
1 OPERATING SYSTEMS LABORATORY

VII - Scheduling

1.1 MOSS Simulator

moss (Modern Operating Systems Simulators) is a collection of Java-based
simulation programs which illustrate key concepts presented in the text An-
drew S. Tanenbaum, Modern Operating System, Second Edition (Prentice-
Hall, 2001). The software is designed for students and instructors using this
text.

• Read the file index.html carefully.

• Each simulator is packaged separately and available for

– Scheduling Simulator

– Deadlocking Simulator

– Memory Management Simulator

– File System Simulator

• Study the user guide for Scheduling Simulator

• Follow the steps below for installation of the software

1. Create a directory in which you wish to install the simulator (e.g.,
”moss/sched”).

$ mkdir moss

$ cd moss

$ mkdir sched

$ cd sched

2. Download the compressed tar archive (sched.tgz) into the direc-
tory.

3. Expand the compressed tar archive.

$ tar -zxvf sched.tgz

4. Export the classpath

$ export CLASSPATH=.

5. To test the program, enter the following commands.

$ java Scheduling scheduling.conf

1

http://siber.cankaya.edu.tr/OperatingSystems/moss/index.html
http://siber.cankaya.edu.tr/OperatingSystems/moss/sched/user_guide.html
http://siber.cankaya.edu.tr/OperatingSystems/moss/sched/sched.tgz

The program will simply run the simulation based on the infor-
mation provided in scheduling.conf and write its output to the
Summary-Results and Summary-Processes files. You should see
the following output.

Working...

Completed.

6. Hint: If you want to compile java codes as given in the manual
files, you may be faced with some errors. A suggested solution is
that: If there is any import statement that is used for including
user-defined class, erase it. (i.e. //import Common;)

Lab work:

1. Create a configuration file in which all processes run an average of 2000
milliseconds with a standard deviation of zero, and which are blocked
for input or output every 500 milliseconds. Run the simulation for
10000 milliseconds with 2 processes. Examine the two output files.
Try again for 5 processes. Try again for 10 processes. Explain what’s
happening.

2. Consider changing the configuration parameter “meandev” to
“run time average”. The word “dev” doesn’t belong here. It would
be nice if this were the average amount of time a process runs before
blocking for input or output instead of the total runtime.

3. Consider changing the configuration parameter “standdev” to
“run time stddev”. It would be nice if this were the number of standard
deviations from the average time a process runs before blocking for
input or output instead of the total runtime.

1.2 Assignment III

1. Design a cpu scheduler of your own choice. The idea is to schedule
the CPU for several simulated processes that alternately compute and
request I/O.

• You are to read a file describing n processes and then simulate the
n processes until they all terminate. The way to do this is to keep
track of the state of each process and advance time making any
state transitions needed. The data file has the following format:

2

Process
Arrival
Time

CPU
burst

I/O Oper-
ation

. . . CPU
burst

Line End

0 100 2 . . . 200 -1
5 6 4 . . . 25 -1
...

...
... . . .

... -1

• Assume that there is only one CPU and one I/O device in the
system. The I/O device serves only one process at a time.

• Recall that in a real operating system, the scheduler only executes
whenever an interrupt or trap occurs. Similarly, your simulation
should be event based.

• Each event should be emitted along with relevant process states.
For example:

...

Time : 13

- process 4 io started (blocked until 15, remaining = 3, burst = 2)

- process 5 running (remaining = 12, burst = 10)

Time : 15

- process 4 i/o completed (now ready, remaining=3, burst=2)

- process 5 preempted (remaining = 10, burst = 12)

- process 4 running (remaining = 3, burst = 2)

...

(preemption depends on the chosen scheduling algorithm.)

• Ignore the context switching overhead and i/o latency.

• At the end of the run you should first print an identification of the
run including the scheduling algorithm used, any parameters (e.g.
the quantum for RR), and the number of processes simulated. You
should then analyze the behavior of your scheduler and report the
followings;

– Finishing time (i.e., when all the processes have finished).

– CPU Utilization (i.e., percentage of time some job is running).

– I/O Utilization (i.e., percentage of time some job is blocked).

– Throughput, expressed in processes completed per hundred
time units.

– Average turnaround time.

– Average waiting time.

3

An example process data file

0 5 -1

1 3 2 3 2 3 -1

6 10 2 60 2 30 3 70 2 10 2 10 -1

23 3 2 3 2 3 -1

24 70 2 70 2 40 3 70 2 20 2 10 -1

25 3 2 3 2 3 -1

26 80 2 80 2 50 3 70 2 40 2 10 -1

27 3 2 3 2 3 -1

28 25 2 10 -1

29 3 2 3 2 3 -1

31 3 2 3 2 3 -1

33 3 2 3 2 3 -1

35 3 2 3 2 3 -1

40 3 2 3 2 3 -1

40 3 2 3 2 3 -1

42 3 2 3 2 3 -1

43 3 2 3 2 3 -1

45 3 2 3 2 3 -1

4

	OPERATING SYSTEMS LABORATORY VII - Scheduling
	MOSS Simulator
	Assignment III

