{n+1} = \sum x_i Y_i
$$

\n
$$
a_0 \sum x_i^2 + a_1 \sum x_i^3 + a_2 \sum x_i^4 + \dots + a_n \sum x_i^{n+2} = \sum x_i^2 Y_i
$$

\n
$$
\vdots
$$

\n
$$
a_0 \sum x_i^n + a_1 \sum x_i^{n+1} + a_2 \sum x_i^{n+2} + \dots + a_n \sum x_i^{2n} = \sum x_i^n Y_i
$$

\n(2)

• Putting these equations in matrix form shows the coefficient matrix (B).

$$
\begin{bmatrix}\nN & \sum x_i & \sum x_i^2 & \sum x_i^2 & \sum x_i^3 & \cdots & \sum x_i^n \\
\sum x_i^2 & \sum x_i^2 & \sum x_i^3 & \sum x_i^4 & \sum x_i^5 & \cdots & \sum x_i^{n+1} \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\sum x_i^n & \sum x_i^{n+1} & \sum x_i^{n+2} & \sum x_i^{n+3} & \cdots & \sum x_i^{2n}\n\end{bmatrix}\n\begin{bmatrix}\na_0 \\
a_1 \\
a_2 \\
\vdots \\
a_n\n\end{bmatrix}\n=\n\begin{bmatrix}\n\sum x_i \\
\sum x_i Y_i \\
\sum x_i^2 Y_i \\
\vdots \\
\sum x_i^2 Y_i\n\end{bmatrix}
$$
\n(3)

All the summations in Eqs. [2](#page-2-0) and [3](#page-2-1) run from 1 to N.

- Equation [3](#page-2-1) represents a linear system.
- However, you need to know that if this system is ill-conditioned and round-off errors can distort the solution: the a 's of Eq. [1.](#page-1-0)
- Up to degree-3 or -4, the problem is not too great.
- Special methods that use orthogonal polynomials are a remedy.
- Degrees higher than 4 are used very infrequently.
- It is often better to fit a series of lower-degree polynomials to subsets of the data.
- Matrix B of Eq. [3](#page-2-1) is called the **normal matrix** for the least-squares problem.
- There is another matrix that corresponds to this, called the design matrix.
- It is of the form;

$$
A = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ x_1 & x_2 & x_3 & \dots & x_N \\ x_1^2 & x_2^2 & x_3^2 & \dots & x_N^2 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ x_1^n & x_2^n & x_3^n & \dots & x_N^n \end{bmatrix}
$$

- AA^T is just the coefficient matrix of Eq. [3.](#page-2-1)
- It is easy to see that Ay , where y is the column vector of y-values, gives the right-hand side of Eq. [3.](#page-2-1)

• We can rewrite Eq. [3](#page-2-1) in matrix form, as

$$
AA^T a = Ba = Ay
$$

\boldsymbol{A}
$\overline{1}$ $\,1$ $\mathbf{1}$ $\mathbf{1}$ \sim
$\begin{array}{ccccccccc} x_1 & x_2 & x_3 & \ldots & x_N \\ x_1^2 & x_2^2 & x_3^2 & \ldots & x_N^2 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ x_1^n & x_2^n & x_3^n & \ldots & x_N^n \end{array}$
\ast
$A^T\!$
x_1^2 x_1^n $\mathbb{E}[\mathbf{r},\mathbf{r}^{\dagger}]$ x_1 1 x_2 x_2^2 x_2^n 1 x_3 x_3^2 x_3^n $\mathbf{H} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$ x_N x_N^2 $\mathbf{1}$ x_N^n
N $\sum x_i$ $\sum x_i^2$ $\sum x_i^3$ $\sum x_i^3$ \ldots $\sum x_i^n$ $\sum x_i$ $\sum x_i^2$ $\sum x_i^3$ $\sum x_i^4$ \ldots $\sum x_i^{n+1}$ $\sum x_i^2$ $\sum x_i^3$ $\sum x_i^4$ $\sum x_i^5$ \ldots $\sum x_i^{n+2}$ $\sum x_i^2$
$\vdots \qquad \vdots \qquad \vdots$ $\sum x_i^n \qquad \sum x_i^{n+1} \qquad \sum x_i^{n+3} \qquad \ldots \qquad \sum x_i^{2n}$
\boldsymbol{B}

 $1 \text{ } AA^T = B$. To find the solution (with MATLAB) >> $a = AynA *$ $transpose(A)$

2 $A^T a = y$

$$
\begin{bmatrix}\n & A^T \\
1 & x_1 & x_1^2 & \dots & x_1^n \\
1 & x_2 & x_2^2 & \dots & x_2^n \\
1 & x_3 & x_3^2 & \dots & x_3^n \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
1 & x_N & x_N^2 & \dots & x_N^n\n\end{bmatrix} * \n\begin{bmatrix}\na_0 \\
a_1 \\
a_2 \\
\vdots \\
a_n\n\end{bmatrix} =
$$

 \hat{y} $\sqrt{y_1}$ $\overline{1}$ $\overline{1}$ $\overline{1}$ $\overline{1}$ $\overline{1}$ $\overline{1}$ $\overline{1}$ y_2 y_3 . . . y_N 1 $\overline{1}$

- That is
- $a_0 + a_1x_1 + a_2x_1^2 + \ldots + a_nx_1^n = y_1$ $a_0 + a_1x_2 + a_2x_2^2 + \ldots + a_nx_2^n = y_2$ $a_0 + a_1x_3 + a_2x_3^2 + \ldots + a_nx_3^n = y_3$ $a_0 + a_1 x_N + a_2 x_N^2 + \ldots + a_n x_N^n = y_N$
- Least-squares polynomials with all x-values (from given xy -pair data) are inserted.
- It is illustrated the use of Eqs. [2](#page-2-0) to fit a quadratic to the data of Table [1.](#page-5-0)

Table 1: Data to illustrate curve fitting.

• To set up the normal equations, we need the sums tabulated in Table [1.](#page-5-0) The equations to be solved are:

> $11a_0 + 6.01a_1 + 4.6545a_2 = 5.905$ $6.01a_0 + 4.6545a_1 + 4.1150a_2 = 2.1839$ $4.6545a_0 + 4.1150a_1 + 3.9161a_2 = 1.3357$

• The result is $a_0 = 0.998$, $a_2 = -1.018$, $a_3 = 0.225$, so the least-squares method gives

 $y = 0.998 - 1.018x + 0.225x^2$

- which we compare to $y = 1 x + 0.2x^2$.
- Errors in the data cause the equations to differ.
- Figure [1](#page-6-0) shows a plot of the data.
- The data are actually a perturbation of the relation $y = 1 x + 0.2x^2$.

Figure 1: Figure for the data to illustrate curve fitting.

• Example: The following data:

R/C: 0.73, 0.78, 0.81, 0.86, 0.875, 0.89, 0.95, 1.02, 1.03, 1.055, 1.135, 1.14, 1.245, 1.32, 1.385, 1.43, 1.445, 1.535, 1.57, 1.63, 1.755.

 V_{θ}/V_{∞} : 0.0788, 0.0788, 0.064, 0.0788, 0.0681, 0.0703, 0.0703, 0.0681, 0.0681, 0.079, 0.0575, 0.0681, 0.0575, 0.0511, 0.0575, 0.049, 0.0532, 0.0511, 0.049, 0.0532,0.0426.

- Let $x = R/C$ and $y = V_{\theta}/V_{\infty}$,
- We would like our curve to be of the form

$$
g(x) = \frac{A}{x}(1 - e^{-\lambda x^2})
$$

• and our least-squares equation becomes

$$
S = \sum_{i=1}^{21} (Y_i - \frac{A}{x_i} (1 - e^{-\lambda x_i^2}))^2
$$

• Setting $S_{\lambda} = S_A = 0$ gives the following equations:

$$
\sum_{i=1}^{21} \left(\frac{1}{x_i}\right) \left(1 - e^{-\lambda x_i^2}\right) \left(Y_i - \frac{A}{x_i}\left(1 - e^{-\lambda x_i^2}\right)\right) = 0
$$

$$
\sum_{i=1}^{21} x_i \left(e^{-\lambda x_i^2}\right) \left(Y_i - \frac{A}{x_i}\left(1 - e^{-\lambda x_i^2}\right)\right) = 0
$$

• When this system of nonlinear equations is solved, we get

$$
g(x) = \frac{0.07618}{x} (1 - e^{-2.30574x^2})
$$

- For these values of A and λ , $S = 0.00016$.
- The graph of this function is presented in Figure [2.](#page-7-0)

Figure 2: The graph of V_{θ}/V_{∞} vs R/C .

2.1 Use of Orthogonal Polynomials

- We have mentioned that the system of normal equations for a polynomial fit is ill-conditioned when the degree is high.
- Even for a cubic least-squares polynomial, the **condition number** of the coefficient matrix can be large.
- In one experiment, a cubic polynomial was fitted to 21 data points.
- When the data were put into the coefficient matrix of Eq. [3,](#page-2-1) its condition number (using 2-norms) was found to be 22000!.
- This means that small differences in the y-values will make a *large* difference in the solution.
- In fact, if the four right-hand-side values are each changed by only 0.01 (about 0.1%),
- the solution for the parameters of the cubic were changed significantly, by as much as 44%!
- However, if we fit the data with orthogonal polynomials such as the Chebyshev polynomials.
- A sequence of polynomials is said to be orthogonal with respect to the interval [a,b], if $\int_a^b P_n^*$ $n_n^*(x)P_m(x)dx = 0$ when $n \neq m$.
- \bullet The condition number of the coefficient matrix is reduced to about 5 and the solution is not much affected by the perturbations.