1 Hands-on–Interpolation and Curve Fitting with MATLAB III

1. Fitting a <u>cubic</u> to the data by using MATLAB. For the given data points;

x	Y
0.000	1.500
0.142	1.495
0.285	1.040
0.428	0.821
0.571	1.003
0.714	0.821
0.857	0.442
1.000	0.552

• Evaluate the cubic on the x data and plot

```
>> x=[0 0.142 0.285 0.428 0.571 0.714 0.857 1]'
>> Y=[1.5 1.495 1.04 0.821 1.003 0.821 0.442 0.552]'
>> p = polyfit(x,Y,3)
p = -0.3476 0.9902 -1.6946 1.5518
>> f = polyval(p,x)
>> plot(x,Y,'o',x,f,'-')
```

2. Fitting a <u>non-linear</u> curve to the data with least-square method.

- Use the data in the previous item.
- We will fit $y(x) = \alpha e^{\beta x}$.
- Repeat each of the steps given in the following solution by <u>hand.</u> Solution:

(a) First, we should compute a new table with z(x) = lny(x)

>> Y=[1.5 1.495 1.04 0.821 1.003 0.821 0.442 0.552]' >> z=log(Y) Then our new data points;

x	z
0.000	0.4055
0.142	0.4021
0.285	0.0392
0.428	-0.1972
0.571	0.0030
0.714	-0.1972
0.857	-0.8164
1.000	-0.5942

(b) Construct the normal equations (with $A = ln\alpha$ and $C = \beta$)

$$y(x) = \alpha e^{\beta x}$$

$$lny(x) = ln\alpha + \beta x$$

$$z = A + Cx$$

$$S = \sum_{i=1}^{N} (z_i - Cx_i - A)^2$$

$$\frac{\partial S}{\partial C} = 0 = \sum_{i=1}^{N} 2(z_i - Cx_i - A)(-x_i)$$

$$\frac{\partial S}{\partial A} = 0 = \sum_{i=1}^{N} 2(z_i - Cx_i - A)(-1)$$

(c) Dividing each of these equations by -2 and expanding the summation, we get the so-called *normal equations*

$$C\sum x_i^2 + A\sum x_i = \sum x_i z_i$$

$$C\sum x_i + AN = \sum z_i$$

(d) Solve these normal equations to find A and C

(e) So; we obtained C = -1.1328 and A = 0.4466, we should convert back to the original variables. Convert back to the original variables we have

>> exp(0.4466) ans = 1.5630

 $z = 0.4466 - 1.1328x, \Rightarrow y = 1.563 * e^{-1.1328x}$

(f) Plot Y vs x and y vs x then compare them. For plotting (see Fig. 1);

>> y=1.5630*exp(-1.1328*x)
>> plot(x,Y,'o',x,y,'-')

Figure 1: plot(x,Y,'o',x,y,'-').

• Compare this least-square polynomial results with the <u>built-in MATLAB</u> functions results in the previous item (item 1), see Fig.2.

>> plot(x,Y,'o',x,f,'-',x,y,'+')

Figure 2: plot(x,Y,'o',x,f,'-',x,y,'+').